
ON SOME CLASSES OF NONCONTINUABLE
ANALYTIC FUNCTIONS

BY

F. W. CARROLLP)

1. Introduction. This paper is concerned with analytic functions of the

type

oo

P(z) = £ I an\eWMz».
n-0

Here,/(w) is a real valued function, {\an\ } is a bounded sequence, such

that inf* £jjf | an \ —»oo if iV—> <». Using a lemma due to Riesz and certain

results on uniform distributions (mod 1), simple conditions are obtained

sufficient in order that P(z) have \z\ = 1 as its natural boundary. Some of the

more applicable such conditions are (cf. §4): (i) From some positive integer r,

Arfin)—*<x> in a monotone fashion, Ar+1/(rc)—>0; (ii) \an\ =1 and /(«) is a

finite sum of terms C«a(log ra)"(log log n)y, at least one of these terms being

of higher order than n and not of the form CV*with Crational and a integral;

(iii) |a„| =1 and fin) = An* sin Bna, where A 7*0, B?*0, 0<a<l, a+X>l.

As is well-known, such classes of noncontinuable functions can be en-

larged considerably by using Hadamard's multiplication theorem. For, let

bny^O (« = 0,1, • • • ) be such that Liz) = £o bnz" has a radius of convergence

1 with only one singularity zi on its circle of convergence. Then, assuming

that Pi(z) = £o* b~1\an\e2Tif{n)zn has also a radius of convergence 1, each

singularity z0 of Fiz) with | zo\ =1 is equal to ZiZ2, Z2 denoting a singularity of

Pi(z) with [z2| =1. Consequently, if Fiz) has \z\ =1 as its natural boundary

then so has Pi(z). In §5, cf. Theorem 6, this principle is applied in showing

that certain generalized hypergeometric series represent a function analytic

in a circle \z\ <R, and having \z\ = P as a natural boundary.

2. Principal results. In this paper, {a0, Oi, o», • • ■ } denotes a bounded

sequence of complex numbers satisfying

(2.1) lim sup | Onl1'" = 1.

Further, fin) (« = 0, 1, 2, • • • ) denotes a real valued function which,

when an7*0, is (mod 1) uniquely determined by
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(2.2) an=  |a„|e2^<»>.

We shall derive a number of sufficient conditions on \an\ and f(n) in order

that

00 00

(2.3) F(z) = 23 OnZ" = 23 I «»\e2^^hn
n—0 n—0

(which is analytic for \z\ < 1) shall have |z\ = 1 as its natural boundary. The

proofs are all based on a result due to Riesz [8], stating that (for an bounded)

the partial sums of (2.3) are uniformly bounded on each arc z = e2xi*, a^^^/3,

on which F(z) is regular. Consequently,

Lemma 2.1. Let a^ft<a+l. If to each constant M>0 there corresponds a

positive integer N and a real number cbd£[a, ft], such that

k+N

(2.4) lim sup    23   I an\e2li^M+"^   ^ M,
*-»«> n-*+l

then F(z) has at least one singularity on the arc z = e2T<*, a^p^ft.

If g(n) is defined for n = 0,  1, • • • , we denote

g(n + 1) - g(n) = Ag(n),        A'+1g(n) = A(A'g(n)).

A first application of Lemma 2.1 is:

Theorem 1. Let p be a given real number. Suppose that to each constant

M>0 there corresponds a positive integer N and an increasing sequence {kr} of

positive integers such that

kv+N

(2.5) Z    W   ^M (v= 1, 2, •••),
n-*rfl

and

lim (A/(£„) + P) = 0 (mod 1),

(2.6)
lim A'f(kr) = 0 (mod 1), (/ - 2, 3, • • • , N).

Then F(z) is singular at Zo = e2ri*.

Proof. From Lemma 2.1, it suffices to prove that

kr+N

(2.7) lim sup     23    | a, | e*"to(»)-»(*r)l   ^ M,

where g(n) =/(») +np. But
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g(h + m)- g(ki) = m(Af(ki) + P) + 23 (  . ) A'/(*,),
i-*\J /

thus, from (2.6), ((J") being an integer),

lim (g(kv + m) - g(ki)) = 0 (mod 1),    (m = 1, • • ■ , N).
!>—* oo

Remembering that {an} is bounded, (2.5) now implies (2.7).

Corollary. The function

Fiz) = E I «-1 «2rV(B)z",
n-0

where

k+N

lim inf 23 I °* I   = + °°,
tf    *   *+i

has \z\ =las its natural boundary if lim„..„ A2/(w) = 0 and the sequence {Af(n)}

is dense (mod 1).

The same is true, therefore, if

(2.8) lim Af(n) = oo, lim A2/(») = 0.
tj— > co n—»oo

Here, (2.8) is satisfied for f(n) = Cna(log w)" with Ka<2 or a = 1, ft>0,

or a = 2, )3<0, (C>0). (2.8) is also implied by

(2.9) /(«) = nd>(n), lim #(w) = <», lim nA<p(n) = 0.
rt—»oo n—»oo

It was shown by Fabry [3], that if (2.9) holds then (2.1) alone implies

that F(z) has \z\ = 1 as its natural boundary. On the other hand, for instance,

f(n)=n log n does not satisfy (2.9).

In §3, less trivial applications of Theorem 1 will be given. It will be shown,

for instance, that (2.6) can be satisfied for each number p ilf(n) = Cn", C^O,

a>l, otf^O (mod 1). Unfortunately the simple-looking case

oo

(2.10) $(z) = 23 e2Ti,n\n, (8 irrational),
n-0

cannot be handled by use of Theorem  1  (since A2(0w2) =20^0), though

Cooper [l] already proved that f>(z) has |z| =1 as its natural boundary(2).

(5) A much simpler proof than Cooper's can be given. Writing in (2.10) n = k-\-m, the iden-

tity *(z)=Pi_i(2) + Ct2*$(ze"''t9) is obtained; here, Pk-i(z) denotes a polynomial, Ct^O a

constant. Since *(z) has at least one singularity zo on |z| =1, and since the set of points

[zo«*T'**} is dense on \z\ =1  Cooper's theorem follows.
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In order to handle functions of the type /(») = 6nk, 9 irrational,

k = 2, 3, 4, • • •,  we introduce:

Theorem 2. Let fin) be a real valued function such that to each positive

integer N there corresponds a sequence {k,} of positive integers such that

Afik,) is dense (mod 1),

(2.H)
lim A'fik,) = Cj (mod 1) exists, j = 2, 3, • • • , N.
V—» OO

Then

OO

(2.12) Giz) = £ «***(.>«»
n-l

has \z\ =1 as its natural boundary.

Proof. Let a<B^a+l and

(2.13) Sh(H, <p) = £ exp {2«(/(n) + »<*>)}.

Let TV be a large positive integer. From

fik + m)=fik)+ £,("*) A'fik)

and (2.11),

(2.14) | SNik„ <p) |   =    £ exp J2« L(A/(*,) + <l>) + T,( *) */|} I + »,

where |0| <1 for p>VoiN), say. Let ju be fixed, ji>i>0(iV). From (2.13),

f   | Ss(kM, <p) \2d<p = N,
J o

hence, there exists a number <p„ such that 15jv(feM, <£„) | ^ iV1/2. Because A/(fe,)

is dense (mod 1) there exists an index v>v0iN) such that f= —Afik,)

+A/(feM)+$M is contained in (a, /3). From (2.14)

| S.vik,, *) |  & | 5y(*w *.) |   - 2 £ A™2 - 2.

Applying Lemma 2.1, we obtain the stated assertion.

In the next section, using certain results on uniform distributions (mod 1),

auxiliary theorems are presented making it possible to obtain nontrivial ap-

plications of the Theorems 1 and 2, cf. §4.

3. Auxiliary results. In this section {(ah, &,,)} will always denote a se-

quence of intervals (a„, bf), p. = l, 2, • • • , where the a,,, b„ are non-negative
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numbers, and bu—au—*«>. The system of real-valued functions g,(w)

(i = 0, 1, • • • , r — 1), defined for w = 0, 1, • • • , is said to be uniformly dis-

tributed (mod 1), on {(au, bf)} ii for each choice of the real numbers

7o, • • • ,-Yr-i, O^-y.-gl,

lim Na/(ba - af) = yo ■ • ■ y,-i,
ft—* oo

where Nu denotes the number of integers n in (aa,bu ) satisfying

0 ^ g,(n) =g yi (mod 1), (i = 0, • • • , r - 1).

It is known [2] that this is the case if and only if each linear combination

23^'£«'(w) (with integer coefficients hi not all zero) is uniformly distributed

(mod 1) on the sequence {(a„, bf)}.

Consider the following two conditions, where g(n) denotes a function

defined for » = 0, 1, • • •   and {(au, bf)} is a sequence of intervals.

(A) In each of the intervals (aa, bf), g(n) is monotone and of one sign,

while

lim max (| g(af) \ , \ g(bf) \) = 0,
ft—»oO

lim (b„ - af) min (| g(af) \ , | g(bu) \ ) = oo.

(B) limn,oo g(n) =9, 6 irrational, where n is restricted to the union of

the intervals (au, bf).

Lemma 3.1. Let r be a positive integer, and letf(n) be a real-valued function

defined for n = 0, 1, • • ■ . Suppose that, for some [(au, bf)}, ATf(n) satisfies

either condition (A) or condition (B). Then for each positive integer q the system

Af(qn) (i = 0, 1, • • • , r — 1) is uniformly distributed (mod 1) on the sequence

{iaja, bjq)}.

Proof. As was shown by van der Corput [2], a function h(n) is uniformly

distributed (mod 1) on {(c„, df)} as soon as g(n) =Ah(n) satisfies either (A)

or (B) on {(c„, df)}. Now h(n)= Ar~*f(qn) is such that h(n + l)-h(n)

= X3J-J Ar/(g«+j) satisfies (A) or (B) on {(a,/q, bjq-1)}, hence, A^>/(g»)

is uniformly distributed on {(ajq, b*/q)}.

Let j be a fixed integer, 1 ̂  j ^ r — 1 and assume that the system AT~'f(qn)

(i = l, 2, ■ • • , j) is uniformly distributed (mod 1) on {(ajq, ba/q)}, (a cor-

rect assumption if j = l); it suffices to show that the system Ar-;f(qn)

(i = 1, 2, • • • , j+1) is likewise. Let hi, • • • , hj+i be integers not all zero. It

must be shown that

i+i
B(n) = 23 hiA^f(qn)

i-l

is uniformly distributed (mod 1) on {(au/q, bjq)}. From the induction as-
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sumption, we may assume hj+i 5^0. From a result due to van der Corput [2], it

suffices to show that, for each integer v^l, Hi(n)=H(n + v)—H(n) is uni-

formly distributed (mod 1) on {(ajq, bjq) ]. Now

;+l

Hi(n) = £ hi[A^f(qn + qv) - A—/(?»)]
—i

y-i
= qvhj+iA'->f(qn) +     £    c.-A-'/M,

the c.'s denoting fixed integers. Since ATf(n) satisfies (A) or (B) on {(aM, bf)},

AT~lf(n) converges to a constant (mod 1) for each i^O, at least when n is

restricted to the interval (ajq, bjq — v). Thus Hi(n) is uniformly distributed

(mod 1) on {(ajq, b^/q) ], provided that

j-i
qVhj+iAr->f(qn) + £ c^'/fan)

i-i

is. But this is certainly the case, since by the induction assumption the sys-

tem Ar~if(qn) (i=l, • • ■ ,j) is uniformly distributed (mod 1) on {(ajq, bjq)}.

Theorem 1'. Besides the usual conditions on {an] suppose that

k+If

(3.1) lim inf  £   | a„|   = oo (k = 0, 1, • • • ).

Then F(z), as defined by (2.3), has \z\ =1 as its natural boundary as soon as,

for some integer r ^ 2 and sequence of intervals {(aM, bf) ], the difference Arf(n)

satisfies condition (A) on {(a„, b„)}.

Proof. In view of Theorem 1 and Condition (3.1), it suffices to prove, for

each N, the existence of a sequence {k,} such that Af(kf) is dense (mod 1) and

A'/(£,)->0 (mod 1), (j = 2, ■ • • , N). By hypothesis Ar/(«)-»0 (mod 1) on

{ia„, bf) ]; it follows that A{f(») -> 0 (mod 1) on {(a„, b„ - N)\,
(j = r, r + 1, • • • , N). Also, Ar/(») satisfies condition (A) on {(a„, &„ — N)\,

so that by Lemma 3.1, the points |A/(«), A2/(»), • • • , A^^in)} for

«G(sw bp — N) are in an obvious sense uniformly distributed (mod 1) in the

(r—l)-dimensional unit cube. Thus there exists a sequence {k,} oi integers

chosen from the {(aM, &„ — N)} such that Afik,) is dense (mod 1) and A'/(feF)

->0 (mod 1) fj = 2, 3, • • • ,r-l).

Theorem 2'. Let f(n)=fi(n)+f2(n), where, (mod 1), /i(«) is periodic:

h(n+q) =f(n) (mod 1), while for some integer r^.2 and some sequence {(a„, bf)},

A/2(w) satisfies condition (B) on {(a„, 6„)}. Then G(z), as defined by (2.12), has

\z\ = 1 as its natural boundary.

Proof. From Lemma 3.1, Ar-|f2(gw), (*=1, • • • , r —1), is uniformly dis-

tributed (mod 1) on {(a^/q, bjq) ], while each difference A'fi(qn) is constant.
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Hence, as in the previous proof, there exists a sequence of integer multiples

k, = qk',  satisfying (2.11), and Theorem 2 implies the stated assertion.

Lemma 3.2. A function g(n) satisfies condition (A) for at least one sequence

{iaa, bf)} if there exists a sequence {(cu, df)} such that (i) lim,,,*, c„= co ; (ii)

g(n) is monotone and of one sign in each (cu, df) and \g(df)— g(cf)\ ^1; (iii)

\imn^Ag(n)=0, w£(c„, df).

Proof. Replacing {(ca, df)} by a proper subsequence, it may be assumed

that for n in the pth interval (cu, df), | Ag(n) \ < 1/p3. From [ g(df) — g(cf) | ^ 1,

there exists at least one interval (au, bf), cu<au<bu<du, au, bu integers such

that, for k£.(au, bf), g(k) satisfies the relation

(3.2) 1//.I  \g(k)\   ^2/p (modi)

but g(au— 1) and g(bu+l) do not. Then max (|g(a^)|, | g(bf) \) ^2/p—>0 as

p—»°o. Also

^  I iih) ~ giaf) I       1/p - 2/p'
bu — a« =g-S-= u.1 — 2

1/V i/ps

so that limMJ.„ ibu — af) min (\g(au) \ ,.| g(bf) |) = co, as required.

Lemma 3.3. A function g(n) satisfies condition (B) for at least one sequence

{iau, bf)} if there exists a sequence {(c„, df)} (du — ca—* co), such that, for w—> oo,

(i) g(n) does not converge (mod 1) to a rational number, n(E.(Cu, df),

(ii) Ag(n)—>0 (mod 1), nG(cM, df).

Proof. From the hypothesis, g(n), nS(cu, df) has some irrational number

a as a point of accumulation (mod 1). Thus, taking a subsequence of {(c„, df)}

if necessary, there can be found an interval (a„, bf) in each (ca, df) in such a

manner that ba — au—>oo and |g(«)— a\ <l/p (mod 1) for n(E.(au, bf).

4. Applications. Let a„= |a„|e2xi/(n), (w = 0, 1, • • • ), denote a bounded

sequence of complex numbers satisfying

k+N

lim inf  23   I an \   = °°,
N       t    n=i+l

thus
00

F(Z)   =   23 «nZB
n-0

is absolutely convergent if and only if | z| < 1. We have

Theorem 3. If for some integer rg£l, Ar/(n)—>oo, (ultimately) in a mono-

tone fashion, and Ar+1f(n)—>0, then F(z) has \z\ =1 as its natural boundary.

Proof. If r= 1 the stated result is contained in the corollary to Theorem 1.

If r^2 it follows by combining Theorem 1' and Lemma 3.2.
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Suppose that f(n) is a real generalized polynomial, that is, f(n) can be

represented as a finite sum of the form

m

f(n) = £ Cot"*,
—0

the Ci and a,- denoting real constants, C.-t^O, ai>a,+i. If the leading term

Cona<> has a noninteger exponent a0 > 1 then f(n) satisfies the conditions of

Theorem 3 (with r= [ao]). The same is true for the more general finite sums

of the form

(4.1) f(n) = £ C,«°"(log w)">(log log n)y<,

provided that /(w)/ra—>a> and the leading term in f(n) is not of the form

C{n"<, ai an integer = 2; (actually, /(0) and/(l) are undefined). In dealing

with the latter exceptional case, we shall assume \a„\ = 1; we have:

Theorem 4. Suppose that the real function f(n) can be represented as a

finite sum of the form (4.1). Then

OO

G(z) = £ e2'^(">z"
B-0

admits an analytic continuation across some arc of \z\ = 1 if and only if f(n) is

of the form f(n) =fi(n) +f2(n), where fi(n) = 0(n), while f2(n) is a polynomial

with integer exponents and rational coefficients.

Proof. 1. Necessity. Let f2(n) denote the sum of all those terms in (4.1)

which are of the form Cn" where a denotes an integer = 2 and C a rational

number. Then/2(ra) is periodic (mod 1), in fact, the least common multiple

q ol the denominator of its coefficients is a period (mod 1). Let/i(w) =/(«)

—f2(n) and suppose that/i(«) is of larger order than n, thus, the leading term

Cn" (log w)"(log log n)i (C^O) in/i(») is such that a>l or a=l, B>0, or

a=l, 8 = 0, 7>0. Moreover, if /3 =7 = 0 then either a is not an integer, or a

is an integer and C is irrational. Let r= [a] unless a is an integer ^2 and

B<0 or 8 = 0, 7<0, in which case we put r = a— 1; anyway, rj£l. Moreover,

Ar/i—>» unless the leading term in /i(») is of the form CnT (r^2) in which

case Ar/i converges to the irrational number r\C. Finally, Ar+1/i—*0. If r = 2

then Lemma 3.3 and Theorem 2' imply that G(z) has \z\ =1 as its natural

boundary. If r= 1 then A/i—»oo and A2/i—>0, hence, Afi(qn) is dense (mod 1).

But Af2(qn) is constant (mod 1), thus, Af(qn) is dense (mod 1). From Theo-

rem 2, also in this case, |z| =1 is a natural boundary for G(z).

2. Sufficiency. Suppose that f(n)=fi(n)+f2(n), where f2(n+q) =/»(«)
while fi(n) = Cn+o(n) (C a constant). Here, fi(n) is defined by a formula

of the type (4.1), enabling us to extend fi(n) to a single-valued and analytic

function Cw+<p(w) in some right half plane, where </>(w) = o(w). From a

theorem due to Le Roy (cf. Lindelof, [7, p. 109]),
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oo

has u — 1 as its only singularity on its circle of convergence \u\ =1. Moreover,

q—l    oo

G(z) = 23 23 e2Ti"-p+mq)zp+m''
p—o m—o

i-i

= 23 e2*<'*M(ze2*iC)pHp((ze2*iC)<>),
p-0

showing that only the finitely many points eUii~c+'lq), (s = 0, 1, • ■ • , q — l)

can be singular points of G(z) on |z| =1. Also functions of the type f(n)

= nx sin ra1'2 (X>l/2) give rise to noncontinuable analytic functions as is

shown by:

Theorem 5. Let r denote a fixed positive integer and let H(u) (-co <«<<»),

d>(x) and p(x) (x>0) be real valued functions admitting r + 1 continuous deriva-

tives such that H(u) is a nonconstant periodic function. Suppose further that

</>(#)—> oo, p(x)—>oo when x—>+ oo,

(4.2) lim   (p'YP = C, lim (</>')r+V = 0,
X—*-\-<o X—,*>

where C denotes a positive constant, allowing C= + oo, (<j>' =d>(1\ g(k) denoting

the kth derivative of g). Only if r = 1 and C is finite, assume that CHw(x) has a

range of length ^1. Finally, suppose that for x—*<x>,

(4.3) *w> = o((4>'y), Pik) = o((<p')"P) (j = 2, ■ ■ ■ , r + 1, k = 1, • • • , r + 1).

Assertion. If, for n sufficiently large, f(n) =p(n)H(p(n)) then

00

G(z) = 23 e2*tf(B)z"
n-0

has \z\ =1 as its natural boundary.

Example. Let p(x) = Ax"(\og x)», p(x) = Bx\log x)", ((x4=^0, 75^0),

H(u) any nonconstant infinitely differentiable periodic function, e.g., H(u)

= sin m), thus

f(n) = Bn* (log nYH(Ana (log «)*)].

The above condition holds for a suitable choice of the positive integer r

provided that: (i) O^a^l and a+XH; (ii) if 0<a<l and a+X=l then

M+/3^0; (iii) if a=l then X = 0, p,^-/3>0; (iv) if a = 0 then/3>l; if a = 0,
X = l then u+(ft —1)^0; (v) in the following cases CH'(x) has a range ^1,

(C as specified); (v)' 0<a^l, a+X = l, pt+ft = 0; then C=ABa; (v)" « = 0,

X = l,p+/3 = 1; then C=AB0.
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Proof of Theorem 5. Letf(x) =f(x)H(4>(x)). Then, for x—>°o,

(4.4) /<*>(*) = fixWixY{H^i<p) + oil)},

(* = 1, • • • , r + 1), for, /<*> is the sum of the function fi4>')kH^i<j>) and,
further, a finite number of terms of the form

afUo'it'yW)'* • ■ • f>»>)4#<«'i+-•■+<*>(».

Here, a is a constant and the ij denote non-negative integers, such that

io+ii + 2i2+ ■ • ■ +kik = k and ii<k, (thus, io^l or i2 = l, • • • , or 4^1)-

Observing that Hwiu) is bounded, iv^r + 1), (4.3) yields (4.4).

From (4.4) and (4.2),

(4.5) Ar+y(w) = /<•+»(» + fl) -» 0 if n -► », (0 < 0 < r + 1).

Thus,

(4.6) Ar/(») = /<"(» + 0') = /<'>(») + o(l),

(0 <0' <r). Further, let Z, denote the range of the nonconstant periodic func-

tion H^iu), L>0. From 0(*)-^«>, <p'(*)-»0, (cf. (4.2)), it follows that

lim sup H^r)(<j>(n)) - lim inf £T<r>(<£(ra)) = L.

Hence, from (4.6), (4.4) and (4.2),

(4.7) lim sup Ar/(«) - lim inf Arf(n) = CL > 0,

showing that, for «—>oo, A'f(n) does not converge. In view of (4.5), applying

Lemma 3.3 and Theorem 2', the stated assertion follows if r = 2. On the other

hand, if r = l then 1 = CL= «>, hence, from (4.5) and (4.7), A2/(«)->0 while

Af(n) is dense (mod 1). Now, the assertion follows from the corollary to

Theorem 1.

Many more applications of the results in §3 could be obtained. We prefer

to indicate instead another class of applications of the fundamental Theorem

1. It implies that F(z) has | z\ = 1 as its natural boundary if, for each positive

integer N, there exists a sequence {(a,,, bf)} on which the system A'f(n),

(j=l, • • ' , N) is uniformly distributed (mod 1). This in turn holds true if,

for each N, the system f(n+j), (j = 0, 1, • • • , N) is uniformly distributed

(mod l)on {(0, m),M=1, 2, • • • }.

If g(n) is a fixed function and/(w) = £g(»), the latter is true for almost all

values $ if Ag(n) = 1 and

lim Ag(n + 1)/Ag(n) = p,

exists, where either p is a transcendental number or p = 0 or p= oo, cf. L. E.

Grosh [4, p. 85]. For instance, if 0>1 is a fixed transcendental number then,

for almost all £, the function
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00

H*) = 23 a»e<{9V
n-0

has | z| =1 as its natural boundary, (the a„ satisfying the conditions men-

tioned at the beginning of this section).

5. Application to generalized hypergeometric series. This last application

of Theorem 1 is a somewhat surprising one. It is shown that under certain

conditions the function given for | z | small by a generalized hypergeometric

series is noncontinuable beyond its circle of convergence. Let

m

(5.1) h(w) = IE {r(ckw + dk)}s",
k-i

where S*= +1, c* and dk are complex constants with Re(c*) SiO. Consider the

generalized hypergeometric series,

(5.2) H{t) = 23' h(n)zm,

where the summation is taken over all positive integers n except those at

which h(w) has a pole. Let

m

(5.3) K=-'ZSkCk.
k—i

From a suitable extension of Stirling's formula for Y(w), (to the entire

region [w = u+iv:u^l or \v\ ^l} by means of the identity Y(w)Y(l—w)

= 7r/sin tw), it can be seen that for Re(w)^uo, wo sufficiently large,

(5.4) h(w) = C(w)e^wTvrK"(l + o(l))

where |argw| <ir/2,

m

<r = V cjfc8*(log Ck — 1),
*-i

m

r = 23 Wk ~ 1/2),
k-l

(|arg ct| ^ir/2), and C(w) is bounded and bounded away from zero.

From (5.4), if Re(.K:)>0, then H(z) is an entire function; if Re(K) <0,

the series converges only for z = 0; if Re(K) =0, the series has radius of con-

vergence |e~'|. We shall be interested only in the last case.

Theorem 6. If K = 0, then H(z) has only one singularity on its circle of

convergence; moreover, it can be continued to a single-valued analytic function in

the complement of the half-ray ue~", (l^w^ oo). If K = i\K~\ 9*0, then H(z) has

its circle of convergence as a natural boundary.
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Proof. If PJ = 0, then, for Re(w)^«o («o sufficiently large), the function

e~°whiw) is analytic and satisfies

e-"°hiw) = OiwT).

Thus, by a theorem of Le Roy, cf. Lindelof [7, p. 109], the function given for

\z\ <1 by
oo

Liz) = £' e-'nhin)zn = Hize~")
n-0

is single-valued and analytic in the complement of the half-ray [l, oo ] on

the positive real axis, proving the stated assertion for K = 0.

If K = i\K\ *0, then, from (5.4),

e^w-^lhiw)}-1 = «r*(l + oil)),

ior Re(a>) =wo, Ko sufficiently large. Again by Le Roy's theorem,

gcnn-i\K\»

Liiz) = £'     .,.     *"
Kn)

has 2=1 as its only singularity on its circle of convergence \z\ =1. But by

Theorem 1, cf. (2.8),

Giz) = £' e_i|x|n lo* "z"

has |z| =1 as its natural boundary. By the Hadamard Multiplication Theo-

rem, every singularity of C7(z) on \z\ =1, that is, each point on the unit

circle is a product of a singularity of Pi(z) on \z\ =1 (i.e. z=l) and a singu-

larity of Hize~'). Thus Hize~°) has \z\ =1 as its natural boundary, so that

|z| = \e~'\ is the natural boundary for .ff(z).
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