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1. Introduction. H. C. Wang has completely clarified the structure of

compact homogeneous complex spaces with finite fundamental group. Such

a space is always a homogeneous complex space of a connected compact

semi-simple Lie group on account of a theorem of Montgomery, as it was

shown by Wang. Then he reduces his problem to the study of compact com-

plex coset spaces of complex semi-simple Lie groups, which he pursues by

means of Lie algebra [7]. The purpose of this paper is to give a different

(and more differential geometric) proof to the result of Wang. The main

difference between his method and ours is that we make a strong use of the

canonical 2-form associated to an invariant complex structure while he uses a

theorem of Morozoff concerning the conjugateness of maximal solvable sub-

algebras of a complex semi-simple Lie algebra. We begin with the study of a

wider class of homogeneous complex manifolds (not necessarily compact) by a

purely differential geometric method (Theorem A). Then we restrict our-

selves to the study of homogeneous complex manifolds of compact (not

necessarily semi-simple) Lie groups and reduce it, by utilizing elementary

properties of roots of compact Lie groups, to the study of homogeneous spaces

of connected compact semi-simple Lie groups by the centralizers of tori

(Theorems B and C). The invariant complex structures of a homogeneous

space of a connected compact semisimple Lie group by the centralizer of a

torus have been studied by various authors.

2. Definitions and statements of results. Let G/B he a homogeneous

complex manifold of a connected Lie group G by a closed subgroup B and

let 2w be the real dimension of G/B. Assume that G/B admits an invariant

volume element (i.e., a nonzero exterior differential form V of degree 2w

invariant by G). In terms of local coordinate system z1, ■ ■ ■ , z" on G/B,

V is expressed by

V = K(z, z)dzl A • ■ ■ Adz" Adz1 A- ■ ■ Adzn.

Set

Rjk = d2 log K/dz'dzk,

P = (-1)1'2 £ Rj%dz>- A dz*,       (i.e., p = (- l)»*d3 log K).
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The 2-form p is well defined (i.e., independent of choice of local coordinate

system) and is invariant by G. We shall call p the canonical 2-form of G/B.

Theorem A. Let G/B be a homogeneous complex manifold of a connected

Lie group G by a closed subgroup B. Assume that G/B admits an invariant vol-

ume element V and let p be the canonical 2-form. Then there exists a unique closed

subgroup L (not necessarily connected) of G with the following properties:

(a) L contains B.

(b) L/B is connected.

Consider G/B as a fibre bundle over G/L with typical fibre L/B and with projec-

tion p defined in a natural way. Then

(c) The restriction of p to each fibre is identically zero.

(d) There exists a 2-form a of maximal rank on the base space G/L such that

p*(a) =p. (Hence, G/L is a homogeneous simplectic manifold.)

The subgroup L, characterized by the properties (a), (b), (c) and (d), possesses

also the following properties:

(e) L contains the connected component of the identity of the center of G.

(I) Each fibre of G/B is a complex analytic submanifold of G/B. (In par-

ticular, L/B is a homogeneous complex manifold.)

We shall show also that if L/B is compact, then it is complex parallisable.

If G is compact, our result is more complete. If G is compact, B has only a

finite number of connected components. Let Po be the connected component

of the identity of B. Then G/B0 is a covering space of G/B with a finite num-

ber of sheets. Without loss of generality we may, therefore, assume B to be

connected.

Theorem B. Assume G to be compact and B to be connected in Theorem A.

Then the subgroup L of G possesses the following additional properties:

(g) L/B is a complex torus.

(h) L is the centralizer of a toral subgroup of G.

(i) B is a C-subgroup of G. (In fact, the semi-simple part of B coincides

with that of Li)
(j)   Rank G — Rank B = the real dimension of L/B.

(k) G/L admits an invariant complex structure such that the projection pis a

complex analytic map of G/B onto G/L. (Hence, G/B is a complex analytic

principal fibre bundle over G/L with L/B (a complex torus) as structure group.)

We recall the definition of C-subgroups due to Wang [7]. In general, a

connected closed subgroup B of a connected compact Lie group G is called a

C-subgroup if its semi-simple part coincides with that of the centralizer of a

toral subgroup of G.

In general, let G be a connected compact Lie group and T a toral subgroup

of G. Let C(T) be the centralizer of T in G. The invariant complex structures

of G/C(T) can be described in terms of roots of the Lie algebra of G and they
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are finite in numbers [2; 7]. The space G/C(T) is homogeneous Kaehlerian

[l] and even rational algebraic [3].

Finally, we shall prove the converse of Theorem B (i).

Theorem C. Let G be a connected compact Lie group and B a C-subgroup

of G. Then G/B admits an invariant complex structure provided that dim G/B

is even. Moreover precisely,

(i) There exists a toral subgroup T of G such that the centralizer C(T) of T

contains B and that the semi-simple part of C( T) coincides with that of B.

(ii) Given an invariant complex structure on each of G/C(T) and C(T)/B,

there exists a unique invariant complex structure on G/B such that G/B is a

complex analytic principal fibre bundle over G/C(T) with group C(T)/B.

In the course of proof of Theorem B(k) and Theorem C, we describe

completely the invariant complex structures of G/B in terms of roots of the

Lie algebra of G.

Concerning the statement (k) of Theorem B, we do not know whether,

without the assumption that G he compact, G/L admits an invariant complex

structure such that G/B is a complex analytic fibre bundle over G/L with

fibre L/B. In the proof of (k) we were unable to avoid the use of roots.

3. Preliminary lemmas. Let if be a complex manifold (not necessarily

homogeneous) and V a volume element of M. Define the 2-form p as in §2.

To each infinitesimal transformation (i.e., real vector field) X of M we assign

a 1-form px as follows:

px = i(X)p,

where i denotes the interior product. We define a real valued function SX,

called the divergence of X by

0(X)-F = SX-V,

where 6(X) is the Lie derivation with respect to X.

Let X be an infinitesimal transformation of M leaving the complex struc-

ture / invariant. In terms of local coordinate system z1, ■ • ■ , zn,

* = Z &id/dgf) + £ Vid/dzi),

where each £' is a holomorphic function in z1, • • • , 2" and £' is the complex

conjugate of £'. Let Y be an infinitesimal transformation of M. The following

formula of Koszul [6] can be verified by a straightforward calculation:

2i( Y)iiX)p = di Y) ■ iSJX) -BiJY)- iSX).

Lemma 3.1. Let X be an infinitesimal transformation of M leaving both the

complex structure J and the volume element V invariant. Then

2PX = dib-JX).
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Proof. Let Y be any infinitesimal transformation of M. Then

2l(Y)Px = 2i(Y)-i(X)p = 8(Y)-(8JX) = i(Y)d(8JX),

because of the Koszul's formula and 8X = 0. Hence, 2px = d(8JX). Q.E.D.

For any infinitesimal transformations X and Y of M, the following for-

mula (the verification of which is trivial) holds:

8(J[X, Y]) = 6(JX) -(SY) - 6( Y) ■ (8JX).

Lemma 3.2. // both X and Y leave J and V invariant, then

2i(Y)PX = - 8(J[X, Y]).

Proof. 8(J[X, Y]) = -8(Y)-(8JX) = -2l(Y)i(X)p= -2<.(Y)Px. Q.E.D.
4. Proof of Theorem A. Set M=G/B. Yet TX(M) be the tangent space to

M at x. Define a subspace Ti of TX(M) by

Ti = {vETx(M);i(v)p = 0}.

As G is transitive on M, Ti can be also defined as follows:

Ti = [vE Tx(M);px(v) = 0 for all X in g},

where g is the Lie algebra of G. (We consider X as an infinitesimal transforma-

tion of Mi) Let F(x) be the maximal integral submanifold through x defined

by the system of 1-forms [px; XE&}- By Lemma 3.1, £(x) is the connected

component of x of the following set:

[y G M;fx(y) = fx(x) for all X E s},

where fx = 8JX. Hence, £(x) is closed. Yet o be the point of M = G/B cor-

responding to B. Define

L= [s E G; s(F(o)) = F(o)}.

As £(o) is closed, L is a closed subgroup of G. The invariance of p by G implies

Lemma 4.1. s(F(x)) = F(sx) for all s in G and x in M.

As p is real and of type (1, 1), Ti is stable under /, hence

Lemma 4.2. £(x) is a complex analytic submanifold of M.

Now, (a) follows from Lemma 4.1. Let x be any point of £(o). Take sEG

such that 5(0) =x. By Lemma 4.1, 5 lies in L. Hence, L is transitive on £(0),

i.e.,

F(o) = L/B,

which proves (b).

Consider G/B as a fibre bundle over G/L with fibre L/B. By Lemma 4.1,
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the fibre of G/B containing x is £(x). Hence, the restriction of p to each fibre

vanishes identically. Hence, (c).

Let Z be any infinitesimal transformation of M such that, at each xEM,

Z is tangent to the fibre £(x). Then

6(Z)p = d-i(Z)p + i(Z)-dp = 0,

because i(Z)p = 0 and dp = 0. There exists, therefore, a (unique) 2-form a on

G/L such that p*(a) =p. From the definition of £(x), it follows that a is of

maximal rank. As p is invariant by G, so is a, thus proving (d).

Let Y he any element of the center of g. By virtue of Lemma 3.2, the 1-

parameter group generated by Y maps each £(x) into itself. Therefore, Y

lies in the Lie algebra of L, thus proving (e). Finally, (f) follows from Lemma

4.2.

Now, we shall prove the uniqueness of L satisfying (a), (b), (c) and (d).

Let L' he a closed subgroup of G satisfying (a)-(d). From (b) and (c), it

follows that L'/B is contained in £(o). From (d) it follows that L'/B actually

coincides with £(o). We can now easily verify that L' = L.

5. The case when L/B is compact. Let j be the injection of L/B into

G/B. Then

/*(p) = 0       (i.e.,j*(ddlogK) = 0).

As j is complex analytic,

0 = j*(dd log K) = dd(j* log K) = dd(log j*K).

Hence

fK = f'f,

where/ is a holomorphic function defined locally on L/B. Let Xi, • • • , X„

he arbitrarily chosen elements of the Lie algebra g of G. Then

Xk = Zk + Zk, k = 1, • • • , n,

where each Zk is a holomorphic vector field on G/B and Zk is its complex

conjugate. Define a non-negative function ty by

¥ = t(Zf)i(Zf) ■ ■ ■ i(Zi)i(Zi)V.

Then, we can write locally

*•*(*) = w
where p is a holomorphic function defined in a coordinate neighborhood of

L/B. Hence, j*(ty) is plurisubharmonic. If L/B is compact, then j*(&) is

necessarily a constant. Choose Xi, • ■ • , Xn in such a way that Zi, • ■ • , Z„

are linearly independent (over the complex numbers) at the point o of G/B

and that X\, • • • , Xm belong to the Lie algebra of L where m is the complex
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dimension of L/B. Then ^ is a nonzero constant on jiL/B). Hence

Zi, ■ • ■ , Zm, considered as holomorphic vector field on L/B, are linearly in-

dependent (over the complex numbers) at every point of L/B. Thus,

Proposition 5.1. If L/B is compact in Theorem A, then L/B is complex

parallisable.

Let N be the largest normal subgroup of L contained in B. Set L' =L/N

and B'=B/N. Then U acts effectively on L'/B'=L/B. From a result of

Wang [8], it follows that L' is a complex Lie group and B' is a discrete sub-

group of L'. If L is compact, then L' is a complex torus and B' reduces to the

identity element. Hence,

Proposition 5.2. If L is compact, then B is normal in L and L/B is a com-

plex torus.

6. Proof of Theorem B, (g), • • • , (j). Note that (g) is an immediate con-

sequence of Proposition 5.2. Let C be the connected component of the

identity of the center of G. By (e), L contains C. Set

G* = G/C   and   L* = L/C.

Then, G* is semi-simple and G*/L* = G/L. As G*/L* is homogeneous sym-

plectic by (d), L* is the centralizer of a certain toral subgroup T* of G* by a

result of Borel [l]. Let T he the toral subgroup of G such that T/C= T*.

We shall show that L is the centralizer of T in G. Denote by g, 1, c, etc. the

Lie algebras of G, L, C, etc. As G is compact, g (resp. I) is isomorphic to the

direct sum of a* (resp. I*) and c. From the fact that I* is the centralizer of

t* in g*, it follows easily that 1 = 1* -f-c is the centralizer of t = t* +c in g = g* +c

A theorem of H. Hopf states that the centralizer of a toral subgroup of a

connected compact Lie group is always connected. On the other hand, L is

connected. (Note that both B and L/B are connected.) Hence, L is exactly

the centralizer of T in G, thus completing the proof of (h).

Both (i) and (j) are immediate consequences of (g).

7. Determination of complex structure and proof of (k). Let G, B and L

be as in Theorem B. Let g, I and b be the Lie algebras of G, L and B respec-

tively. As G is compact, there exists a positive definite symmetric bilinear

form <p on g which is ad. G-invariant. Let

(1) 8 - I + >»,

(2) I = b + it

be the orthogonal decompositions with respect to <p. Then

(3) [I, to] C to,

(4) [M = o,

(5) [n,n] = 0.
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Observe that (3) is trivial and that (4) and (5) follow from the fact that B

is normal in L and L/B is a (complex) toral group. Set

(6) m = n + It). (Then, g = b + rrt, [b, m] C m.)

Let it be the natural projection of G onto G/B. Let it* be the induced linear

mapping of g onto the tangent space ToiG/B) to G/B at o=ir(e), where e

is the identity of G. Then ir* is a linear isomorphism of m onto ToiG/B). Let

/ be the tensor field on G/B defining the complex structure of G/B. The re-

striction of / to the point o induces an endomorphism I of m with the follow-

ing properties:

(7) I2 = - 1

(8) [X, I- Y] = I- [X, Y\ X E b, Y E m.

(9) I-[X, Y]m- [l-X,Y]m- [X, I- Yim -/•[/• X, I- Y]m=0 for X,Y Em.

Remark. In general, if G is a connected Lie group and B is a connected

closed subgroup of G and if there exists a decomposition of g such that

g = b+rrc and [b, nt]Cm, then every invariant complex structure / on G/B

induces an endomorphism I of m satisfying (7), (8) and (9); and, conversely,

every endomorphism I of rrt satisfying these conditions comes from an invari-

ant complex structure / on G/B.

Let g" (resp. b", mc, etc.) be the complexificatjon of g (resp. b, m, etc.).

We extend 7 to a complex endomorphism of mc in a natural manner. Let m+

(resp. m-) be the eigen space of I belonging to the eigen value ( —l)1'2

(resp. — ( —1)1/2). Then tn" is a direct sum of m+ and tn-. In terms of bc,

m+ and tn- we can express (8) and (9) as follows [5 ]:

(8') [bc, m+] C m+        [bc, trr] C m-,

(9') Both b" + m+ and bc + m- are subalgebras of g'.

Since L/B is a complex analytic submanifold of G/B, n is stable by I:

(10) /(It) = tt.

Hence

(11) ne = n+ + xr,      tt+=m+r\ne,      xr = m-r\n°

Let fib be a Cartan subalgebra of b, i.e., a maximal abelian subalgebra of b.

Set

(12) fi = fib + It.

Then fi is an abelian subalgebra of g by virtue of (4) and (5). On the other

hand, dim fi = rank G by (j). Hence fi is a Cartan subalgebra of g. Clearly,

fi" is a Cartan subalgebra of gc. We shall fix this Cartan subalgebra once for

all.
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Let D he the set of nonzero roots a of g" (with respect to the Cartan sub-

algebra ff). Let D(bc) (resp. D(toc)) be the set of aEP> whose root vectors

belong to bc (resp. toc). Clearly, a lies in D(bc) if and only if —a does. We have

(13) D = D(b°) KJ D(toc) (disjoint union).

Because [b, b]CFj, [b, rt] = 0and [b, to]ctt).

We set

(14) b+ = 1)1 + n+,      f = 1)1 + n~

Then

(15) [b+, bc] c b<,       [b+ m+] c m+.

The first relation follows from (4). In order to prove the second one, it suffices

to show that [n+, m+]Cm+ because of (8'). From (3) and (5) we obtain that

[n, m]Cm. This together with (9') implies that [n+, m+]Cm+.

We shall now prove the following

Lemma 7.1. If a and 8 are different roots with respect to the Cartan subalge-

bra bc of qc, then the restrictions of a and B to b+ give different linear functions.

Proof. Otherwise, we would have

(a - /3)(F - (-l)1'2/- Y) = 0       for all F in n,

(a - /3)Z = 0       for all X in b>

Since G is compact, every root assumes only pure imaginary values on f).

Hence

(a- 0)-Y = (-l)1'2(a- 0)-I-Y = 0        for all Finn.

As b. is a direct sum of n and b&, a would agree with B on b, which is a contra-

diction.

Choose, for each aED, a root vector £« in such a way that Ea and £_„

are complex conjugate to each other, i.e., both £„+£_« and ( —1)1/2(£„ —£_«)

belong to g. Let D(m+) (resp. D(m.-)) he the set of aED such that £«Gm+

(resp. £„Gnt_). Then

Lemma 7.2. m+ (resp. m.") is spanned by n+ (resp. n~) and {Ea; aED(m+)}

(resp. [Ea;aED(m-)}).

Proof. From Lemma 7.1 it follows that there exists an element H* in b+

such that

a(H*) 9* 0(H*)       if a 9* /?.

The eigen space of ad. H* belonging to any nonzero eigen value is of complex

dimension 1.

The subspace tn+, stable under ad. H* (by (15)), is therefore spanned
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by m+P\l)c = n+ and the root vectors £„ contained in m+. Since m_, n~ and

£_„ are complex conjugates of m+, n+ and £„ respectively, m~ is spanned by

vr and the £a's such that — aED(m+).

Lemma 7.3. IfaED(m+), then

/•(£„ + E-f) = (-iy>2(Ea - £_„),

I-(-iyi\Ea - £_*) =-(£„ + £_).

Proof.    A    trivial    consequence    of    I-Ea = ( —l)1/2£a    and    /•£_„

= -(-l)1'2£_„.

Lemma 7.4. (1) /-ro = ro.

(2) to+ (resp. It)-) is spanned by {£„; aED(m+)} iresp. {£«; aED(mr)}),

where to+ = m+nto (resp. to_ = m~nto).

Proof. An immediate consequence of (13).

Let P be the restriction of I to to. By Lemma 7.4, P is an endomorphism

of to. We have

(16) I'2 = - 1,

(17) [X, P Y] = I'[X, Y], XEI, YE to.

(18) I'[X, Y]m - [PX, Y]n - [X, I'Y]a - I'[I'X, /'F]to = 0,      X, Y E to.

The formula (16) follows from (7). The proof of (17) can be divided into two

cases: XEb or XEn. If XEb, then (17) is a consequence of (8). If A"Gn and

Y=Ea+E-a or (-l)1/2^-^) where aED(m+), then (17) can be verified

easily. Hence (17) holds for XEn and FGto by Lemma 7.4. The formula (18)

follows from (9). Therefore, P defines an invariant complex structure on

G/L, thus completing the proof of (k).

We are now in position to complete the proof of the following

Proposition 7.5. There exists a fundamental system of roots cci, • ■ • , cti

(where I is the rank of the semi-simple part of G) of gc with respect to t)c such that

(1) a lies in D(bc) if and only if it is a linear combination of cti, ■ ■ • , ctr

where r is the rank of the semi-simple part of B.

(2) A root a belonging to D—D(bc)=D(m+)VJD(m.-) is positive with re-

spect to the ordering of D defined by cti, • • • , on if and only if it is in D(m+).

Proof. It is well known that if a, B and a+B are in D, then

[£„, £/j] = Na,p-Ea+p,

where Na,p is a nonzero constant. On the other hand, bc-f-m+ is a subalgebra of

g«. Therefore, if a, BED(b°)\JD(m+) and if a+BED, then a+BED(bc)

\JD(m+). It is easy to see that, for each aED, at least one of the roots +a

is in D(bc)VJD(m+). Hence, by a theorem of Borel [2, Corollary 4.10] and

Harish-Chandra [4, Lemma 4], there exists an ordering of D with respect to
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which all positive roots belong to Dibc)VJDim+). Let au • • • , at be the simple

roots, with respect to this ordering of D. By a change of numbering, we may

assume that «i, • • • , a, are the simple roots contained in D(be). We shall

show that each aEL>ibe) is a linear combination of on, • • • , ar. Assuming the

contrary, let a he the least positive root in Dibc) which can not be so written.

Then a can not be simple. Hence, a = 8+y where 8 and y are positive roots.

Since 8 and y are positive, they are in D(be)Wi)(in+). We shall prove that

they are actually in JJ>(bc). Assume that at least one of them, say y, is in

D(m+). Then -8=-(j8+y)+y would be in £>(tn+) because -i8+y)EL>ibc)

and [b°, m+]Cnt+. Hence, 8EL>im~) which is a contradiction. As 8 and y

are less than a, they are linear combinations of «i, • • • , ar, thus proving our

assertion. Evidently, every linear combination of ai, • • • , ar belongs to

Z>(bc). The second half of the proposition follows from the definition of

«ii • • • . «<• Q.E.D.
8. Proof of Theorem C. (i). The proof is due to Wang (cf. (7.1) of [7]),

although we do not assume G to be semi-simple. Let U be the subgroup of G

consisting of those elements which commute with every element of the semi-

simple part B, of B. Let T he a maximal torus of U containing the identity

component Ba of the center of B. Evidently, both Ba and B, are contained in

CiT). As B is a semi-direct product of Ba and B„ B is contained in CiT). We

shall see that (C(r)), = 5,. (We always denote by (*), the semi-simple part

of (*).) As B is a C-subgroup, there exists a toral subgroup T' of G such that

iCiT')), = B,. Obviously, V is a toral subgroup of U. By a theorem of Hopf,

there exists an element u ol U such that uT'u~1ET. Then

«C(T')«-1 = CiuT'u-1) D CiT),

B. = uB.u-1 = «(C(r')).«-1 = iCiuT'u-1)). D iCiT))..

On the other hand, CiT)"Z)B, because TEU. Hence

(C(r)). d b..

(ii) Let L = CiT) and

0 = 1 + to,      1 = 6 + n,      m = to + n

be the same decomposition as in §7. Then as the semi-simple part of B coin-

cides with that of L, n is contained in the center of 1. Hence

[b, n] = 0,       [n, n] = 0.

The proof of (ii) is reduced to that of the following statement:

Let I' be a linear endomorphism of to satisfying the conditions (16), (17) and

(18) of §7. Let I" be a linear endomorphism of n such that I"2= —1. Then the

endomorphism I=I'+I" of m = tt)+n satisfies the conditions (7), (8) and (9)

o/§7.
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While the verification of (7) is trivial, that of (8) will be divided into two

cases:

If XEb and YEto, then (8) is a consequence of (17).

If XEb and FGn, then (8) is a consequence of [b, n] =0.

We divide the verification of (9) into four cases: (i) X, YEti; (ii) XEn and

FGto; (iii) XEto and FGn; (iv) X, YEto. The case (i) is trivial (note

[it, n]=0). In the case (ii), (9) follows from (17); in fact, the left hand side

of (9) is the sum of /• [X, Y]-[X, I- Y] and -(/• [i-X, I- Y]+[l-X, Y])
both of which vanish because of (17). The case (iii) can be treated in the same

way. Finally, we consider the case (iv). By virtue of (18), we have only to

show that

/• [X, F]„ - [I-X, Y]tt - [X, I- F]„ - /• [I-X, I- F]„ = 0    for X, Y E to.

Our Lemma 7.2, applied to the complex homogeneous manifold G/L, states

that to+ (resp. to~) is spanned by {£«; aED(to+)} (resp. {£„; aED(to~)}).

Now, the above formula can be verified by a straightforward computation

making use of Lemma 7.3 and of the fact that if a, BED and a+B 9*0 then

[£„, Ep] = Na,e • £o+/s-

Thus, the study of invariant complex structures on G/B is reduced to the

study of invariant complex structures on G/C(T). The existence of invariant

complex structures on G/T(C) can be proved by reversing the process of §7.

We shall not give the complete proof here as we can find it in [7].

Bibliography

1. A. Borel, Kaehlerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A.

vol. 40 (1954) pp. 1147-1151.
2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J.

Math. (1958) pp.
3. M. Goto, On algebraic homogeneous spaces, Amer. J. Math. vol. 76 (1954) pp. 811-818.

4. Harish-Chandra, Representations of semi-simple Lie groups IV, Amer. J. Math. vol. 77

(1955) pp. 743-777.
5. A. Froelicher, Zur Differentialgeometrie der komplexen Structuren, Math. Ann. vol. 129

(1955) pp. 50-95.
6. J-L. Koszul, Sur la forme hermitienne canonique des espaces homogenes complexes, Canad.

J. Math. vol. 7 (1955) pp. 562-576.
7. H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. vol.

76 (1954) pp. 1-32.
8. -, Complex parallisable manifolds, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 771—

776.
9. H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare

Transformationen II, III, Math. Z. vol. 24 (1925) pp. 328-395.

Nagoya University,

Nagoya, Japan
University of Washington,

Seattle, Washington

Massachusetts Institute of Technology,

Cambridge, Massachusetts


