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1. Introduction. 11. The definition of the game. Given a sequence 0<&i

?£ki^ • • • ^km^ • ■ • we define a game G{fcm} as follows: Two players

A and B choose alternately positive numbers xn, (n = 0, 1, 2, • • • )

according to the following rules: B starts by choosing x0>0; alter

Xi, (i = 0, 1, • ■ • , 2« —2) have been chosen, A chooses #2n-i such that

(1.1) 0  < X2n-1  < *2n-2

and subsequently B chooses xin such that

(1.2) 0  <  Z2„  <   £n*2n-l.

Given a set SC. [0, oo), A will be said to win on S if 23<"o Xi = s£E.S;
otherwise, B wins.

We say that the set 5 is unavoidable (B cannot avoid S), if A has a win-

ning strategy on S, i.e. if there exists a sequence of functions

*2n+l(*0, Xl,   ■   ■   ■  , Xif), («  =   0,   1,  2,   •   •   • )

satisfying (1.1) and such that s= 23<-o x«£S whenever *2n, (« = 0, 1, 2, • • • )

satisfy (1.2). If, on the other hand, B has a winning strategy on S, we say that

5 is avoidable (B can avoid S).

In the sequel we shall also consider a game G{&m}, defined as a game

G[km\ satisfying the additional condition *0<1.

<5{&m} will be played exclusively on bounded sets SoC [0, !]•

12. Historical notes. Various variants of the game of Banach and Mazur

are described in the so-called Scottish Book (see Colloq. Math. vol. 1 (1947)

p. 57). One of them, which was defined by S. Mazur and later modified by

S. Banach, is a special case of our game for km= 1, (m = 1, 2, • • • ). This case

was first considered by A. Turowicz [4], who proved that the set of all irra-

tional numbers is unavoidable. His result was later generalized by S. Zub-

rzycki [5], who has shown that the complement of any countable set is un-

avoidable. A sufficient condition for avoidability of sets was given by S. Hart-

man [2]. Further, M. Reichbach [3] has constructed (for km = l) a perfect

unavoidable set of measure 0 and thus has given an answer to a question

put by H. Steinhaus, concerning the existence of unavoidable sets of the

first category.
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S. Banach posed the still unsolved question, what are the necessary and

sufficient conditions for an arbitrary set S to be unavoidable (in the case

km = l). Some contributions to the solution of this problem and a full char-

acterization of a class of unavoidable sets will be given in [l J.

13. Outline of results. In this paper (with the exception of the last section)

we shall confine ourselves to closed sets only.

It will be shown (Theorem 1) that for every game G{&m} there exists an

unavoidable set 5 which is nowhere dense and perfect.

As regards the measure of unavoidable sets, we shall prove (Theorem 2)

that a necessary and sufficient condition for the existence of a perfect (or

closed) unavoidable set of measure 0 is £m-il/&m=°°. For the game

G{&m} it will be moreover proved (Theorem 3) that the infimum of measures

of all the perfect (or closed) unavoidable subsets of [0, 1 ] is

n (i -1/(*«+1)).
m-l

Universal unavoidable sets UUSG and UUSG are sets which are un-

avoidable for every game G{jfem} or G{fem} respectively. It will be shown

(Theorems 4 and 5) that a UUSG is of the second category in every point of

[0, l], and a UUSG is of the second category in every point of [M, oo) for

some M. Finally we shall construct non-trivial examples of a UUSG and a

UUSG.
14. Notation. Let a be any interval with endpoints x, y, (x^y); we de-

note:

a = [*, y] = {z:x^z^y],

a° = ix, y) = [z:x < z < y},

'a = [x, y) = {z:x^z< y},

Iia) =x, the left endpoint of a,

ria) =y, the right endpoint of a,

\a\ =y — x is the length of interval a, we use also a lor \a\ when meaning

is clear by context; thus e.g. Ua,- will denote the union of intervals, but £a«

the sum of their lengths.

By/ we shall denote as a rule closed intervals if=J); by g, open ones

fe=«°).
Let S be any set SE [0, oo); we denote: miS), the Lebesgue measure of S;

S+t= {x+t: xES}, the translate of S by t, it is a number); 5, the closure

of S; CiS) = [0, oo)~S, the complement of S with regard to [0, oo), for

SoE [0, l]; C(S0) = [0, l]~So, the complement of S0 with regard to [0, l].

Further we shall denote sn = £?_0 *<• Evidently the sequence sH,

(« = 0, 1, 2, • • • ) is monotonically increasing, and if it converges then

limBH.w sH = £«1o Xi = s.
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2. The existence of unavoidable nowhere-dense sets.

Theorem 1. For every game G{km} there exists an unavoidable set S which

is nowhere dense and perfect.

Proof. We begin by proving the theorem for G {km}. We shall namely con-

struct a perfect nowhere dense set SoC [0, l], which will turn out to be

unavoidable.

Let/= [0, l], and decompose / into 3 subintervals

L ' 2Jfex + 3 J'      * _ \2*i + 3 *    2*!+ 3/ L2AJ + 3'    J

Similarly decompose for every n, (n = 1, 2, • ■ • ) each of the closed intervals

/»,•••«„_„ (0i = 0, 1; *=1, 2, • • • , m-1) into

._fh---K-lO_._g»l ■••»»-!_. f>l---»n-ll_.

*- /ll- • •«»-!   -*

2 closed subintervals fa.. ■ j^o and fit.. .^{i and an open one gjx.. .in_t so that

'^•••'"l = o> i/xt \fh--->»-i\. («- = o, l);
(2.1) 2K + 2n + i

Let now So = f"C_0 Uji-o, i; *_i,», ... ,„ /i,...i». Evidently 50 is homeomorphic

with the Cantor set and as such is perfect and nowhere dense.

We shall now prove that A has a winning strategy on So.

A is said to be in a winning position of the first kind after his nth move

*2n-i, AGWn, if for some ^...fc,-,, (m^n)

(an) Sin-i =  rigl1-->m-l)

and

iftn) knXin-l ^   |/«!•■• »„ | i (5m =  1).

Similarly .4 will be said to be in a winning position of the second kind after

his nth move, AGWf, it for some g«,...i»«t•••«„! (w^n, p^O)

(<*n ) *Sn-l = r(gtl ...S„tl---efj,

G3» ) *„*2n-l ^ fiftflj  — **»-!

and for every v satisfying 0^v<p. and e,+i = 0,

(Tn ) Kgll- ■   *»«f •«»)  ~ **»-l >    I Sh- ■  *»«1-  <r I •

We shall prove that A has a strategy which enables him to be in one of
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the winning positions after each of his moves. From this follows s2n-iESo,

(w=l, 2, • • • ) and—So being closed and bounded—also lim,,,,,, s2n-i

= lim<,00 Si = sESo, i.e. So is unavoidable.

The proof that A has the mentioned strategy will be given by induction.

Agreeing on

(2.2) s-i = 0, *o*-i=  |/|   =1,

evidently A E W0 at the beginning of the game.

Suppose now that AEWn or AEWf. It is evident that whatever x2n is

chosen by B—provided that (1.2) is satisfied—s2„E/01...«m holds. If now for

some gs^.-sv (X^w), s2nE'gsl--.sx, then A makes s2„+i = rigSl...S)). If AE Wn,

x2n+i satisfies (1.1) because considering (2.1), x2n+i^ \ih---h\ ^ l/«i---Jx°l

=^2n. The same reasoning holds if AEWn' and if X>m+p,, or X^m+u and

the sequences {5m+i, Sm+2, ■ ■ • , S\], {eu e2, • • • , «x-m} are not identical (note

that in this case if i is the smallest integer such that 5m+<^e,-, then necessarily

e< = 0 and dm+i=l). If however {bm+u • • • , 5X} = {«,, • • • , e^-m}, i\<m+u)

then ^2n+i<^2n is expressly stipulated by (Tn), as evidently ex-m+i = 0. Now

after this move AEWn+i. It is namely evident that (a„+i) is satisfied and

considering (2.1), (p\,+i) holds as well.

The only other possibility is that

(2.3) s2nESor\fh...im

and s2n is not a left endpoint of any open interval of CiSo). Accordingly

00

(2.4) su =/»!»,••• def fl /Mf-ir
T—m

and there are infinitely many zeros among the subscripts of /j,«,_Evidently

(2.5) *Tdctr(ftl...,T) -su>Q, (r = 1, 2, • • • )

and

(2.6) #T —» 0 monotonically.

There exists therefore an integer j satisfying

(2.7) #j<x2n, ij^m).

Denote by i the smallest integer i >j such that Si = 0, and let p be the smallest

integer satisfying

1 1 1
(2.8) — <-—-■•

2p      kn+i      ki + t

If among the subscripts Si+i, bi+2, • • •  of/01«,... there occurs a sequence of

at least p consecutive l's, i.e. if there exists an integer t such that
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(2.9) dt = 0, Sh-i = S<+2 = • • • = 8t+p =1, (/ = i),

then A makes Sin+i = r(gSl.. .tt_i). This move of A satisfies (1.1) because

t — l^j and therefore, considering (2.5), (2.6) and (2.7),

(2.10) s2„+i = r(gSl...it_i) — su < &j < xin.

Also A£.Wn+i. It is namely evident that (an+i) is satisfied. Moreover, con-

sidering (2.10), (2.3) and (2.1), r(/5l...j(+J>) =/(&,...»,_,) implies

*a.+i^ |/«,•••»«+,| + | gh-■•«<-! I   < ( ^ + T~T~t )' I/»!■••«« I >

as P^i, (2.8) gives l/2p + l/(kt+t) <l/kn+i and (ftn+i) follows.

If on the other hand no sequence (2.9) exists among the subscripts of

/*,»,..., denote by h the smallest integer satisfying

(2.11) kh + k>3p, (h^i)

and let

(2.12) h < h < ii < ■ ■ •

be the sequence of all the subscripts i„>h satisfying

(2.13) 5,, = 0, Ol =1,2, •••);

evidently

(2.14) i,+i-in^p, iv =1,2, •••)•

From (2.4) and (2.13) we have

dn def r(gSl...Siii_i) - sin > 0, (17 = 1, 2, • • • )

and <2,—>0 monotonically. There exists therefore an integer £ such that

(2.15) d(<--—-«?,.
«n+l +   1

Now A chooses

(2.16) *2n+l = d(

and makes thus

(2.17) Sin+i = r(gh...Si<i_i).

Considering (2.15), (2.7) and (2.6) we have, in view of h>j, di<xin and there-

fore by (2.16) #2n+i satisfies (1.1). Also A G Wf+i: (af+i) is namely equivalent

to (2.17), (ftf+i) follows from (2.16), (2.15) and (2.5); at last by (2.17), (2.13),
(2.1), (2.11) and (2.14)
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Kgh ■■■Siv-l)   -  S2n+1  ^   ligh---ti„-l)   — r(i»l---ii,+1-l)   =    I/«!•••',•,+,-1.1 I

= I**••-.<,-.i-c*i,+*> n    .,,.«> ig»i---««,-ii■
X-i,+l ^«X TiA+1

(, - 1, 2, .-.,«- 1)

and considering (2.13), (7n'+i) is satisfied.

This accomplishes the proof of the theorem for <5{&m} and it remains to

extend the proof for G{fcm}. To this end put Sq = So+q, (o = l, 2, • • • ) and

00

(2.18) S = USa.
8-0

If now q = xo<2 + l we fix the strategy of A on Sq as described above for So.

Consequently 5 is unavoidable.

Remark 1. In Theorem 1 the monotonity of the sequence {km} is not es-

sential. Let ki, (* = 1, 2, • • • ) be any sequence of positive numbers, then the

sequence km = maxisiim k!, (m = l, 2, • • • ) is evidently nondecreasing and

according to Theorem 1 there exists for 67{£OT} an unavoidable set S which is

nowhere dense and perfect. It is however evident that S is also unavoidable

for G{k(}.

Remark 2. Theorem 1 remains evidently true for games £{&„,} and

bounded sets S0E [0, l].

3. The measure of unavoidable sets.

Lemma. For every game G{km\ and every closed unavoidable set SoE [0, l],

the relation

(3.1) m,Sft)>f[(l-—L-)
n=i \       */, + 1/

holds.

Proof. Let S0E [0, 1 ] be closed. We shall fix such a strategy for B that if

So is unavoidable, then (3.1) is fulfilled.

Clearly 0 and 1 must be nonisolated points of So, as otherwise B could

choose x2j, (j = 0, 1, 2, • • • ) so small, or xo so large respectively, as to have

a winning strategy. Consequently C(So) is a union of at most denumerably

many mutually disjoint open intervals, and 0 and 1 are not endpoints of any

of them. Let gi, (i=l, 2, • ■ • , m) he any finite set of open intervals of

C(S0) taken in the natural order. In order to prove (3.1) it will evidently

suffice to show that

(3-2) £g.-<i-IK,
.-1 J>-1

where
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(3.3) ^=1-.^^, 0,-1,2,...).
k„+ I

Denote by/,-, (* = 1, 2, • • • , m + l) the closed intervals of C(UjLi gy) taken

again in the natural order. Some of the intervals/,-—except of/i and/m,.i—■

may shrink to a point. A should never allow

su-i G 'gi, in = 1, 2, • ■ • ; i = 1, 2, • • • , m)

because in such a case B has a winning strategy, by choosing xy,

(j = n, n + 1, • • • ) sufficiently small. (Especially s2n_iG/i should not be al-

lowed for fi shrinking to a point.)

In order to fix the strategy of B we shall have to make use of several

sequences of moves to be made by A and B. The moves of the uth sequence

will be denoted by x%p +)3, (ft = 0, 1, 2, • • • ; u = l, 2, • • • ; pi = 0). B begins

with xl = s\ = r(fi), then A has to make s\£'f,\, (i\>l). If r(f#-s\<kix\,
B makes s\ = r(f}f). Otherwise B turns to a new sequence of moves and

chooses x% = s% = r(f^). Generally let s£> +^ = rifoi ), (">0)> then A has to

make "

SiPp+i,+i G '/<* +r>1, (wi-h-i > ipu+i)-

If

fif'p   +,+1)   _  5V(<+8»+l   <  kp„+r+lXiPu+i,+ l,

B makes

***+»+* = fiHn+,J-

Otherwise let p„+i, (0 ^p^+i ^p„+v) be the greatest integer satisfying for some

a, (1 ^a^S/Li)

(3.4) r(jVj      ,) ~ -C+i-i < ^+1^+1-1

(if pu+i = 0, take (2.2)) and B turns to the (u-fT)st sequence of moves taking

as Xif*^ the left side of (3.4) and making thus

Then A has to make

"+1        /— /r    , /•J1+1      ^   •"        -v
*2,„+i+i fc Z.^,+1, i.^+1+i > tpM+H-i;

and so on. If 4 is to win, this procedure must come to an end after a finite

number of moves with 5jPi+J+1G'/m+i for some integers t, 5.

We shall now introduce a new notation to the moves described above.
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7
x,

#0 /^        J * ^N 6
_                                                                         *»                                    Xi                                                        Xi

fl        1 1 1    ^N      2        2       2       2       2    "i »^~~^|      3 1^3        3 ~*|      4 5 I^S        5 ~"|      6 7
-To    .T|     *«     *j *1     .t2    .%'.•!    -A'4    A's      .Tr,      *! £7      *8    *9 x, X-     Xi.   Xi Xt Xf

bn  an biz ar,      \ai   bt  at   bu an b3u,a-uu     03446345513455      1345.     °34 J;l55 0355       "35 o3

, I        but &I45 J A35

h

Looking at the move xt as the interval [s,_i, s,J, (* = 0, 1, 2, • • • ) we shall

denote

bh = *2ji-2   and   o^ = x2;i-i

if x^-2 is not included in any other move. Further, bjl.. .jy_l being defined we

denote

CCy ay

hi ■ ■ h-ih = x*h-* C h\.. .yT_,    and    aix.. .yT = Xt^-i

if there exists no move arf, satisfying

ay 0 Cty ay (J

x2jy-2 7* x2, 9^ bj1.. .yT_! 7* x2jy-2   and   x2jr.2 C #2» C 6y, ■ • .jy.,.

Evidently j7=Jt-i- The number of moves xj? being finite so is the number of

the intervals a and 6. Their numbers will be denoted:

,_  ., hi-••hi ah--ij> O'x+i =ix,ix +!»•••, ^+i = t\+iifhj2, • ■ ■ ,j\);

X = 0, 1, 2, • • • , 7 - 1; 7 = 1, 2, • • • , A;io = 1).

The intervals aj^.-j are identical with the moves of A and accordingly they

cover U™ 1 gi. Moreover those intervals are pairwise disjoint and therefore

(3.2) and consequently also (3.1) will follow from

h 00

(3.6) £     £     «*•■■*< i-n»i
T-1 J'X-iSJ'xS'x*-1'2'' " ••7 "-1

which we proceed to prove.

From the construction of the intervals a,- it is evident that
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Mi = i - 23 a> - 23 K ij = 1, 2, • • •, ti);
F-l >-l

consequently, considering (3.3), we have

(3.7) aj = (1 - «) (l-E*- X>,Y (7 = 1,2, • • • , h).
\ v-l >—1       /

Using induction we shall verify the relation

(3.8) i-23«,-i>^n^-E(^IlA      (7> = 1,2, ••-,/,).
r—1 F—1 r—1 r—1 \       u=v      /

For /> = 1, (3.8) follows from (3.7) withj = l. Suppose now that (3.8) holds

for some p, (p<ti). Putting in (3.7) j = p + l we get

(H-i p+i   \ / p p     \

1 — 23fl»—23M — Vp+i (1 — 23a» — 23M = — bp+wp+i
t~l r—l      / \ r—1 p-l      /

addition of inequality (3.8) multiplied by rip+i verifies (3.8) for p + 1. Now

put in (3.8) p = k. As the left side of (3.8) is positive we may—considering

0=II"«<i+i vn<l—multiply the right side of (3.8) with IJ"-(!+i Vf and we
get

i>< (i - n v.) - t\br(i - n*)].

Similarly we have for every interval b^.-.j   t

ty / oo       \ iT    r / "       \1

(3.9) 23   *h---h < ih-tr-ih ~ II vA ~23     6i,-i7(l - n vA   ,
jy—iy-l n f—iy—l     '   iy—Jy-i   >- \ 0—iy     ' -I

(for 7 = 1, take 6= [0, l]). Summing up the inequalities (3.9) for all the inter-

vals bjx...j   v (see (3.5)) we get finally (3.6).

Theorem 2. Given a game G{km}, a necessary and sufficient condition for

the existence of a perfect unavoidable set of measure 0 is

(3.10) £f=a>-

Proof. In order to prove sufficiency we make use of the set S constructed

in the proof of Theorem 1. As shown there, 5 is perfect and unavoidable.

Moreover (2.1) gives

and from (3.10) follows m(So) =0. From (2.18) we get at last m(S)=0.
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For G{ km} follows the necessity of (3.10) (for closed sets) from the lemma.

We shall now extend the proof for G{km}. Let ££,. l/k{< oo and let T be

any closed unavoidable set TE [0, °°). If miT(~\[0, l])>0, the theorem is

proved; otherwise, B is able—according to the lemma—to fix his strategy in

such a way that either

(3.11) s E CiT) r\ [0, 1\

or for some »i

(3.12) sini> 1.

(3.11) contradicts the assumption that T is unavoidable and thus (3.12) re-

mains, i.e. s2niE[qu <?i + l) for some integer qi>0. Generally let S2niEdi

— [lu <Zi + l). If miT(~\dA>0 the theorem is proved. Otherwise B can fix his

strategy so that either sECiT)P\di which contradicts the unavoidableness of

T or for some ni+i>ni, s2ni+1Edi+i with g,-+i>g,-. This means however that

lim,„w s2ni = lim,..* s, = oo which contradicts once more the assumption that

T is unavoidable.

Remark 1. Theorem 2 remains true also with regard to the existence of a

closed unavoidable set.

Remark 2. The analogue of Remark 2 to Theorem 1 applies also to Theo-

rem 2.

Theorem 3. Given a game G {kn}, let P {kn} be the family of the perfect un-

avoidable subsets of [0, l], then

inf    miSo) = n(l-T-T7Y
S0eP(*n) t=1\ ki+1 )

Remark. The theorem remains true also for closed unavoidable sets. In

order to prove both propositions it must be shown that the measure of every

closed unavoidable subset of [0, l] is not less then U<lx Vi (see i3.3)) which

follows from the lemma, and that for every e>0 there exists a set SoEF{kn]

such that

00

(3.13) miSo) < Uvi + t,
»-i

which will now be proved.

Proof. In the case that (3.10) holds, our proposition follows from Theorem

2. It remains therefore to consider

(3.14) £t-<0°-
»-i  ki

As in proof of Theorem 1 we shall construct a perfect set So satisfying (3.13),

which will turn out to be unavoidable.
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Let/= [0, l] and decompose / into 3 subintervals

/o = [0,^T^]'   8^(kiT~2'kT+ri)'   *"fc+r4
Similarly decompose for every n, (ra = 1, 2, • • • ) each of the closed intervals

/.!...»„_!, (5, = 0, l;t = l, 2, • • • ,«-l)

I /*l'--*»-lO | S*l---&n-l_ I 7*l---'n-ll |

*- f>l---t«-l   -►

into 2 closed subintervals/0l.. •»„_!»„, (5„ = 0, 1) and an open one £»,...»„_! so

that

|/<V--«,-io|   =  U»i-••».-!I   =T-—- |/»i---»»-il ;

(3.15) k

ky,+ 2

where

n-l

(3.16) 7*=1 + £S,.
•-1

We denote

S' = n U /0l...8n.
n-0    «,-0,l;,'-l,2, ••-,n

Further let e>0 be any positive number. We form the closed intervals

(3.17) ̂-*'"[f^*«-0"^sl«,»-*'l'r^«»-^ + ̂ S l««i-^IJ.

(di = 0, l;i = 1,2, ■■■ ,n;n = 0,1,2, ■■ ■)

and put

00

D= U U <*V..,„.
n=0   J,-—O.lli—1,2, •••,»

Let now

(3.18) S0= iS'KJD)n [0, 1].

Evidently S' is perfect. It follows immediately that S0 is dense in itself.

In order to prove that So is also closed, the only nontrivial case arises when

z = lim„,0O zs1...tn lor some sequence 5i, <52, • • • (5j = 0, 1; i=l, 2, • • • ) where
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2j1...j„G^ji.-j„. It must be proved that zG-SV This follows however from

(3.17) as z = limn~<cZs1...6n = \imn~«,r(gs1...sf)£.S'(ZSo. Consequently S0 is

perfect.

We shall now show that (3.13) is satisfied. m(S') is some function of the

sequence kit (i=l, 2, ■ • •), say m(S') =p(ki, h, • ■ - ). The method of con-

struction of S' shows that m(ST\fo) = (l/(h+2))p(ki, kit ■ ■ ■ ) and m(ST\fi)

= (h/(ki + 2))P(ki, k3,--- ), i.e. P(h, h, ■ ■ -) = (l/(ki + 2))P(ku ki,---)
+ (h/(ki+2))p(ki, k3, ■ ■ • ). Considering (3.3) we have

(3.19) Piki,ki,-- ■) =ViPiki,k3,- ■■).

Similarly we have in the general case for »=1, 2, • • •

m(S'nfh...Sj)   =    \fSl...h\p(kn,  kn+l,   ■   -   ■),

where Si, • • • , 8,- is any sequence of 0's and l's satisfying 23i-i 8, = » — 1.

Now

m(S' C\fh...,,) = m(S' C\fh...tjo) +m(S'C\fh...,yl)

and considering (3.15) we have

l/ii-.-iJ Pik», kn+i, • • • )

= l/«i"-*vl Y,—r-z$ik»> *»+i» • • •) + ,   "    Pik"+i> *n+2, •••)>•,
Un + 2 kn + 2 )

and in the same way as (3.19) we obtain

p(kn, kn+\,  •  •  • )   = VnP(kn+l, &n+2,  ■  •  • ), (» =   1, 2,  •  •  • )•

It follows immediately

n

p(hu hi, • ■ ■ ) = Jhi-Pikn+i, *»+2, • • • ),     (« = 1, 2, • • • ).
«-i

Now evidently lim suon^«,p(kn+i, kn+i, • • • ) = 1 and consequently m(S')

= p(ki, ki, - - - ) = JJj" j Vi- Moreover from (3.17) we have that m(D)<e,

and therefore from (3.18) follows (3.13).

It remains to be proved that A has a winning strategy on So. In the first

place we remark that B should avoid

(3.20) s^ G '*«...,„    (P< = 0, 1; * = 1, 2, ■ • ■ ,j;j = 0, 1, 2, • • • ;

n = 0,1,2, ■--),

as in that case A would evidently win just by choosing ^2,+i, (*' = n, n + 1, ■ ■ • )

small enough.

A will be said to be in a winning position after his «th move, A G Wf,

if for some dh...im_v (ym^n)
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(«»") s2n-i = lidh...Sm_A

and

(fin") knX2n-l  ^    |/°i---»m-il|  •

We shall prove that if (3.20) never occurs, then A has a strategy which en-

ables him to be in a winning position after each of his moves. From this

follows s2n-i£So, (» = 1, 2, • • • ) and—So being closed and bounded—also

limnH.M s2n-i = sESo, i.e. So is unavoidable.

Agreeing on (2.2), AEWo'. Suppose now that AEWn". Considering

(3.20), B has to make

(3-21) s2n Efsi---sm-lsm, (5m = 1).

If for some

£»,...jx, (X = m), s2n E '(gh--t\(~^C(dh...s>)),

then A makes

(3.22) S2n+i = l(dsl...ix).

Of course

(3.23) *2„+i < | gh---t\\

and considering (3.15) and («,") this move satisfies (1.1). Moreover from

(3.21) follows 7x+i^7m + l^» + l, and therefore (3.22) gives (a£'+i); at last

(3.15) and (3.23) give

£n+l#2n+l  ^  ^Tx+i *2n+1 <    I/«1 • • • «Xl I

which confirms (8'n'+i). Consequently AEWn'+1.

As (3.20) should be avoided the only other possibility is that (2.4) holds,

and there are infinitely many zeros—and considering (3.20)—also infinitely

many l's among the indices of /»,»,— Accordingly by (3.16), yt—»oo. More-

over (3.14) implies £,—»°°, and consequently there exists an integer /j = w + 1

such that

(3.24) ky^2kn+u

(3.25) 2 | gov-.*-,,.,|   < z2n

and S„ = 0, i.e.

(3.26) s2n Efif- j,,_i0.

Now A makes s2n+i = l(dtl...»M_,). By (3.15), (3.26) and (3.25) this move

satisfies (1.1). Further considering the selfevident 7,.^7m + l^» + l, (o£'+i)

is fulfilled, and by (3.24), (3.26) and (3.15)
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K+lXin+l ^ — kyu-2\ gs^.-tn^]    =    |/«i---o-„-il|  ,

i.e. (ft'f+i) is satisfied as well. Consequently A G W"+i.

4. On universal unavoidable sets. In a natural way there arises the prob-

lem of describing the structure of a universal unavoidable set UUSG i.e. a

set which is unavoidable for every game G{fcm} and—respectively—of a

UUSG i.e. a subset of [0, l] which is unavoidable for every game (3{&m}.

For closed sets it follows from the lemma that if So is a UUSG then

m(So) = 1, i.e. 50= [0, l]. More generally we shall prove

Theorem 4. A UUSG is of the second category at every point of [0, l].

Proof (J). Suppose that 50C [0, l] is of the first category at some point

of [0, l]. We shall show that S0 is not a UUSG by constructing a sequence

(4.1) 0 <k* £k*i ^ • ■ ■

such that for G{km}, B has a winning strategy on S0.

Let d be a closed interval contained in (0, 1) such that SoP^d is of first

category. Let Gn, (n = 1, 2, • • • ) be a sequence of open sets, each dense in d,

such that their intersection £ = fln°_1 G„ is contained in dC\C(So). Yet further

R denote the set of all rational numbers r in the interval [0, |d|/2], and

define E0 = C\rsR (E — r). Eo is not empty, since it includes the first half of d,

except for a set of first category.

Choose arbitrarily a point xoG-E0 and a real number M^2. Yet 7V0 be an

integer such that

(4.2) 2"'= max(M, 2/| d\).

Note that Xo+^G-E for every rational number r in the interval [0, 2_^o]. Let

To = {xo} and for each n^ 1 let

Tn = (*o+2-'"' + 2-* + • • • + 2-'»: 2V0 < ti < it < • • • < *»}

where ik denote positive integers. (Tn consists of all numbers xo+r, where r

is a dyadic rational less than 2_JVo having exactly n binary digits different

from zero.) Then

Tn = U Tk.
k—t

Hence Tn is a compact set and Tn(ZE for every n. Therefore Tn-iC.Gn,

(n = l, 2, • • • ), and since G„ is open there exists an increasing sequence of

integers

(') The author is indebted to Professor J. C. Oxtoby for this proof, which is much shorter

than the original one.
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No < Ni< N2 < ■ ■ ■

such that

Fn =       U       [X, X + 2-"»+!] C Gn, (» =  1, 2, • • • ).
xer„_i

The sets Fn are compact and so is their intersection F=C\n°_1 Fn which is

evidently contained in E. Put

Dn = {xo + 2~* + 2->> + • • • + 2-'-;ii = iV*}, (» = 0,1, 2, • • • )

and note that

(4.3) DnEFEE, (n = 0, 1, 2, ■ ■ ■ ).

We define now the sequence (4.1) putting

(4.4) k*m = 2W-+W«

and show that for the game G {k*}, B has a winning strategy on S0.

B is said to be in a winning position after his (« + l)-st move x2n, BEWn,

it S2nEDn.

Choosing x0 as above, BEW0. Suppose now that BEW„. Considering

Z>„C[0, l] and (1.1), however A chooses x2n+i, there will hold 52n+i<M. Now

if A chooses x2n+\ ̂  2~Nn+l, B makes S2n+2 = M, which by (4.2) and (4.4)

satisfies (1.2), and wins. If, however, A chooses x2n+i<2~Nn+l, let_y„+i be the

largest integer satisfying Xtn+i<2~in+1. B chooses then x2»+2 = 2_'n+1 — x2n+i,

which evidently satisfies (1.2) as in this case *2»+2<X2„+i. Thus s2n+2ED„+i

and BEWn+i.
We have thus shown that—being in a winning position—B can always

manage either to win immediately or to reach another winning position. If,

however, BEWn, (n=0, 1, 2, • • • ), i.e. s2nEDn, 5 = limn^„ s2n is included in

the closure of U"_i Dn and by (4.3), sEFEEEd(~\C(So) and B wins again.

With respect to the sets UUSG we shall prove

Theorem 5. A  UUSG is (for some M^0) of the second category in every

point of [M, oo).

Proof. Suppose there is a set S which does not satisfy the above condition.

It follows that there exists a sequence d", d1, d2, ■ • ■ of closed intervals such

that

(4.5) l(d°+1)>2r(d*), (q = 0,1,2, ■■•)

and that SC\dq is of the first category for each q. We shall prove that S is not

a UUSG; we shall namely construct a sequence

(4.6) 0 < ft, = k2 g ■ ■ ■
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such that for G{km], B will have a winning strategy on 5.

To this end denote

M< = r(d^) - /(dt)

and construct for every </«, (q = 0, 1, 2, • • • ) with regard to SP^d" and M",

a point xl, sets D„, (n=0, 1, 2, • • • ) and the sequences:

N*a <Nl<N?< ■    ■ ,

0 < k\ < k\   < • • • ,

in the same way as the point x0, the sets Dn and the sequences {Nn} and {k%}

have been constructed for d with regard to SoP^d and M in the proof of

Theorem 4. Further define the monotone sequence (4.6) putting

kn =    max    kn.

The strategy of B will now be defined. B is said to be in a winning position

after his (w + l)st move x2n, B(E:Wf, if s2„G^m Ior some q, O^q^n and some

m, 0=w^w.

Choosing as the first move Xo = x0)(E.D0), B^W0'. Suppose now that

BEWJ, i.e. SinEDl, (O^q^n, 0 = wgw). If A chooses

(a) x2n+i < 2-*»+»

let jm+i be the largest integer satisfying x2n+i < 2~'m+1. B chooses then x2n+i

= 2~im+1 — x2n+i and thus Sin+iE.D'm+1 or B^Wf+i. If however A chooses

(ft) *2„+i ̂  2-^-+>

we have anyhow by (1.1) and (4.5), Sin+i<l(dq+1) <xg+1. 5 makes then

J2n+2 = *S+1 G ^o+1 which considering xQ0+1 — *2»+i < x"0+1 — l(d") < M"

^2No^'kn+iXin+i satisfies (1.2), and BGWf+i.

Now if for every sufficiently large n, A chooses for x2n+i moves (a) only,

then there exist N and q such that s2nG.dq, (n^N) and B has a winning

strategy on d". Otherwise lim,,-,*, sin = °o and B wins again.

A sufficient condition for a set S(Z [0, °°) to be a UUSG will now be given.

The condition itself and the proof of its sufficiency are only a slight generaliza-

tion of the respective problem for the game G{km}, (^1 = ^2= ■ ■ • =1)

solved by M. Reichbach [3] (see also [2]). Further we shall construct a

UUSG whose complement C(S) is a countable union of perfect sets and is
dense in [0, 00).

We begin with the definition of the property H.

H: A set PC [0, °°) is said to have the property H if, for every x^O and

every two numbers e>0 and k>0, there exists to the right of x an interval g

such that gC\P = 0 and k (1(g) - x) ^ | g \ <e.
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For every game G {km}, A has a winning strategy on C(P) and by an

analogous method as used in the proof of Theorem 2 [3] we obtain

Theorem 6. Let N = \JfL0 A7,- be a union of sets Ni having the property H,

then C(N) is a UUSG.

Note that every finite set has the property H and therefore the comple-

ment of every countable set is a UUSG.

We give now an example of a perfect set Ar0 having the property H. Let

/= [0, l], and decompose/ into 3 subintervals

*-[*7!    8 = (t'7>    ''-[f1}
Similarly decompose, for every n, (n = l,2, • • ■ ), each of the closed intervals

/»,...»„_!, (S, = 0, 1; *=1, 2, • • • , n—l) into 2 closed

I              7*1- --'n-l"             I                                        S>l---K-1                                    I              y'l-'-'n-ll I

*- /ll •••'»-!  -*

subintervals/0[...}„_,«„, (8„ = 0, 1) and an open one gil..-«„_! so that

I/«!••■»■. I =—ri; l/«i-"«.-il i (5» = °>!); U»i-•••»-! I =    , _ l/«i--«.-il •
«+ 2 « + 2

The set

00

2v0= n        u       /,,...,„
n—0    Jj—0,l;t—1,2,* • ■,!>

is perfect and has evidently the property H.

Now denoting by {r,} the sequence of all positive rational numbers and

putting Ni = N0+ri we obtain from Theorem 6 that S=C(U4°l0 N/) is a

UUSG. Similarly it can be seen that SH [0, 1 ] is a UUSG.
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