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Introduction^). Let c be a complex number. The general solution of the

differential equation

cyy" - (c - l)y'J = 0

consists of all functions of the form a(x + b)c where a and b are constants. If

c is not a natural number then, as is easy to see, there does not exist a linear

differential equation admitting all these functions as solutions; on the other

hand, if c is a natural number then the equation y(c+1'=0 admits all these

functions as solutions, but no homogeneous linear differential equation of

lower order does.

Thus, there arises the following question. Given an irreducible differential

polynomial £ (in one differential indeterminate y, and with coefficients in

some ordinary differential field JF of characteristic zero), does there exist a

homogeneous linear differential equation £ = 0 the general solution of which

contains the general solution of the differential equation £ = 0 and, if such

linear equations do exist, of how low an order? A complete answer to this

question does not seem to be easy. Indeed, the above example shows that

the answer is not determined by the knowledge of the monomials which

appear in £ with nonzero coefficients; some knowledge of the coefficients

themselves is necessary.

In this paper we describe various conditions under which the answer is

negative. Actually, it is convenient to treat a slightly broader question. Let

£ be an irreducible element of the differential polynomial ring 5[y] with

£6?, and let w=ord F, S he the separant of £ (that is, S = dF/dyM), and I

he the initial of £ (that is, the coefficient of the highest power of y(n) appearing

in £). If G63:{y} then each of the following three conditions is necessary

and sufficient for G to vanish on the general solution of £ = 0: (i) G is con-

tained in the perfect differential ideal {F] : S of fj{y}; (ii) G is contained in

the differential ideal [£]: S00 ( = Uisy<M [£]: S'); (iii) there exists a nonzero

differential polynomial B>E${y} of order <n such that BGE{f}. If we

relinquish the condition that £ be irreducible, supposing merely that £6^-

than these three conditions are no longer equivalent. We define £ to be

sublinear (of type r) if there exists a nonzero homogeneous linear £63:}y}

(or order r) satisfying the condition (iii) on G, that is, if every solution of

Received by the editors April 11, 1959.
(') Some familiarity with the basic concepts, terminology and notation of differential

algebra will be assumed. See Ritt [2].
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P = 0 is a solution of either the linear equation P = 0 or the lower order equa-

tion B = 0 (and there exists no such 7 of order <r). It is clear that P is sub-

linear if and only if the product P0 of its distinct irreducible factors of order 77

is sublinear, so we may assume that P has no multiple factors of order 77.

Under this assumption, the three conditions above are again equivalent.

As defined, the condition that P be sublinear of type r is a relative one,

depending on the differential field ?F. However, it is easy to see by a linear

independence argument that if P is sublinear relative to some differential

field gZ)? then P is sublinear relative to ff. Therefore we may suppose given,

once and for all, an ordinary differential field 11 which is a universal extensioniff

of the field of rational numbers, and then work entirely within the differential

polynomial ring 11 {y}; we shall denote the field of constants of 11 by 3C.

In Chapters I and II we suppose that P is nonlinear and has degree in

y(n) equal to 1 (that is, S = I). In Chapter I, after introducing certain gradings

of 11 {y}, called P-gradings, we show (Lemma 8) that if P is sublinear then

so are certain differential polynomials G£3c{y} related to P in a certain

way by means of an P-grading. In Chapter II we show that P is not sublinear

when deg 7 = 0 and for certain cases when deg 7^0. In Chapter III, we relin-

quish the special hypothesis on P. The main result (Theorem 6) is that if P

is not linear then there is a natural number k such that the 7'th derivative

Fi0 is not sublinear for i ^ k. Theorem 5 shows that for "most" P we may take

k = 2.
If F' = S-G where G is linear, then P' is obviously sublinear. We conjec-

ture that this is the only time that F' is sublinear, though the proof (if the

statement is correct) probably requires new methods.

The universal extension field 11 contains a solution of the differential equa-

tion y' = 1. We fix a solution of this equation and denote it by x. It is easy to

see that x is transcendental over 3C.

I wish to take this opportunity to thank Professor E. R. Kolchin for the

numerous valuable suggestions and criticisms that he has given me, without

which this paper would not have been possible.

Chapter I. Preliminaries

7t7 this chapter F denotes any nonlinear differential polynomial IyM+Q

with I, QE^ly}, IQ^O, deg Q>0, and ord 7<2<77.
1. Types of gradings. For any sequence g = iaf)jBN of real numbers(3), the

set of monomials y^y'11 • • • yMi' ior which 2^1iiai has a given value s, gener-

ates a vector space (R„ over 11, and 11 \y] is the direct sum of all the spaces

(R„; obviously <R,(RtE<^i+t so that there is defined a grading of 1l{y}. We de-

note this grading by the same letter g. We call the elements of 01, g-homo-

(2) The definition and existence proof of a universal extension are given in Kolchin [l ].

(') N will be used exclusively to denote the set of natural numbers.
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geneous of grade s. An element £ of 11 {y} can be written in a unique way in

the form P= 2^£«, where £,6G~*« for each real number s, and £,?^0 for only

finitely values of s; we call £, the g-homogeneous part of P of grade s. If

£5^0, the largest real s, such that £,5^0 will be called the grade of £ and will

be denoted by g(P); if s=g(P), then we call £, the highest part of P and

denote it by £*. As an example we may consider the grading (af)j<=N in which

ai=j (JEN); in this case g(P) is called the weight of £ and is denoted by

wtP.
A gradingg of 1t{y} defined as above will be called arithmetic if: (a) g(y(i))

s|0 for every i; (b) there exists a non-negative integer q and a real number

A>0 such that

(<A   (0£i<q),
g(y«+»)-g(y")\ l = A   (i ^ q).

The numbers q and A, which are obviously unique, will be called the order of g

and the difference of g, respectively, and will be denoted by ord g and diff g,

respectively. The weight is an arithmetic grading of order 0 and difference 1.

Lemma 1. Let g be an arithmetic grading of %{y] of order q and difference

A; let £6cu{y} and £(£11. Then g(P')<g(P)+A if ord P*<q, and g(P')

= g(P) +A if ord P*>q.

Proof. Obvious.

2. Semi-£-gradings and F-gradings. An arithmetic grading of 11 {y} will

be called a semi-F-grading if g(Iy(n)) ^g(Q) and ord Q*^ord g. It in addition

g(Iyin)) =g(Q), then g will be called an F-grading. It is obvious that if g is a

semi-£-grading then ord g^n — 1.

Lemma 2. If g = (ai)ieN is a semi-F-grading of order q, which is not an F-

grading, there exists a semi-F-grading g' such that ord g' ^ ord g and diff g'

> diff g; more precisely ord g' = ord Q*.

Proof. Let k he any natural number; for any monomial £ =y^y'il ■ - • y('><»

define w(P, k) = XX* h'U — k) '•Ior anY nonzero differential polynomial G in y

define w(G, k) as the maximum w(P, k) where £ ranges over the monomials

effectively present in G. Let r = ord Q*. (Note that r^q.) Yet

an        (0<i< r),

ai =■     , g(Q) - g(iyM),.     .        ...   ,

w(IyM, r)

It is clear that g'= (ai) is an arithmetic grading with ord g' =r^q = ord gand

diff g'=diff g + (g(C)-g(^(B)))/(w(/y(n>, r))>diff g. g' is a semi-£-grading

since
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giQ) - g(iyM)
g'iIyM) = maxg'(P) = maxg(P) + max w(P, r)-

w(7y(n), r)

= gilyM) + giQ) - gilyM) = giQ) S g'iQ),

where P ranges over the monomials which are effectively present in 7y(n).

Lemma 3. If there exists no semi-F-grading of order >q, and if g = {a/) and

g' = (a/) are two semi-F-gradings of order q with a,=al for all iSq, then

giQ)=g'iQ).
Proof. Assume giQ) >g'iQ). Since a< = a,' for* = l, ■ ■ • , q, the maximum

order r of terms P effectively present in Q with g(P) =g(Q) must be greater

than q. By Lemma 2, there exists a semi-P-grading of order r>q, contrary to

hypothesis.

The two preceding lemmas can be combined to show the following rela-

tionship between semi-P-gradings and P-gradings.

Lemma 4. If there exists a semi-F-grading of order q, there exists an F-

grading of order ^ q.

Proof. The order of every semi-P-grading being less than 77, there exists

an integer r^q such that there is a semi-P-grading of order r but none of

order >r. Let g = (a/) be a fixed semi-P-grading of order r.

We shall see that there exists a real number 777 such that, if g' = (o:/) is

any semi-F-grading of order r with a[ =at for all iSr, then diff g' Sm. Indeed

from Lemma 3, g'iQ) = giQ); if diff g' could be arbitrarily large, g'(7y(n))

would be large, contradicting the fact that g' is a semi-P-grading, i.e. g'(7yw)

Sg'iQ).
Let A be the least upper bound of the differences of all such semi-P-grad-

ings g'. Then

(ai,       iOSi<r),

\at + ii — r)A, ii ^ r),

will prove to be the desired P-grading. It is clear that (p\) is a semi-P-grading.

If it were not an P-grading, the construction of Lemma 2 would provide a

semi-P-grading of even larger difference (not affecting the p\- with iSr) con-

trary to the maximal condition of A. The proof of the lemma is complete.

3. Basic lemma. For each natural number 777, define a mapping

bn: cU.{y}-~>cU.{:y} by the formula:

Sm(P) = l\l(p' - yM —-^ - Q-^-l
L    \ ay(-»/       * dy<«-i>J

- mP\l(r - yM-] - Q-1.
L   V flyf"-1'/ ay(»-»)J
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Lemma 5. If ImyM=P (mod [£]), then Im+2y<-'+v = omP (mod [£]).

Proof. If Imy^=P, then I<*yl'+»+mI'Im-1yir>siP' so that J»+«y('+«

+mIPImy^=I2P'; thus

/m+2   (r+l) + w//'p = //(£- ;y<«> - ) + lyw -1
L \ ay(»-»/     '    ayc-oj

- i\i(p' - yM ——j - g-^-1

whence

j«rt-iy<H-i> = l\l(p' - yw-) - Q-1
L   \ dy(n-»J ay("-!>J

- mP\ IIP - y<»> -) + IyM - | == gmp.
L   \ dy^»J fly(«-»J

Corollary. j>w/«+»s-J,w • • • 5,5,<2 (mod [£]).

Lemma 6. Let g be an F-grading, and let £6ll{y}. Phen g(SmP)^g(P)

+g(72)+diffg.

Proof. Obvious from the definition of 5m.

For any £-grading g and any natural number m, define a mapping

^.miltly}—>1l{y} by the formula:

/       ^2 dP dP   \

/       £i* di* di*   \
-mPll*   Y,   y('+1>-0*-).

V     jJtl/ dy<»       V   ay(-i>/

Lemma 7. Let g be an F-grading and let £61t{y} be g-homogeneous and of

order ^ord g. Phen 5„,m£ is g-homogeneous of grade g(P) +g(P) +diff g.

Proof. Obvious from the definition of S„,m.

Lemma 8 (Basic lemma). Let g be an F-grading and let t be a natural num-

ber.

(a) If F is sublinear of type ^n+t, then S„,2(_i • • • o,iSSll,iQ* = 0.

(b) Let Q, be the algebra over X generated by the coefficients in F* and all the

derivatives y(0 (0 ^ i < oo), znd let y: a—>1l {y} be an algebra homomorphism

mapping each coefficient in F* into X, mapping each y(i) with t<ord g into X,

and mapping each y(<) with i^ord g onto itself, such that y(I*Q*)^0. If

S0,it-i ■ ■ ■ ba,i0g,iQ* = 0   then   y<«+<> 6 [y(F*)]; y(I*).
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Proof, (a) Let ]£?-<{ a<y(i>G {P} : 7 with a,-Gil and an+t^0. Then

n—l J n+(

P,+1 E «<y(0 + Z an+y72'-2'72'+1y<"+'"> = 72<+1 X) «<y(l) G {F}: I,
i—0 ;'—0 «=0

so, by the corollary to Lemma 5, the differential polynomial

n-l (

H = 72<+! £ «<y(0 - Z«n+y^2,-2'52y-i • • ■ hhQ
t-o j-a

is in {F}: 7. As 77 is reduced with respect to F, 77 = 0; therefore the g-homo-

geneous part of H of grade h = giQ) + j[g(72) + diff g] is zero. Now,

g(P'+1i:?=oa.yi))g(2/ + lk(7)+g(yt«-»)=g(7yW)+/g(72)-diffg</7; also,

by Lemma 6, g(Z'j~4 W^'V-, ■ ■ ■ iiQ) Sg(Q) + (t-l) [g(72)+diff g]
+g(72) <h; furthermore, if r<g(Q) and Qr denotes the g-homogeneous part

of Q of grade r, then, again by Lemma 6, g(an+t82t-i • • • 8$8iQ/) <h. Therefore

the the g-homogeneous part of H of grade h equals the g-homogeneous part

of — on+(52(_i • ■ • bzbiQ* of grade h. By Lemma 1, this in turn equals the g-

homogeneous part of — an+t8g,2t-i • ■ • bg,iQ* of grade h, which, by Lemma 5,

coincides with — an+t8g,u-i • • • 8g,iQ* itself. Since an+t^0, it follows that

8,,«-i • • • Sg,iQ* = 0.
(b) If PE a then obviously 8g,mPE ft, and y(5g,mP) = 8'm(y(P)), where b"m

is the mapping of 11 {y} into 1l{y} defined by the formula

CA = y(I*) [yil*) (A' - ,« ~) - yiQ*) ̂ _]

a\~   ,t*J,   ,t*w tdiyil*))\ ,^dy(I*)l
- mA    yil*)    (yil*))' - y(») ) - yiQ*) ——— \.

L V dy1-"-1) / 3y(n_1)J

It follows that 5i_i • • • 8f8!(Q*)=y(8g,2t-i • ■ ■ 8g,s8g,iQ*)=0. By the corol-
lary to Lemma 5 (applied to y(F*) =7(7*)y(n>+7(<2*) instead of F = Iy<-n)+Q),
this implies that7(/*)2,+1y("+» = 0 mod [y(F*) ] so thaty(n+,)e {7(P*)} =7(7*).

Chapter II. Differential polynomials, F = IyM+Q

In this chapter F denotes a nonlinear differential polynomial F = 7y(n>+()

with I, <3G1t{y}, 7£M0, o77ci ord IQ<n.
1. The case Deg 7=0.

Theorem 1. If 7=1 then F is not sublinear.

Proof. The grading of 1t{y} defined by the sequence (l+i(d — l)/n)iSN

where d = deg Q, is easily seen to be a semi-P-grading. By Lemma 4, there

exists an P-grading g. We suppose g is chosen with maximal order q (so that

OSqSn—l) and use induction on 77 — q (that is, we suppose the theorem

proved for differential polynomials P of order 77 for which there exists an

P-grading of order >q).
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There obviously exists an algebra homomorphism y: ft—>1l{y} as in the

statement of Lemma 8 such that the degree in (y(9\ ■ • • , y(n_1>) of y(Q*)

equals that of Q*.

This degree is clearly >0. If it is 1, then the differential equation y(n)

+y(Q*) =0 must have a solution which is not an element of 3C[x], so that

[y(n,+y(Q*)} does not contain any derivative y<"+(>; it follows from Lemma

8 that in this case F is not sublinear. We suppose henceforth that the degree

in (y(3), • • • , y(n_1>) of Q* is S; 2. By Lemma 8, moreover, in proving the theo-

rem we may replace £ by y(F*), that is, we may suppose that Q is free of each

y(i) with i<q, that Q has constant coefficients, and that deg Q^2, and then

it is enough to prove that y("+"6 { £] for all t. By the induction assumption,

we may also suppose that there does not exist an £-grading of order >q.

Now, if we had y<"+'>£ {£}, it is easy to see that we would have y<B+<_«>

E{G} , where G is the differential polynomial obtained from £ on replacing

(y(«)) -yU+i), • • • , y(»>) by (y, y', • • • , y(n_«>). Therefore we may replace £

by G, that is we may suppose that q = 0. In other words, we may suppose that

there does not exist an £-grading of order >0. By Lemma 4, then, there does

not exist a semi-£-grading of order >0.

If r is any real number >wtF, then the sequence (l+i/r)ieN defines a

grading h of 1t{y) such that if M = yky'il • ■ • is any monomial appearing in

£ with nonzero coefficient, then h(M) =deg M+r^wtAKdeg M+l. Thus

every term in £ of degree <d ( = deg Q) is of lower grade than every term of

degree d, and among the terms of degree d, those of maximal grade are those

of maximal weight. Therefore, by Lemma 2, there exists a semi-£-grading of

order equal to the maximal order of any term of Q of degree d and weight

equal to wtQ. Since there does not exist a semi-F-grading of order >0, the

weight of every term of Q of degree d must be 0, that is Q = ayd+R where

aEX, a^O, REx{y], ord R<n and deg£<d.

Now, F has a zero f 9^0. If we had y<"+<>£= { f] , then f would be a zero of

y<"+i), that is, we would have f = c0 + CiX+ • • • +c3x\CjEX (O^j^s), c,^0,

0f=s<n+t. By the above, we would have of* = — f "> — £(f). The left member

of this equation, regarded as an element of the polynomial ring 3c[x], would

have degree s-d, whereas the right member would have degree ^s(d — 1).

This shows that we cannot have y<"+»>6 { £} and completes the proof of the

theorem.

2. Second case Deg J>0. The following theorem is a partial complement

to Theorem 1.

Theorem 2. Suppose deg 7>0 and deg Q>0. If there exists an F-grading

of order > ord I, then F is not sublinear.

Proof. Let there exist an F-grading of order g>ord I. As in the first part

of the proof of Theorem 1, we see we may suppose that the degree of Q* in

(y(9\ • • • i y(™_1)) is  2:2. Therefore there exists an algebra homomorphism
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7: a—>1l{y} as in the statement of Lemma 8, such that deg y(Q*)s^2. As

ord7<g, 7(7*)G3C. By Theorem 1, y(F*) is not sublinear; in particular,

{^(F*)} does not contain any y<»+'>. By Lemma 8, it follows that P is not

sublinear.

Theorem 3. Suppose deg7>0. 7/ord I = p<n-1, ord QSp, degf^(Q)

^degj,(p)(7), and I and Q do not have a common factor of order p, then F is not

sublinear.

Proof.  Differentiating the congruence 7y(n)=- — Q  (mod   [P])  we find

Jyl.n+1)   =   _   J'y(n)   _   Q>      s0      that     py(n+l)   -   _   J>Jy(n)   _   JQ>   =  J'Q   _   JQ'

= [QdI/dy<-ri-IdQ/dyM]y<-r+»+Ri, where ord RiSp; setting Pi = CW/dy(p)
— IdQ/dy^, we see that Pi9^0, for otherwise 7 and Q would have a common

factor of order p. Let J = deg„<!,)7, q = degf&Pi so that 0^<7<deg 7+deg Q

S2d.
We now show that for every natural number / there exists a congruence

Ii+iy(n+»=pty<,p+i)'+Rt (moc[ [p]) where Pt^0, ord PtSp, deg„<p>P,

= (t-l)(d-l)+q, ord P*<77, deg„<*+»Pt<J. For 1 = 1, this follows from what

has just been proved. Assuming this congruence for a given t, we find on

differentiating that

p+ly(n+t+l)   =   _  Q _|_   ̂ I'Jtyin+f)  _|_ p[y(p+l)' -f- ;P(;y(7>+l)'_1;y(p+2)  _|_ Rt ^

Jt+2y(n+t+l)  =  _  Q _|_  l^'/i+l^U+O _|- /P/yCP+D' -j- /.Pt-yCP+n'-1 /-y(P+2) -f- /£/ ,

Now, P = (a7/r9yW)y^+»+4, where ord^lgp; 7<+1y<»+»=Pty(p+1)'+F:i;

PI =(dPt/dy<-"))y<-p+1)+B, where ordPg£; if p + 2 = n then 7y<*+2> =■ -Q,
which is of order <77 and is free of y^+Y>, and if p + 2 < 77, then 7y(p+2) itself is

of order <n and is free of yt-p+D; 7P/ is, by similar argument, congruent to a

differential polynomial of order <77 and of degree St in y(p+1\ Therefore

P+ZyC+'+v^i-Q + Vdl/dy^Pt+IdPt/dyMb^+v^+Rt+i where ord Pl+i
<?7 and deg^+1'P(+i</ + l. Since degu™Pt=(t-l)(d-l)+q and q<2d, it is

easy to see that if we set P,+i=7dP(/dy(p)-(/ + l)P,d7/6y"> then Pi+i^0

and deg„<"»P,+i = (t- l)(d-1) +q+d-1 =t(d-l) +q. As ord P,+i is obviously

Sp, the proof of the congruence is complete.

That being the case, if P = 22"-o a.y^ is any homogeneous linear differen-

tial polynomial with s>0 and an+,^0, then

n—l a

p+iL = j«+i J^ a.y(.i) _|_ £ /«-'an+(7'+1yf"+,>
t=0 (—0

n-l •

=. P+1 £ 0&™ + 22 78-'a,i+([P(y^+1)' + Rt]; ii s > 1,
»-0 (-0

then this is = as+nPsy(p+1), + C (mod [F]) where ord C<77 and C is free of

y(p+i)\ ln either case 7S+17 is congruent to a nonzero differential polynomial

of order <?7 so that 73+17G {P}: 7. Since a linear differential polynomial of
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order <re cannot be in [f]: I, as otherwise it would be divisible by F, the

proof of the theorem is complete.

Theorem 4. If I = ya, where o is a natural number >0, and Q is a nonzero

homogeneous linear differential polynomial having constant coefficients and order

>0, then F is not sublinear.

Proof. Write £ = y"y(n)+£ where K= Z"=o ciJ{i\ each CiEX, and c^O

for some i>0 (so that n> 1). It is easy to see that £ has a zero f which is not

a polynomial in x with constant coefficients. Assuming that there exists a

nonzero homogeneous linear differential polynomial £6 {£}: y, we see that

there exist distinct constants ai, ■ ■ ■ , aT, and nonzero elements £i, ■ • ■ , £r

with £/ =ay£; (l^j^r), and nonzero polynomials 0i, • • • , 0r in x with con-

stant coefficients such that f = Zy=i ©y£y; because f is not a polynomial in x,

some £y is not a constant, that is, some ay5^0.

Now

r(" = ± m^ - t £( ")er^ - t( £( '>r°«5)&
y=i y-i v=o\ u / y=i \ M-o \ M / /

where,

•.,-£0^-5
is a polynomial in x with constant coefficients, different from 0 for all induces

j for which ay 5^0. Therefore

n—1 r r n—1

£(f) = Z) <V 2 *».y& = Z x;£/>     where     Xy = Z £,*,./
»=o       y=i y—1 »—o

is a polynomial in x with constant coefficients. Thus,

0 =F(f) = ( £ B&)'( £ *..&) + £ 3f*&
\ ;-l / \ y-i /        t-i

r

Z ®n • • ■ @<a*»./fci • • • fc„& + Z X*&-
lS»"iSr. • • •, litosr, ls/sr i=l

Clearly, £,-, • • • £,o£y is a zero of y' — («,-,+ • • • +a,-o+a:y)y; furthermore, if

A is any set of constants, and if, for each A6A, £\ is a nontrivial zero of

y'—Ay, then the family (£x)asa is linearly independent over the field obtained

by adjoining x to the field of constants. Since, in the multiple sum above, the

term with set of indices (ii, • • • , ia,j) = (h, • • • , h, h) has coefficient ©^.a,

which is 9*0 when ak9^0, we conclude that, for each index h for which an9^0,

either there exists a set of indices (ii, • ■ • , ia, j) with
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(1) (a + l)ah = ah + • • • + aia + aj, in, • • • , ia,j) 7$ ih, ■ • • , h, h),

or else there exists an index k with

(2) (a + l)ah = ak.

As the field generated by ai, • • • , ar is isomorphic with a field of complex

numbers, we may temporarily suppose that each «/ is a complex number.

Choosing for h an index such that \ah\ =sup(|ai|, • • • , \ar\), we see that

neither (1) nor (2) can be satisfied. This contradiction completes the proof.

The following lemma is used in the proof of Theorem 5.

Lemma 9. Suppose deg7>0, let p = ord I, and let g denote the grading

(a/)iaN with at = 0 iOSiSp) and at = i—p ip<i< co). // there exists a natural

number k with lSkSn — p such that F*= [(Jy(»-*>)(*>]* then F is not sublinear.

Proof. The hypothesis implies that deg Q>0 and g is an P-grading of

order p. It is easy to see that for any algebra homomorphism y: ft—>1l{y}

as in Lemma 8, we have

y(\ }2 y('+1) TTfl (iy™)) - [Y(7)y<-*>]<».

If F were sublinear there would exist a natural number s such that y(,)

G \yiF*)}: yil); choosing 5 minimal we would have s>77, and the equation

7(F*)=0 would have a solution f = c0+ • • • +c,_ix*-1 with fG3C[x], and

cs_i5^0; as we would have degxf(j,) =s — l—p^.n — p>0 and as7(7) is a poly-

nomial in y(p) of degree 2:1, we see that we would have degx7(7)(f) ^ra — p and

degx^n-k)=s-l-n+k^k, and therefore degx (7(7) (f)f <»-*>) ̂n-p+k>k,

so that 7(P*) = (7(7)y("-i;))(t) could not vanish at f.

Chapter III. Derivatives

7t7 this chapter F denotes an arbitrary nonzero differential polynomial in

11 {y} of degree ^2. The order, separant, and initial of F are denoted by n, S,

and I, respectively.

1. The second derivative. The following theorem shows that the second

derivative F" is very rarely sublinear.

Theorem 5. Let F" be sublinear. Then:

(a) deg„(n)F=l (50 that we may write F = IyM + Q, with QGlljy} and

ord <2<77);

(b) deg 7>0 (so that I has an order p, with 0Sp<n); Q^O and deg <2>0;

(c) there does not exist a semi-F-grading of order >p;

(d) the sequence (a,-)«ejv, with a,- = 0 (OSiSp) and at = i — p (p<i< <x>), is

an F-grading (of order p).

Proof, (a) A simple computation shows that F" = (5y(n+1))'+Py(n+1'+P,

where H and K are of order ^77. If degB(nP were ^2 then we would have
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deg 5>0 and ord S = n, so that by Lemma 9, with (£, p, n, k) taken as

(£", n, re + 2, 1), F" would not be sublinear.

(b) If i" were of degree 0 then, as £ is nonlinear, Q would be nonzero and

nonlinear, and by Theorem 1 F would not be sublinear, so that F" would not

be sublinear; if Q were an element of It, £' = (Iyin))' + Q' and by Lemma 9 £'

would not be sublinear, so that F" would not.

(c) If there existed a semi-£-grading of order >p then by Lemma 4 there

would exist an F-grading of order >p; by Theorem 2, £ would not be sub-

linear, so that F" would not.

(d) Suppose (afjisN is not an £-grading. Then g is not a semi-£-grading,

for otherwise by Lemma 2 there would exist a semi-F-grading of order >p,

contradicting (c). Therefore either g(Q) <g(Iy(n)) or ord Q*<p. In the latter

eventuality we would have g(Q*) =0, that is g(Q) =0, whence ord Q<p, so

that in either case g(Q) <g(IyM). By Lemma 1 then g(Q") <g((Iy(n))"), so

that [£"]*= [(Iy<«>)"]*. It follows from Lemma 9 that F" is not sublinear.

This contradiction shows that g is an £-grading. Therefore g(Q) =g(Iy(n))

= n — p>0, so that ord Q>p.

2. Higher derivatives. It is easy to see that if k is a natural number 3:2

and £(4) is sublinear then £(i) is sublinear (0^i^2).

Theorem 6. Only finitely many derivatives of F can be sublinear.

Proof. Assume the theorem false; then every derivative £w of £ is sub-

linear, and we may write £ = £y(n> + (2 as in Theorem 5. Writing p=ord land

letting g denote the grading (ai)iGrf defined in part (d) of Theorem 5, we see

that g is an £CM-grading of order p, for every k. If a is the algebra over X

generated by the derivatives y(/) (0 ^j < oo) and the coefficients in £*, it is

easy to see, for any G 611 {y} with ordG*^p, that if G* 6 a then [G']*E0L;

therefore [£(*']*6a for every k.

There obviously exists a homomorphism y: a—>1i{y} as in Lemma 8

such that degy(£*)>0; by this lemma each y([Fm]*) is sublinear. But it is

easy to see, for any G61t{y} with G* of order ^p and G*E a, that y(G*)'

= y([G']*). Therefore y((£*)(*>) =y([£w]*) for every k. Replacing £ by

y(F*), we see that we may suppose that £ is g-homogeneous, J65£[y(p)] and

QEX[y<-p), ■ ■ • , y(n_1)], and {F(i)} : I contains some derivative of y. Since

we may evidently replace y(p), y<*+1), ■ • • , y<n) in £ by y, y', ■ ■ ■ , y<-n-"\ we

may also suppose that p = 0, and therefore that g is the weight grading; then

£ is isobaric, so that Q is isobaric of weight re; of course ord Q>0. Also, by

Theorem 5, there does not exist a semi-£-grading of order >0, and re =£2.

Now consider the grading g' = (ai)i€ff with ai = 1 +i (0 g i < oo); for any

monomial M, g'(M)=deg M+wtM. If we had g'(IyM) <g'(Q) then by

Lemma 2 there would exist a semi-£-grading of order >0, contrary to the

above. If we had g'(7y(n)) >g'(Q), that is if we had deg(/y(n)) >deg Q, then

for any polynomial f = c0+ • • • +crxr63C[x] with cr9^0 and r>w we would
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have 7(f)f<">^0 and degx I(£)$M =r deg(IyM) -n>r deg Q-n>degx Q($);

therefore F = IyM+Q could not have a zero of the form £", so that {P}: 7

could not contain any derivative of y. It follows that g'(7y(n)) =g'(Q), so that

g' is an P-grading, and therefore (see Lemma 1) even an P(t)-grading for every

k. By Lemma 8 (with y taken as the identity mapping of 3CJy}), we may re-

place P by its g'-homogeneous part of highest grade, that is, by its homo-

geneous part of highest degree. Thus, we may write F = yd~1y(n)+Q, where

d>l, QE5i{y}, Q^O, ord Q<n, and Q is homogeneous of degree d and iso-

baric of weight 77.

The field JCo generated by the coefficients in P is isomorphic with a field

of complex numbers; we therefore lose no generality in supposing that 5Co is a

field of complex numbers.

Since we may replace P by any derivative F(,), we may also suppose

that 77 > d. Then we may write

d-l

F = yd-iyM + ^ ay-i-yy"-") + R,

where ai, • ■ ■ , aa-iE^o, PG3Co{y}, and each term in R is of degree ^2 in

iy", • • • , y(B_1)). Now, a simple computation shows that

d—1

F> = yd-lyi.n+1) _]_ 22 &ry*-l-»;y/y»+l-'> + Rf

F-l

where each term in Rt is of degree 2:2 in iy", ■ ■ ■ , y<B+1>), and bi=d—l +au

by=id — v)av-i+av (2SvSd — l). It follows from these equations that if we

replace P by a sufficiently high derivative P0) that each coefficient a, will

have a real part which is strictly positive. We suppose, then, that this is the

case.

We now define for each natural number t an element QtE^o{y}, homo-

geneous of degree d+t, isobaric of weight n+t, of order <77, such that

yd+i-iy(n+t)^.Qt = Q (mod [F]). Since we obviously may take Qo = Q, we sup-

pose that <>0 and that Qt-i has already been defined. Differentiating the

congruence yd+,_2y(n+'~1)+(),_1 = 0 (mod [P]), and then multiplying by y,

we find that

yd+t-iy(n+t) _|_ (d _|_ / _ 2)y'yd+t~2y(-n+t~1) + yMydQt-i/dy(n-1)

n

+ y22 y^-'+^dQi-i/dy^-'i = 0 (mod [F]).
v=2

Now,

id + t- 2)y'yd+t-2y+t-1 = - id + I - 2)y'Q,_i (mod [F]).

Also, if y'»y'" • ■ • y("-1')<n'1 is a monomial in C/1-1. then 22"-o iP = d+t — l and

22"-i fiv = n+t— 1, so that (subtracting the former sum from the latter)
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Z"-i (v — l)ip = n — d+io; therefore if this monomial involves y<n_1>, that is,

if in-is^l, then io^d — 2. Thus, dQt-i/dy(-n~1) is divisible by y"*-2, and we may

write

ydQ,-i/dy<n-H-yw = y-i+2dQt-i/dy^-" ■ y*-^™

= - y~d+2dQt~i/dy^~l)-Q (mod [£]).

It follows that if we define
n-l

Qt = - (d + t - 2)y'Qt-i - Q-y-d+2dQt-i/dy<»-» + y Y J^'^dQt-i/dy^~l\
v=l

then Qt will have the desired properties.

For each t we may write Qt= Z*-l at,,yd~l~"y't+vy{n~'')+Rt, where

Oj.i, • • • , o(,d_i63Co, £(63Co{y}, and each term in £( is of degree 2:2 in

(y", • • ■ i y(n_1)). From the recursion formula defining Qt we see, by any easy

computation, that

at,, = — arat-i,i — (t + v — l)o,_i,„ + at-i,r+i, (1 ^ v < d — 1),

where o<_i,d = 0.

Since y<-n+^E [f] :y tor some natural number 5>0, and since ord Q,<n,

we must have Qs = 0 tor this s; in particular, we must have as,y = 0 (l^v^d—1).

On the other hand oo.^O (l^v^d— 1), since the real part of each ao,, is

strictly positive. Therefore there is a natural number / with l^tf^s such that

o(,i, • • • ,  0(,,j_i  are all  0 but dj-i.i, • • • ,   o(_i,i_i  are not all 0.  Thus,

(o(_i,i • • • , 0(_i,,j_i) is a nontrivial solution of the system of homogeneous

linear equations
a,Xt +(t + v- 1)X, - Xr+i = 0 (1 ^vgd-2),

ad-iXi + (1 + d - 2)Xd-i = 0.

The determinant of this system must therefore vanish. But an easy computa-

tion shows that this determinant is equal to

i=X (t + d- i)\
t(t+l)-..(i + d-l) + Z 7—-rr, *<-

„_i   (I + v — 1)1

As the real part of each a, is positive, this determinant cannot vanish. This

contradiction completes the proof.
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