A GENERALIZATION OF THE BANACH AND
MAZUR GAME

BY
HAIM HANANI

1. Introduction. 11. The definition of the game. Given a sequence 0<k,
Sk< -+ Zk.< --- we define a game G{kn} as follows: Two players
A and B choose alternately positive numbers x,, (=0, 1, 2,--:)
according to the following rules: B starts by choosing x¢>0; after
x;, 4=0,1, - - -, 2n—2) have been chosen, 4 chooses x3,-1 such that

(1.1) 0 < %on—1 < X202
and subsequently B chooses x3, such that
1.2) 0 < 290 < Baxon—1.

Given a set SC[0, ©), 4 will be said to win on S if Y 2, x;=sES;
otherwise, B wins.

We say that the set S is unavoidable (B cannot avoid .S), if 4 has a win-
ning strategy on S, i.e. if there exists a sequence of functions

Zonp1(X0, X1, * * ) Xan), n=0,1,2,---)

satisfying (1.1) and such that s= D 12, x:ES whenever x5, (#=0,1,2, - - +)
satisfy (1.2). If, on the other hand, B has a winning strategy on S, we say that
S is avoidable (B can avoid S).

In the sequel we shall also consider a game G{kn}, defined as a game
G{k,,.] satisfying the additional condition x¢<1.

G{kn} will be played exclusively on bounded sets SoC [0, 1].

12. Historical notes. Various variants of the game of Banach and Mazur
are described in the so-called Scottish Book (see Colloq. Math. vol. 1 (1947)
p. 57). One of them, which was defined by S. Mazur and later modified by
S. Banach, is a special case of our game for k,=1, (m=1, 2, - - - ). This case
was first considered by A. Turowicz [4], who proved that the set of all irra-
tional numbers is unavoidable. His result was later generalized by S. Zub-
rzycki [5], who has shown that the complement of any countable set is un-
avoidable. A sufficient condition for avoidability of sets was given by S. Hart-
man [2]. Further, M. Reichbach [3] has constructed (for kn.=1) a perfect
unavoidable set of measure 0 and thus has given an answer to a question
put by H. Steinhaus, concerning the existence of unavoidable sets of the
first category.
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S. Banach posed the still unsolved question, what are the necessary and
sufficient conditions for an arbitrary set S to be unavoidable (in the case
kn=1). Some contributions to the solution of this problem and a full char-
acterization of a class of unavoidable sets will be given in [1].

13. Outline of results. In this paper (with the exception of the last section)
we shall confine ourselves to closed sets only.

It will be shown (Theorem 1) that for every game G{k.} there exists an
unavoidable set S which is nowhere dense and perfect.

As regards the measure of unavoidable sets, we shall prove (Theorem 2)
that a necessary and sufficient condition for the existence of a perfect (or
closed) unavoidable set of measure 0 is Y you;1/km= . For the game
G{kn} it will be moreover proved (Theorem 3) that the infimum of measures
of all the perfect (or closed) unavoidable subsets of [0, 1] is

IT (1 ~ 1/(fm + 1)).
m=1
Universal unavoidable sets UUSG and UUSG are sets which are un-
avoidable for every game G{kn} or G{kn} respectively. It will be shown
(Theorems 4 and 5) that a UUSG is of the second category in every point of
[0, 1], and a UUSG is of the second category in every point of [M, «) for
some M. Finally we shall construct non-trivial examples of a UUSG and a
UUSG.
14. Notation. Let a be any interval with endpoints x, y, (x<y); we de-
note:

a=[x,9] = {312 <35y},
a® = (z,9) = {z:2 <3 <},
’a=[x,y)={z:x§2<y}}

l(a) =x, the left endpoint of a,

r(a) =y, the right endpoint of a,

|a| =y—x is the length of interval a, we use also a for |a| when meaning
is clear by context; thus e.g. Ua; will denote the union of intervals, but Eae
the sum of their lengths.

By f we shall denote as a rule closed intervals (f=f); by g, open ones
(g=2°).

Let S be any set SC [0, ®); we denote: m(S), the Lebesgue measure of S;
S+it= {x+t: xES} , the translate of S by ¢, (¢ is a number); S, the closure
of S; C(S)=[0, »)~S, the complement of S with regard to [0, «), for
SeC [0, 1]; C(So) = [0, 1]~S,, the complement of S, with regard to [0, 1].

Further we shall denote s,= ) r.ox; Evidently the sequence s,,
(n=0, 1, 2, .. .) is monotonically increasing, and if it converges then
liMpaw Sa= D 4o Xi=S5.
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2. The existence of unavoidable nowhere-dense sets.

THEOREM 1. For every game G{kn} there exists an unavoidable set S which
is nowhere dense and perfect.

Proof. We begin by proving the theorem for G {%.}. We shall namely con-
struct a perfect nowhere dense set SoC [0, 1], which will turn out to be
unavoidable.

Let f= [0, 1], and decompose f into 3 subintervals

ki+1 ki+1 ki + 2 ki+ 2
fo=10, :I’ = ’ ’ fi=]—) l:l
2k + 3 2k +3 2k 43 2k, + 3
Similarly decompose for every n, (n=1, 2, - - - ) each of the closed intervals
Soroetaepy (6;=0,1;2=1,2, ..., 2n—1) into

| f‘l"“n—lo l 88y 8p1 f‘x""n—ll I

— Jo b0 —
2 closed subintervals f3,...s,_o and fs,...s,_1 and an open one g, ...s,_, so that

knt+n
|fal...a"l =m If.;‘...;"_ll, (8,.=0, 1);
(2.1)
| goiesas] = R S | foue sl -
2k, +2n+4+1

Let now So=MN;-¢ Us;m0, 1, i=1,2, --- ,n f5;-..3,. Evidently S, is homeomorphic

with the Cantor set and as such is perfect and nowhere dense.

We shall now prove that 4 has a winning strategy on So.

A is said to be in a winning position of the first kind after his nth move
Xon_1, A EW,, if for some gs,...1,_,, (M Z=n)

(n) San—1 = 7(g8,. - 8py)
and
(8x) Baan1 S | foro-ooml (bn = 1).

Similarly 4 will be said to be in a winning position of the second kind after
his nth move, AEW,/, if for some gs,...3,¢,- ¢,y (M2, uz0)

(a’l' ) Sop—1 = f(g;l...sm.l...g“),

®:) Eaton—1 S r(fsy..-3,) — San-1

and for every v satisfying 0=y <u and €41 =0,

(’len ) l(gal. e dmer- e ..,) — Sgp—1 > I 881 dmer--ey I .

We shall prove that 4 has a strategy which enables him to be in one of
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the winning positions after each of his moves. From this follows s3,—1E .S,
(n=1, 2,---) and—S, being closed and bounded—also lim, .., Sz,
=lim;., 5;=5SE.S,, i.e. Sy is unavoidable.

The proof that 4 has the mentioned strategy will be given by induction.
Agreeing on

(2.2) s.1=0, kex_y = | f|] =1,

evidently A €W, at the beginning of the game.

Suppose now that AEGW, or ACW,. It is evident that whatever s, is
chosen by B—provided that (1.2) is satisfied—s: €S, . . .3, holds. If now for
some g;,.. -5, NZmMm), 52 € 'gs,.. s, then A makes spo1=7(gs,...s,). f ACW,,
X241 satisfies (1.1) because considering (2.1), Xy = Ig;l. . .;,‘l < | Say-- -a,‘o|
= x2,. The same reasoning holds if AE W,/ and if A\>m-+pu, or A\Sm+pu and
the sequences {6".+1, Omizy = " Bx}, {el, €, * - - ,e)‘_,,.} are not identical (note
that in this case if 7 is the smallest integer such that 8,4;7¢;, then necessarily
e;=0 and Opnys=1). If however {6m+1, e, 5;} = {el, e, ex_,,.}, A<m—p)
then x3,41 <3, is expressly stipulated by (v, ), as evidently e—m41=0. Now
after this move A €W, It is namely evident that (aa41) is satisfied and
considering (2.1), (8n41) holds as well.

The only other possibility is that

(2.3) 521;650(-\,[81"'8.
and sz, is not a left endpoint of any open interval of C(S,). Accordingly

(2.4) Son =f513r“ def ﬂ fala,...;f

Tomm

and there are infinitely many zeros among the subscripts of f;,.... Evidently

(2.5) 8, def r(fa,...s,) — s3> O, (r=1,2---)
and
(2.6) ¢, — 0 monotonically.

There exists therefore an integer j satisfying
(2.7) 8 < Zom, Gz m.
Denote by 7 the smallest integer 2> j such that §;=0, and let p be the smallest
integer satisfying

1 1 1

(2.8) —<— .
20 kn+1 ki + 1

If among the subscripts 8.1, 042, + + + Of f5,3,... there occurs a sequence of
at least p consecutive 1’s, i.e. if there exists an integer £ such that
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(2.9) 00=0,0841 =042 = """ =08ip =1, (tz19),
then A makes suy1=7(gs,...s,,). This move of 4 satisfies (1.1) because
t—12=7 and therefore, considering (2.5), (2.6) and (2.7),
(2.10) Tont1 = 7(g8y---8;) — S2a < & < Xgn.

Also AE W, 1. It is namely evident that (a.41) is satisfied. Moreover, con-
sidering (2.10), (2.3) and (2.1), r(fs,...s,4,) =(gs,- - 3,-,) implies

1 1
Tomy1 = Ifﬁx-"5t+pl + Igh---t’t—xl <<_+_-—>'|f51"'3:| )

2» kit
as t21, (2.8) gives 1/22+41/(ki+1t) <1/kny1 and (Batr) follows.
If on the other hand no sequence (2.9) exists among the subscripts of
f8,- -, denote by & the smallest integer satisfying

(2.11) ki + k> 37, (B2 14)
and let
(2.12) h<iy<ia< .-
be the sequence of all the subscripts 7,> h satisfying
(2.13) 8, =0, m=1,2,--);
evidently
(2.14) fgr1 — Gy S B, (m=12---).
From (2.4) and (2.13) we have

dy def 7(gsy...5;,-) — 52 > 0, n=12---)
and d,—0 monotonically. There exists therefore an integer £ such that

1

(2.15) d: < m O,
Now A4 chooses
(2.16) Xonp1 = dg

and makes thus
2.17) Soat1 = 7(gs- - 8y0)-

Considering (2.15), (2.7) and (2.6) we have, in view of 2> j, d; <xz, and there-
fore by (2.16) x2,41 satisfies (1.1). Also A E W,/11: (a41) is namely equivalent
to (2.17), (B.41) follows from (2.16), (2.15) and (2.5); at last by (2.17), (2.13),
(2.1), (2.11) and (2.14)
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l(gﬂl" "s',,—x) — S2nt1 = l(gh' . '36,—1) - '(351' . '8"1+1"’) = If‘l' . ‘36.“—1-1|

g+l kx+X .
= gneess| s +40)- _aTrh e
O R )‘-I:"}l-lzk)‘+2)\+l> syl

(ﬂ=1’2’°"y¥_l)

and considering (2.13), (y++1) is satisfied.
This accomplishes the proof of the theorem for G{%.} and it remains to
extend the proof for G{k,,.}. To this end put S,=So+¢, (¢=1, 2, - - - ) and

(2.18) Ss=US,.

q=0
If now ¢=<x¢<qg+1 we fix the strategy of 4 on .S, as described above for S,.
Consequently .S is unavoidable.

REMARK 1. In Theorem 1 the monotonity of the sequence { .} is not es-
sential. Let k!, (¢=1, 2, - - - ) be any sequence of positive numbers, then the
sequence k,=maxigism k{, (m=1, 2, - - - ) is evidently nondecreasing and
according to Theorem 1 there exists for G{k.} an unavoidable set S which is
nowhere dense and perfect. It is however evident that S is also unavoidable
for G{k!}.

REMARK 2. Theorem 1 remains evidently true for games G{k,} and
bounded sets SoC [0, 1].

3. The measure of unavoidable sets.

LEMMA. For every game G{kn} and every closed unavoidable set SoC [0, 1],
the relation

(3.1 m(s.,)gfl(l— 1 )

p=1 kp + 1

holds.

Proof. Let SyC [0, 1] be closed. We shall fix such a strategy for B that if
So is unavoidable, then (3.1) is fulfilled.

Clearly 0 and 1 must be nonisolated points of Sy, as otherwise B could
choose x.;, (=0, 1, 2, - - - ) so small, or x¢ so large respectively, as to have
a winning strategy. Consequently C(S,) is a union of at most denumerably
many mutually disjoint open intervals, and 0 and 1 are not endpoints of any
of them. Let g;, (:=1, 2, - - -, m) be any finite set of open intervals of
C(S,) taken in the natural order. In order to prove (3.1) it will evidently
suffice to show that

3.2) Se<t—IIn

=1 p=1

where
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1
3.3 =1- =1,2,:--).
( ) Nu B+ 1 ’ (ﬂ ) 4y )
Denote by f;, (¢=1, 2, - - -, m+1) the closed intervals of C(U, g;) taken

again in the natural order. Some of the intervals fi—except of f; and fm.1—
may shrink to a point. 4 should never allow

S2n—l€’g;’,(ﬂ=1,2,"-;i=1,2,...’m)

because in such a case B has a winning strategy, by choosing x.;,
(G=mn, n+1, - - - ) sufficiently small. (Especially sz, Ef; should not be al-
lowed for f; shrinking to a point.)

In order to fix the strategy of B we shall have to make use of several
sequences of moves to be made by 4 and B. The moves of the uth sequence
will be denoted by x‘z‘,,“.‘.p, B8=0,1,2,---;u=1,2,-:-; p=0). B begins
with x}=s3=r(f1), then 4 has to make s;&'f3, (5>1). If r(fi)—si <kuxj,
B makes s;=r(f}). Otherwise B turns to a new sequence of moves and
chooses x5=s3=r(f}). Generally let s3, 5, =7( f"f.f+ ), (#>0), then 4 has to
make wr

» ’ B B
Stotrre1 € il s (oot > ).

If

B B
r(f# 00 — Steutorir < Roprt1 %o,y
M

B makes

;M
Stputwri2 = 7(f #,,+’+x)’

Otherwise let pu11, (0 =p,41 Sp,+v) be the greatest integer satisfying for some
a, (1sasp)

a a
3.9 ’(fi,‘,'”,,_,ﬂ) = Sopupn—1 < Roppn®2puii—1

(if pu31=0, take (2.2)) and B turns to the (u+1)st sequence of moves taking
as x4" the left side of (3.4) and making thus

s+l
S2u41 = "(ft‘;“_,_yﬂ)-

Then A has to make

p+1 H+1 N
Stpust1 € "fant (Topprtr > zma+r+l)

41ty
and so on. If 4 is to win, this procedure must come to an end after a finite
number of moves with s3, 311€ fmi1 for some integers 7, 0.
We shall now introduce a new notation to the moves described above.
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7
Xy
5
X6
2
X 3 4 6
0 X6 Xg g
1 1 1 1 2 2 2 2 2pT9 2 3 38 3 4 55 5 6 | .7
Xo Ny X2 X3 X N a3y N5 foxg X X;| X8 X9 X9 X;| X3. X9 X9 Xs
- >
by an by a2 81 bs Qo | by ass |b3ess G |@sfbygss asess  }Oas. |34 |bygs Q3ss @35 as
b bays bas . b3y
1
bsy
bs

Looking at the move x; as the interval [s;_, s.-], (¢t=0,1, 2, - - - ) we shall
denote

ay ay
bjy, = %32 and @, = ¥

if x3} —5 is not included in any other move. Further, b;,...
denote

being defined we

1—1

ay ay
b,'l. cfyeriy T xzj.'_g C bfl' Y and aj, .. gy = xg,'.,_l

if there exists no move x5, satisfying

ay ﬂ oy ay ﬁ
xz,;,_z # X2» # bjl. « iyt # X2j—2 and xzj.r_g C Koy C bjl. - jy-1e

Evidently j,2j,-1. The number of moves x} being finite so is the number of
the intervals @ and b. Their numbers will be denoted:

b}r"i’n Ajy - - -jys (.7.)\+l =.i’\7j>\ + 17 ey b = tH-l(jl) j2! t )j)\);

3.5) .
>‘=0)1’21'°"7—1;7=1’2"°‘,h;]0=1)-

The intervals a;,...; are identical with the moves of 4 and accordingly they
cover U, g.. Moreover those intervals are pairwise disjoint and therefore
(3.2) and consequently also (3.1) will follow from

h ©
(3.6) 2 ) @yooiy <1 = I mi
T=1J)_,SH\SfHiA=1,2, 00y p=1

which we proceed to prove.
From the construction of the intervals a; it is evident that
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7 i
kig;<1— 2 a, — 2 b, (7=1,2,--,4);

pom] a1

consequently, considering (3.3), we have

3.7) oz -n(- $a- gb) (i

1,2, -, 1).

ya=1

Using induction we shall verify the relation

69 1-Fo-Fozlln-S(1a). o

Vel ru1 el p=v

1,2, -, t).

For p=1, (3.8) follows from (3.7) with j=1. Suppose now that (3.8) holds
for some p, (p <t). Putting in (3.7) j=p+1 we get

rt+1 p+l1 P P
(1 -2 a- Ebv) - 77p+1<1 -2 a- va> Z — bpp1mpnr

Pl o1 y=1 you1

addition of inequality (3.8) multiplied by 7,41 verifies (3.8) for p+1. Now
put in (3.8) p=t. As the left side of (3.8) is positive we may—considering
0§H;°.,l+, 7, <1—multiply the right side of (3.8) with H,‘f_,lﬂ 7. and we

get
Bo<(t-In) - 2[a(-1In)]

Similarly we have for every interval b;,.

* 'jy—l
ty © ty 0
(39) Z ajl...j.y<bjl..-j7._l(1 - II 17,,) —E [bjl...j.'(l - Hﬂu)]»
P ——— p=jy—1 Jym=ir—1 n=jy

(for y=1, take b= [0, 1]). Summing up the inequalities (3.9) for all the inter-
vals bj,...5,_,, (see (3.5)) we get finally (3.6).

THEOREM 2. Given a game G {k,,.} , a necessary and sufficient condition for
the existence of a perfect unavoidable set of measure 0 is

(3.10) Z‘; k—=

Proof. In order to prove sufficiency we make use of the set S constructed
in the proof of Theorem 1. As shown there, S is perfect and unavoidable.
Moreover (2.1) gives

ke kit 1 had 1
—m(SN[0,1 g M e
m(So) = m(S b= I} 2t 2i+ 1 I‘Il( 2k + 2i + 1)

and from (3.10) follows m(S,) =0. From (2.18) we get at last m(S) =0.
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For G{ kn} follows the necessity of (3.10) (for closed sets) from the lemma.
We shall now extend the proof for G{k,,,}. Let D, 1/k;< o and let T be
any closed unavoidable set TC[0, «). If m(TN\[0, 1]) >0, the theorem is
proved; otherwise, B is able—according to the lemma—to fix his strategy in
such a way that either

(3.11) sec(rnio 1
or for some n;
(3.12) Sany > 1.

(3.11) contradicts the assumption that T is unavoidable and thus (3.12) re-
mains, i.e. Sz,€ [q1, ¢1+1) for some integer ¢.>0. Generally let sz,,Ed;
= [q,~, gi+1). If m(TNd;) >0 the theorem is proved. Otherwise B can fix his
strategy so that either s& C(T")M\d; which contradicts the unavoidableness of
T or for some %41 >n;, Sen;y Ediya With gip1>¢gi. This means however that
lim;.q S2n; =lim;., s;= © which contradicts once more the assumption that
T is unavoidable,

REMARK 1. Theorem 2 remains true also with regard to the existence of a
closed unavoidable set.

REMARK 2. The analogue of Remark 2 to Theorem 1 applies also to Theo-
rem 2.

THEOREM 3. Given a game G{k.}, let P{k,} be the family of the perfect un-
avoidable subsets of [0, 1], then

od 1
e =T (1-557)

REMARK. The theorem remains true alsq for closed unavoidable sets. In
order to prove both propositions it must be shown that the measure of every
closed unavoidable subset of [0, 1] is not less then J]%; #: (see (3.3)) which
follows from the lemma, and that for every €>0 there exists a set So& P { ka}
such that

(3.13) mSo) = ITni+e
=1
which will now be proved.
Proof. In the case that (3.10) holds, our proposition follows from Theorem
2. It remains therefore to consider

0

1
(3.14) Y —< .
t==1 ki

As in proof of Theorem 1 we shall construct a perfect set Sy satisfying (3.13),
which will turn out to be unavoidable.
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Let f=[0, 1] and decompose f into 3 subintervals

p=loi) =Grra) A-lize ]
= %ar2l T ea) Mol

Similarly decompose for every n, (=1, 2, - - - ) each of the closed intervals
f‘x"'%—u (5,'=0, 1; ‘i=1, 2, c ey, n—l)

I f‘l" +8p—10 l 8o+ 8nmy l fh" +8p—11 I
Soretay

into 2 closed subintervals f3,...s,_,,, (6.=0, 1) and an open one gs,...s,_, SO
that

v

615 [ foroevtumro] = | 8o aaca] = k.,,,+2 ——— | foeetuaa| 5
| foreotpena| = k,,,+2 | for a0 |
where
(3.16) ot = 1+'i:a.~.
We denote
s =0 U o

nm0 8;m0,1;=1,2,+++,n

Further let ¢>0 be any positive number. We form the closed intervals

(.17 oy -p, = ['(gs,---s) prvees —— | goeenn| 8o a) + Py | g l]
6:;=0,1;2=1,2,--+,m;n=0,1,2,--+)
and put
D=U U dosn
nm0 8;m0,1iim1,2, - n
Let now
(3.18) Soe=(S"U D) N o, 1].

Evidently S’ is perfect. It follows immediately that S, is dense in itself.
In order to prove that Sy is also closed, the only nontrivial case arises when
z=limy ., 2,...s, for some sequence &y, 8, - - - (8;=0,1;7=1, 2, - - - ) where
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25,...5,Eds,. . 5,. It must be proved that 2&ES.. This follows however from
(3.17) as z=limu.q 25,.. .5, =liMn.e 7(gs;. . .5,) €S’ CSo. Consequently S, is
perfect.

We shall now show that (3.13) is satisfied. m(S’) is some function of the
sequence k;, (1=1, 2, - - -), say m(S’) =y¢(k1, ks, - - - ). The method of con-
struction of S’ shows that m(S’Mfo) = (1/(k1+2))Y(k1, k2, - - - ) and m(S'MNf1)
=(kl/(k1+2))¢(k2v ks, - - +), ie. (b, koy - - - )=(1/(k1+2))¢(klr kay + - )
+(By/(k1+2))Y (ks ks, - - - ). Considering (3.3) we have

(3.19) w(kl’ k2’ A ) = ﬂl‘P(k% k3’ tte )'
Similarly we have in the general case for n=1, 2, - - -
m(S" N foy..os) = | fogeos;| W(kay Bngry =+ ),

where &, - - -, §; is any sequence of 0’s and 1’s satisfying D j., ;=n—1.
Now

m(S’ f\f;,. ..53) = m(S' ﬂf;,. . .3,.0) + m(S' f\f;,...;jl)
and considering (3.15) we have

lf‘x"'%’l 'I’(km Bty * 0 0 )

1 Ea
= ———Y(kny ki1, * - - Y (Bnt1y Batey ¢ ’
|f61 8,l {k,. + 2‘1’( +1 ) + k. + 2#’( +1 +2 )}

and in the same way as (3.19) we obtain

'P(km kn+1y ce ) = ﬂn‘l’(kn+1, kn+2; c )) (” = 1) 2, vt )'

It follows immediately

¢(b17 bﬂ) . ') = H"]""l’(k’ﬂ'l’ kn+2) Tt )’ (” =1,2,--- )-
t=1
Now evidently lim supp.. ¥(Eat1, RBnye, ¢ - ) <1 and consequently m(S’)
=y(k, kg, -+ - )< I~ n:. Moreover from (3.17) we have that m(D) <e,
and therefore from (3.18) follows (3.13).
It remains to be proved that 4 has a winning strategy on So. In the first
place we remark that B should avoid

(3~2O) S € ,dtn"'p,’, (Pt’ =0, 171: =12, 7j;j = 0) 1, 21 Tty
”=0)1’2"")3

asin that case 4 would evidently win just by choosing x2:41, (¢=n,n+1, - - - )
small enough.

4 will be said to be in a winning position after his nth move, AEW,/’,
if for some d;,...s,,_;, (YmZn)
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(an”) Sop—1 = l(dal. . .Jm_l)
and
(ﬂn”) katon_1 = |f51~~8,,._11| .

We shall prove that if (3.20) never occurs, then 4 has a strategy which en-
ables him to be in a winning position after each of his moves. From this
follows $2,1ESs, (=1, 2, - - - ) and—S, being closed and bounded—also
limy .o S2n1 =SE Sy, i.e. Sy is unavoidable.

Agreeing on (2.2), AEW{’. Suppose now that A& W,’. Considering
(3.20), B has to make

(3.21) Sn € for- - -t sbm @On = 1).
If for some

gh-in (A= m), 520 € (85,00 N C(dsy. . .00)),
then A makes

(322) Sont1 = l(dal...a)‘).
Of course
(3.23) %2041 < | go---ar |

and considering (3.15) and (a.’) this move satisfies (1.1). Moreover from
(3.21) follows ya41=Ym+127n+1, and therefore (3.22) gives (agy); at last
(3.15) and (3.23) give

knp1%ont1 S by, Xann < |fa,...q1l

4

which confirms (8,,). Consequently 4 & W,/,.

As (3.20) should be avoided the only other possibility is that (2.4) holds,
and there are infinitely many zeros—and considering (3.20)—also infinitely
many 1’s among the indices of fs,3,.... Accordingly by (3.16), y;— «. More-
over (3.14) implies k;— », and consequently there exists an integer p=m+1
such that

(3 . 24) k-n, g 2kn+l)
(3.25) 2[ ga,---a,.-,l < %2a
and §,=0, i.e.

(3.26) Stn € [y -tugo-

Now A4 makes swy1=Uds,...s,,). By (3.15), (3.26) and (3.25) this move
satisfies (1.1). Further considering the selfevident y,2vym+12n+1, (a7},
is fulfilled, and by (3.24), (3.26) and (3.15)
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1
Rnp1¥ong1 = ? k,,,-Zl 881‘--0:4—1' = Ifh“"u-lll ’

i.e. (BY,,) is satisfied as well. Consequently 4 € W,/,,.

4. On universal unavoidable sets. In a natural way there arises the prob-
lem of describing the structure of a universal unavoidable set UUSG i.e. a
set which is unavoidable for every game G{k.} and—respectively—of a
UUSG i.e. a subset of [0, 1] which is unavoidable for every game G {k.}.

For closed sets it follows from the lemma that if S, is a UUSG then
m(So) =1, i.e. So= [0, 1]. More generally we shall prove

THEOREM 4. A UUSG is of the second category at every point of [0, 1].

Proof (}). Suppose that S,C [0, 1] is of the first category at some point
of [0, 1]. We shall show that Sy is not a UUSG by constructing a sequence

(4.1) O<ki Sk < ---

such that for G{kf,,} , B has a winning strategy on So.

Let d be a closed interval contained in (0, 1) such that S¢M\d is of first
category. Let G,, (=1, 2, - - - ) be a sequence of open sets, each dense in d,
such that their intersection E=0,;., G, is contained in dN\C(S,). Let further
R denote the set of all rational numbers 7 in the interval [0, |d|/2], and
define Ey=MN,cr (E—7). E, is not empty, since it includes the first half of d,
except for a set of first category.

Choose arbitrarily a point x0E E¢ and a real number M =2. Let N, be an
integer such that

4.2) 2% = max (M, 2/|d|).

Note that xo+7EE for every rational number 7 in the interval [0, 2-¥o]. Let
To={xo} and for each n=1 let

To={aoF2 42704 oo + 27 Ng <4y < iz < » + » < in}

where 7, denote positive integers. (7', consists of all numbers xo4-7, where r
is a dyadic rational less than 2—¥ having exactly » binary digits different
from zero.) Then

n
T,. = U Tk.
k=0
Hence T, is a compact set and T,CE for every n. Therefore T, 1CGh,
(n=1, 2, - - - ), and since G, is open there exists an increasing sequence of
integers

(*) The author is indebted to Professor J. C. Oxtoby for this proof, which is much shorter
than the original one.



100 HAIM HANANI [January

No<N; <N, <~--:
such that

F,= U [x,x+2"”"+l]CGn, n=1,2---).

zET, 1

The sets F, are compact and so is their intersection F=M,., F, which is
evidently contained in E. Put

Do={x+ 2704 2-ir 4 - .. 4 27in; 5 2 N}, (n=0,1,2,---)
and note that
4.3) D, C F CE, (n=0,1,2,---).

We define now the sequence (4.1) putting

(4.4) By = 2NmtNo

and show that for the game G{k%}, B has a winning strategy on So.

B is said to be in a winning position after his (n+41)-st move x2,, BEW,,
if Son EDn

Choosing x, as above, BE W,. Suppose now that BE W,. Considering
D,CJ0, 1] and (1.1), however 4 chooses %zn11, there will hold s3.41 < M. Now
if A chooses %onp1=2"V»+, B makes ss.q2=M, which by (4.2) and (4.4)
satisfies (1.2), and wins. If, however, 4 chooses %z,41 <27V»+, let j.14 be the
largest integer satisfying xs.41 <27+, B chooses then xg,io=277""—xy,,,
which evidently satisfies (1.2) as in this case %gni2 <%2041. Thus Sen42EDaps
and B& W

We have thus shown that—being in a winning position—B can always
manage either to win immediately or to reach another winning position. If,
however, BEW,, (n=0,1,2, - - - ), i.e. 52,ED,, s=lim,., Sz, is included in
the closure of U;>.; D, and by (4.3), sSFCE CdNC(S,) and B wins again.

With respect to the sets UUSG we shall prove

THEOREM 5. A UUSG is (for some M =0) of the second category in every
point of [M, =).

Proof. Suppose there is a set .S which does not satisfy the above condition.

It follows that there exists a sequence d°, d!, d?, - - - of closed intervals such
that
(4.5) I(dt?) > 2r(d9), (¢=0,1,2,---)

and that SNd1 s of the first category for each g. We shall prove that S is not
a UUSG; we shall namely construct a sequence

4.6) 0<Z1§;2§"'
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such that for G{%n}, B will have a winning strategy on S.
To this end denote

M = r(detY) — I(d9)

and construct for every d¢, (¢=0, 1, 2, - - - ) with regard to SN\d? and My,
a point ¢, sets D%, (=0, 1, 2, - - - ) and the sequences:

No <N{< Ns< - -,
O<ki<hky <---,

in the same way as the point x,, the sets D, and the sequences { N,} and {#%}
have been constructed for d with regard to So\d and M in the proof of
Theorem 4. Further define the monotone sequence (4.6) putting

ka = max k:.
0<g¢sn-1
The strategy of B will now be defined. B is said to be in a winning position
after his (n+1)st move xz,, BE W/, if 52, €D}, for some g, 0<¢g<# and some
m, 0=m=n.
Choosing as the first move xo=x)EDJ, BEW{. Suppose now that
BeW,.,ie. 52, €EDL, (0=q=Sn, 0Sm=n). If 4 chooses

(o) Xonp1 < 27Nmht

let jn+1 be the largest integer satisfying xs,41 < 2-int1, B chooses then xz,.s
=2‘f-q'+1—xz,.+1 and thus s3,42:EDY ., or BE W/,,. If however A chooses

®) Xongr = 2-Na+1

we have anyhow by (1.1) and (4.5), sany1 <U(d?*!) <x¢*'. B makes then
Smyz = x§7' € D§*' which considering x{*! — sy < #8*! — I(d9) < Me
S 2% £ kny1Xonp satisfies (1.2), and BE W/,

Now if for every sufficiently large 7, A chooses for x3,,; moves (a) only,
then there exist NV and ¢ such that s;,,&d?, (n=N) and B has a winning
strategy on d?. Otherwise lima,., $2»= © and B wins again.

A sufficient condition for a set SC [0, «) to be a UUSG will now be given.
The condition itself and the proof of its sufficiency are only a slight generaliza-
tion of the respective problem for the game G{k,,.} , (i=ky= - .. =1)
solved by M. Reichbach [3] (see also [2]). Further we shall construct a
UUSG whose complement C(S) is a countable union of perfect sets and is
dense in [0, «).

We begin with the definition of the property H.

H: A set PC[0, =) is said to have the property H if, for every x =0 and
every two numbers €¢>0 and k>0, there exists to the right of x an interval g
such that gN\P=f and k(l(g) —x) < ]gl <e.
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For every game G{k.}, A has a winning strategy on C(P) and by an
analogous method as used in the proof of Theorem 2 [3] we obtain

THEOREM 6. Let N=U;2, N; be a union of sets N; having the property H,
then C(N) is a UUSG.

Note that every finite set has the property H and therefore the comple-
ment of every countable set is a UUSG.

We give now an example of a perfect set Vo having the property H. Let
f=1[0, 1], and decompose f into 3 subintervals

o] (D anB)

Similarly decompose, for every n, (n=1, 2, + - - ), each of the closed intervals
oo 8pp (6:=0,1;2=1,2, -+, n—1) into 2 closed

| Sor-e 8010 l o1+ 8uy l Jo- a1 |

< —_—

< oy 80 >

subintervals f;,...s,_s,, (6,=0, 1) and an open one g,...s,_, so that

1 n
lf3l'“3n = m If;l...s'_ll , (6n = 0, 1), I gal...‘”_ll = o lfh""n—ll .
The set
No = ﬂ U f‘l““n
nem0 33m0,1iim1,2,-,n

is perfect and has evidently the property H.

Now denoting by {r;} the sequence of all positive rational numbers and
putting N;=Ny+7; we obtain from Theorem 6 that S=C(U, Ny) is a
UUSG. Similarly it can be seen that SN[0, 1] isa UUSG. :
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