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1. Introduction

1.1. Background. In this series of papers we shall discuss the behavior of

the real solutions of a certain class of first order differential-functional sys-

tems. As the simplest example of the type of system to be studied we list

the differential-functional equation

(1) y'(x) = g(x) cos(«x + vy(px + q) + w)

where u, v, w, p and q are real constants with *>1 or *S1 and c/SO, and

g(x) is a given function. We use ' to denote differentiation with respect to

the indicated argument. More generally the systems to be considered are of

the form

(2) y'(x) = A(x, y)

where A = (Ai, • • • , A*) is a certain function of x and functional of

y — iyu ■ ■ ' , yf). Each A, (k = 1, • • ■ , k) consists of a sum of terms each of

which is a given function of x and functional of y, say g(x, y), multiplied by

unity or by a cosine whose argument is a finite linear combination of x and

y«(x„) (k = 1, • • • , k; a = 0, 1, • ■ •) where Xo = x and

xa+i = px, + q (<r = 0, 1, ■ • • )

and where we assume *>1 or *S1 and q>0. If all the functions g(x, y)

referred to above are independent of y we speak of the case with independ-

ency, otherwise the case with dependency. If the argument of the above

mentioned cosine does not contain y«(xo) (k=1, • • ■ , k) and if the choice

* = 1 and q = 0 is excluded, we speak of the case with pure translations, other-

wise mixed translations. The precise form of the system is given in §1.4.

Throughout Part I we limit ourselves to the case with independency and

pure translation and confine our attention to the asymptotic behavior of the

systems (2).

Although these systems may appear a bit novel at first glance, they

represent a natural generalization of a system of two first order differential

equations that arises upon a suitable polar coordinate transformation of the

differential equation
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(3) y"(x) +f(x)y'(x) + (1 + g(x))y(x) = 0.

It can be seen [l; 2] that under general circumstances the substitutions

(4) y(x) = r(x) sin(x + 6(x)),        y'(x) = r(x) cos(x + 6(x))

transform (3) into the system

(5) B'(x) = A(x,6);        r-^- = P(x,B)
r(x)

where

A(x, B) = —ig(x) +f(x) cos f^2x + 28(x) - yj - g(x) cos(2x + 20(x))l ,

P(x, 8) = — |/(x) +/(x) cos(2x + 2B(x)) + g(x) cos(2x + 2B(x) - ir/2)\ .

The above transformation has reduced the problem of finding the solution

of (3) to that of finding the solution of 6' =A, and the differential-functional

systems we shall study are seen to be a generalization of this differential

equation.

1.2. Some results. In §2 we establish a matrix identity fundamental to

these investigations. Using this identity in §3.1 we transform A(x, y), and in

§3.2 we examine the asymptotic behavior of the solutions. In general this

behavior depends on the algebro-number theoretic properties of p. In ^3.3

we consider some applications. We list here a result obtained for equation

(1.1-1) which is a special case of an equation occurring in §3.3. This result

typifies the investigations carried out in this paper.

We suppose that ut^O and vt^O. The second of these suppositions is not

significant, but the first is due to the limitations of our method. Assume that

the function g(x) appearing in (1.1-1) is a function of bounded variation in

[X, <x> ] where X is a positive constant and that the total variation of g(x)

in [x, oo ] is 0x~5 where 5 is a positive constant and further that g(x)—»0 as

x—>°o. Then, if p is not the reciprocal of an algebraic integer, we find that

each solution y(x) of the given differential-functional equation satisfies an

order relation

(1) y(x) = K + Ox-*

where K is an arbitrary constant.

For each polynomial C = chph+ ■ ■ ■ +Cip+c0 of degree h with rational

integral coefficients define T(C) to be the sum oj^j-o \ci\ augmented by 25

for each/, 1 SjSh, such that cy = 0. For a given algebraic number p let T'(p)

be the infimum of the numbers T(C) where C runs over all polynomials with

rational integral coefficients of which p is a root. Then, if p is the reciprocal

of an algebraic integer, each solution of (1.1-1) satisfies an order relation
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(2) y(x) = K + 0(x1-I"("> + x-5).

Moreover (2) is a "best possible" result in the sense that it does not hold if

T'(p) is replaced by a larger number.

1.3. Notational preliminaries. In this section are listed some of the nota-

tional conventions we shall employ in this series of papers. Unless otherwise

stated, all vectors are real. Let z=(zi, • • • , zf) be a vector (finite or infinite).

We take \z\ = /.|?_i | Zj\ to be the norm of z. By X we denote a fixed positive

number whose value is chosen in accordance with the problem at hand. We

put Jf=fxf(t)dt for all functions / integrable on any closed subinterval of

[X, co). If y(x) = (yi(x), • • • , yn(x)) and z(x) = (zi(x), • ■ • , zh(x)), then

y(x)=Oz(x) means y,(x) = Ozj(x) (j=l, • • ■ , h). Throughout this investiga-

tion k, I, m all greater than or equal to 1 and re greater than or equal to 0

denote fixed integers. Unless otherwise stated, k, A, p and v denote indices

that run over the integers 1, ■ ■ ■ , k; 1, ■ • ■ , l; 1, • ■ • , m; and 1, • • • , re

respectively while cr denotes an index that runs over the non-negative integers.

We denote by/x(x, y) and gM(x, y) certain given functions of x and functionals

of y with y itself being a function of x. Further,/(x, y) and g(x, y) denote re-

spectively the vectors (/i, ■ ■ ■ , fi) and (gi, • • • , gm), while F(x, y) and

G(x,y) denote respectively (/(x0,y),/(xi,y), • • • ) and (g(x0,y),g(xi,y), ■ ■ • )•

ty, denotes a semi-group under addition possessing a neutral element 0. By

"iTJ* we denote the strong direct product and by ty the weak direct product

of the semi-groups ty,. We say that 5 = (s(0), j(l), • • • )G^* has length r if

r denotes the least integer such that er>r implies i(a) =0. If there is no such

integer r, we put len 3= °o. Let ty+ and ty" denote realizations of ty* and let

(l+, i~) be an element of the Cartesian product of ty+ by ty~. Then we put

len (j+, 0~) equal to the larger of len j+ and len 0~. The symbols $ = {f},

?={l},2fc={m}, and ?l = {n} denote the realizations of ty when each of the

semi-groups *$<, is put equal to the real k-, 1-, m- and re-dimensional vector

space respectively. We employ the convention exp {a; b} =6°. For IG8 and

m(E9!)c we define respectively the scalar product 1- F(x, y) and the exponential

function exp{m; G(x, y)} by

I-F(x, y) = X) h(<r)Mx„ y),
\,

exp{ tn; G(x, y)} = YI exp{mM(er); g»(x„ y)}.

Finally, in the case that all the ty, are equal we define a translation operator

E of domain ty* by E(j(0), j(l), • • • ) = (0, j(0), j(l), • • • ) for sEty*. Ob-
serve the following rules of computation

l-F(xh, y) = (£*!)• F(x, y), exp{m; G(xh, y)} = exp{£*m; G(x, y)}

where h S 0 denotes an integer.
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1.4. Form of the system. Let BK denote a finite set and put B={B}

= U« 75,. If 8CBK we say the index of 13 is k and write ind Q = k. To each 8 we

associate /3 a complex number and (/3', B") an element of ?X9K with non-

negative integer components and \8"\ > 0. We define <p(8, x, y) by

4>(B, x, y) = exp{/J"; G(x, y)}-exp(i8'-F(x, y)).

We often shorten <p(B, x, y) to <p(8). Let us define A«(x, y) as the sum JZ,B4>(8)

taken over all j3G—*«• We prescribe that/x(x, y) is a function of x and func-

tional of y of the form /x(x, y) = „xx + 23, V\^yK(x)+w\ where wx^O, tv, and

W\ are real constants. Further we assume that for SCB with /3'?^0 one has:

if ao is the first integer a such that B'(a) 5*0, then

(1) JZ    __-/-x'(<ro)i»«    *0, __ # (<ro)«x * 0.
> X X

The integer 5 is defined to be the sup{len (/3', #"): BCB}.

As an illustration consider the following differential-functional system

which is examined in §3.3.

j((x) = gi(x) + g2(x) cos(«iXi + nayi(xi) + D2iy2(xi) + wj),

yi(x) = gs(x) + g*(x) cos(u2x2 + vi2yi(xj) + v22y2(xj) + wj).

Clearly ft = / = 2, while m = 4. To be able to write the system in the form

(1.1-2), we construct the table given below.

B will consist of eight elements id, 2B, ■ ■ ■ , 8/3.

ind ,3 j8'(l) B'(2) B"(0)

iB 1 1/2 (0,0) (0,0) (1,0,0,0)
3/3 1 1/2 (1, 0) (0, 0) (0, 1, 0, 0)

6)3 2 1/2 (0, 0) (0, 0) (0, 0, 1, 0)
70 2 1/2 (0, 0) (0, 1) (0, 0, 0, 1)

Thus 5 = 2. Here we employ the convention that any component of (8', B")

not appearing in the table is zero. Since

2n0'(a)=  - in-l8'(<r), 2n/3"(<r)  = 2n_i/3"(<r),

it is not necessary to include the 8 with even presubscripts in the table.

1.5. Acknowledgments. This series of papers is derived from my doctoral

dissertation written at the University of California with the help of the Na-

tional Science Foundation under Grant Number G1884. I extend my thanks

to Professor J. G. van der Corput. Many of the ideas and methods used here

were first announced by him in his lectures (as yet unpublished) on asymp-

totics given at Berkeley during 1956-1957. In these lectures Professor van

der Corput discussed the corresponding problem in differential equations, i.e.

systems of the type (1.1-2) with p=l and a = 0.
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2. The fundamental identity

2.1. Statement and proof. A= {a} denotes a given set, while A= {a}

denotes a set whose elements are finite tuples of elements of A. If

a = (i«, • • • , nOc) and b = (i«, • • • , trot, i?+i<x, • • • , n+m<x) (not necessarily ele-

ments of A) and MSI, then we say b is a follower of a and write b>a. If

M=l, we say that & is a successor of a and write b^>a. The relation &So

means that b follows a or & is identical to a. We partition A into two disjoint

subsets, the boundary of A, dA, and the interior of A, A°. li aEA has a suc-

cessor not in A, then aEdA. Otherwise we are free to put a in dA or A". Let

r S 1 denote a fixed integer. To each finite tuple a = (ia, • • • , n<x) formed by

elements of A (a not necessarily an element of A) we associate a complex r2

matrix [a] such that [o] = 0, if (i«, • • ■ , jv-ia) EA°. We denote by cb(a) and

i/"(a) complex r-vector functions defined over A and A° respectively. We

accept the usual definition of a matrix product and a matrix operating on a

vector. For each pair of tuples

a = (ia, • • • , ifd)    and    b = (ia, ■ • ■ , noc, ■ • • , n+moc)

with MS 1 we define

b\
— = [xa, • ■ ■ , rf+ia][ia, ■ • • , N+ict] ■ ■ ■ [xa, ■ • • , n+mcx]
al

and for each a we put a\/a\ equal to the identity matrix. For aEA° we assume

that

(1) <t>(a) = Z [b]4,(b) + H(a)
0a

where ^oa denotes summation over all b^>a. A sequence, finite or infinite,

of the form (a, vet), (a, i<x, 2a), • • • is called a chain and the number of ele-

ments in a chain is called its length.

Theorem. Assume: (i) all chains in A" are finite; (ii) aEA° implies that

the set

[a: aEA; [a, a] * 0}

is finite. We conclude: aEA implies that

(2) 4>(a) = 2Z~, *(*) + £ - B(b)
ia   a\ ia   a\

where ^i0 denotes summation over all b^a such that bEdA while 2J^ denotes

summation over all 6Sa such that bEA°.

Remark. Condition (i) above is certainly satisfied if there exists a number

K such that (i«, • • • , NOt)EA° implies that NSK.
Proof. To each aEA we can associate a chain, possibly empty, of the form
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(a, i„), (a, i_, 2~), • • • such that each element of the chain is in A° and

[a, ioJt^O, [a, ia, 2a]?^0, • • • . For each aCA° we take 7(a) as the length of

the longest such chain, and we put 7(a) =0 if aCdA. Note that for aG^4

one has that 7(a) is finite. Our proof proceeds by induction. If 7(a) =0 then

either (i) aCdA or (ii) aG-4° and for each o»a one has that bCdA, or bCA°

and [o]=0. If (i) holds, the theorem is true trivially. If (ii) holds, then the

sum in (1) is extended over all 6»a such that bCdA. As an induction hypoth-

esis, we assume that (2) holds for each dCA such that L(d) Sj- Assume that

7(a) =/+l. This implies that aG^4° so that (1) can be used. Thus

*(«) = __■{__[&] £*(fi) + __• [»] T7B(c)\ + 77(a)
II.    I    11 Ol 26 01 )

= JZ ~, 4>(c) + JZ 4 H^-
ia   a! 2a   a!

This completes the induction from/ toj'+l. Q.E.D.

3. The case with amenable variation

3.1. Transformation of A. In using the Fundamental Identity on A we

take A as the set {(0, a): BCB; a^O} and for a = (0, a) put _ = 0, a'=E"B',

a" = E"8", and ind a = ind 8- We prescribe that A contain only tuples of the

form ((8, 0), 2a, ■ ■ ■ , Na) and that the set {(0, O):0CB} is in A. For

a = G„, • • • , ncx) we put a' = i„'+ • • • +nO.' and a" = ia"+ ■ ■ ■ +nol" and

inda = indi_. By AK we denote the set {a:aCA; inda = K|. We put BA,

= AKC\dA and A° = AKr\A°. The question of the specific construction of A

and the satisfaction of the hypothesis of the Fundamental Identity Theorem

is discussed in §3.2. For the present we assume this hypothesis is fulfilled.

For aG-4 let us put a'•„= ^x^x' (cr)u\p°. If a'-M-^O we define [a, (0, a)] by

[a, (0, <j)]= - (a'-u)-1^' JZ aj (*)vu
x

where K = ind 0, and define 77(a) by

77(a) = - (a'-«)-ty(a) JZ ax' (<r)»x,p'{y,' (xj) - A„(x„ y)}

»  d
- i(a'-u)-1ex-p{a";G(x)} — (exp ia'-F(x, y)).

dx

If a'-u7^0, then for any differentiable function y one has

<t>(a) = - (a'-M)-V(a) JZ a{(<r)vxKp°KK(xa, y) + 77(a)

which in terms of the preceding definitions is equivalent to (2.1-1). For

a=da, • • • , Na) we put a! = i_(a!/i_!) and call a significant if a!=^0. From

the Fundamental Identity one obtains
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A«(x, y) =   2Z  alcb(a) +   2Z0^H(a).

For convenience in the applications we introduce £>«" a subset of 9)?. We as-

sume U< £>«" contains all points a" corresponding to those a such that at

least one successor of a is not in A. We now make precise our definition of A°:

A° = {a: aE AK; a'-u ^ 0; a" E #«"}•

Let dAK be partitioned into the following three disjoint sets:

(1.1) \a:aEdAK;a"EDK";a'-u = 0;   £   £ ai (*)v^   = ol ,

(1.2) (a:aEdAk;a"EDt';a'-u = 0;   £   E«x'Wv   * ol ,
V k',       X /

(1.3) {a:aEdAK;a"EDi'}.

We take F»'(x), QI (x, y), and i?«'(x, y) as the sum ]>^a !</>(#), taken respec-

tively, over the elements a given by (1.1), (1.2), and (1.3). Further, S» (x, y)

and TI (x, y) are given by

SL(x, y) = -i2Z a\(a'-u)-i exp{a"; G(x)} — (ia'-F(x, y)),
dx

T!(x,y) = - 2Z al(a'-u)-l<p(a) 2Z^'P'{ykx,) ~ A,.(x„,y)}
Xn'ff

the sums in both cases being extended over all aEA°. Thus each solution

y(x) of y'=A satisfies the equation

y(x) = K + P(x) + Q(x, y) + R(x, y) + S(x, y)

where K is a real constant and where P=fP', etc.

Definition. A„ 1 ̂ KjS/fe, satisfies the condition of amenable variation rela-

tive to a suitably chosen set A with upper bound ZK(x) if for each significant

aEA° one has that expja"; G(x)} is a function of bounded variation in [X, oo ]

such that the total variation of exp {a"; G(x)} in [x, oo ] is OZk(x), and

exp {a", G(x)}—>0 as x—>oo. Further, AK satisfies the condition of amenable

integrability relative to a suitably chosen set A with upper bound ZK(x) if for

each significant a occurring in the set (1.3) exp {a"; G(x)} is absolutely integrable

to infinity in such a way that

f   | exp{a";G(0} \ dl = OZK(x).

These definitions plus an appeal to Chartier's Test [3, p. 72] yield the

following
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Lemma. If A„ l^K^ft, satisfies the conditions of amenable variation and

integrability with respect to a suitably chosen set A and common upper bound

ZK(x), then for each solution y of (1.1-2) y« satisfies an order relation

yK(x) = KK + PK(x) + QK(x, y) + OZK(x).

If A.satisfies thecondition of amenable variation foreachK,/c= 1, 2, • • • , ft,

with upper bound ZK, we say merely that A satisfies this condition with upper

bound Z=(Zi, • • • , Zj) and similarly for amenable integrability.

3.2. On the sets A and D'J. The constructions given in this section are

the ones chiefly used in applications. Let e« and 5M denote positive constants.

We define D'J as the set of all points m in 9)7 such that

(1) JZ m„(a)5„ ̂  1 + e„       m„(<r) S; 0.

Put

_ = mtijZ0j'(<r)8,:0CB\.

Ifa=(i„, • • • , jv~) is a significant element of A„ certainly 7V^a*_1(l+e«) + l-

We say that the tuple a = (i«, • • • , Na) has property I if there exists an

integer /, 2 Sj S TV, such that ,„ = (0, a) and

JZ (i«*'0) + 2«x'(cr) + • • • + y-i_x'(a))*x, = 0
x

where K = ind ,-_. We define DK as the set of points aG^4« such that a"CD"

or a has the property I, and we put D=\J,DK. If aCA° and [a, (0, a)]^0,

then Oga^len a'. This means there are at most a finite number of elements

(0, a) such that [a, (0, a)]9*0. Thus using the sets A and D given above the

hypothesis of the Fundamental Identity theorem is satisfied. Throughout

the remainder of this paper we use the construction for A given above. To

determine the nature of P and Q we need the following

Lemma. For each aCAK — DK the three following assertions are equivalent:

(i)   a' 9*0;        (ii)   JZ   JZot(*)vx.   9*0; (iii)   JZ   JZ aj (<r)„x   9*0.
K<r X o X

Proof. Assume a = dcx, ■ ■ ■ , #„) denotes an element of AK — DK lor which

a'9*0. If N=l condition (1.4-1) implies the lemma. Hence, we can assume

in the proof that 7V^ 2. Since i_ is of the form ('j3, 0), one has that 10' = 0 and

7V^2 imply a has property I. Thus we can also assume without loss of gen-

erality that 10,9*O. Let a0 be the least integer a such that 10'(a)9*O. Since a

does not have property I, each jCt (j = 2, 3, • ■ ■ , N) is of the form (>0, aj)

where oj^oo- This implies that the component <r=a0 of a' is just ^'(ao). This

in conjunction with (1.4-1) proves the lemma.
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Using this lemma we establish the following:

Theorem. PI = Z/3c6(/3) where the sum is extended over all BEB, such that

B' = 0.

Proof. By the preceding lemma P'K = Xa$(°) where the sum is extended

over all aEA,— D, such that a' = 0. Assume that a = (ia, ■ • ■ , n<x) is a sig-

nificant element of this sum with TVS2. Then, i« is of the form ^B, 0) where

1B'^0. Let cr0 denote the least integer a such that 18'(a)9i0. As before a'(af)

= 1B'(oo). This yields the theorem.

By virtue of the preceding lemma, the equations a' ■ u = 0 (a EA,—D,; a' 5* 0)

possess at most a finite roots. If we choose * so that it is not one of those roots,

then Q, = 0. In particular if * is not a member of the algebraic closure of the

extension of the rationals formed by adjoining «i, • • • , Ui, then Q = 0. Thus

we obtain the following

Corollary. Assume: (i) B'y^O (BEB); (ii) the conditions of amenable varia-

tion and integrability hold with common upper bound Z(x)—o(l); (iii) * is not

an element of the algebraic closure of the extension of the rationals formed by

adjoining U\, • • • , Ui. Then each solution y of y'=A tends to a finite limit as

x—>oo. More precisely it satisfies an order relation y = K + OZ.

In passing let us note that if the numbers «i, • • • , «j are algebraic integers

(or Wi = w2= • • • =ui) and if

(2) £ B{ (<70)wx = algebraic unit (BEB,; 8' ?* 0)
x

where <r0 denotes the least integer a such that B'(a)^0, then if * is not the

reciprocal of an algebraic integer, QK = 0.

Let us now consider for given k, 1 ;£k^&, the possibility that * is the root

of an equation

chph + ch-iph~l + ■ ■ ■ + cip + co = 0

with the following property: there exists at least one element

a = (ia, • ■ ■ , ncx) of AK— D,    with    ia = (lB, 0)

such that a'¥-0 and if cr0 denotes the least integer a such that lB'(a) j^O then

Ci = X ox (<ro + j)ttx        (/ = 0, 1, • • • , h),

(3)
a'(cr)  =0 (cr S 0-0 + h + 1).

Let EK denote the totality of elements a oi AK — DK with the above mentioned

property. Then there exists an element b, of EK such that expja"; G(x)}

= Oexp{6,"; G(x)) (aEEf). In this case QK' =Oexp{&„"; G(x) j. Theoreti-

cally one could always determine such an element b, by examination of all

the possible elements a of A, — D, once the number * had been given. How-
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ever, if the algebraic order of p is large, or if ft, I, or m is large, the task is non-

trivial. In a future work we shall consider the computational aspects of this

problem.

3.3. Applications. Consider the equation

i

(1) y'(x) = gi+i(x) + JZ g\(x) cos(«xXi + nxiy(xi) + wj).
X-=l

Here gx(x) (X= 1, 2, • • • , / + 1) is a function of bounded variation in [X, » ]

such that the total variation of gx(x) in [x, °° ] is 0 exp{ — S\; x}, where 5x

is a positive constant, and such that g\(x)—>0 as x—»<». We observe that

ft = l, m = l + l and s=l. Also £? consists of 2m elements j0 (j = l, 2, ■ ■ -,2m).

The table for the equation is

2y-1/3 = — , _y_u8/ (1) = 1,        a-10'/ (0) = 1,     (j = 1, • • • , m)

21+10  =  —- > il+10'l' (0)   =   1.

We denote by S the infimum of the numbers Si, 52, • • • , 5j. Let us put

ei of §3.2 equal to 5. The numbers Sx (X= 1, • • • , / + 1) in this section coincide

with numbers 5M (p = 1, • • • , m) of §3.2. We have at once that the conditions

of amenable variation and integrability hold with upper bound exp{ — 5; x],

and that Pi=/gj+i. Let f,y (i, j = l, ■ • • , I) denote the ratio «</«/. Consider

a polynomial C of the form

(2) (   JZ Wi}) Pk +  ■ ■ ■ + ( JZ CijTiA p + 1

where the numbers c{; (*>/—!> ' ' ' . t; t=l, ■ ■ ■ , h) run over the rational

integers subject to the restriction that if c\j> 9*0 for some j', then c\, = 0 for all

J9*j' and where h denotes an arbitrary positive integer. We employ the con-

vention that if j' is the number referred to just above, then cV/ = 1 and c?j = 0

if i9*j' or J9*j'. In expressing a polynomial in the form (2) the choice of the

coefficients c\j is not unique. It is convenient for our purpose to regard two

polynomials, say Ci and C2, as distinct if not all the coefficients c\,- used in ex-

pressing the two polynomials are identical even though Ci and C2 may be

equal in the ordinary sense. To continue this investigation we must first

show a side result: if aCAx — Dx and len a' = 7V^l, then d= JZ\~i JZ* aj' (a)
is greater than or equal to |a'| augmented by 2 for each integer a, lgn

S N — 1, such that a'(a) = 0. It is clear that d ^ |a'|. Assume that

a = (i„, • • • , mol). There is an integer/(0), lSj(0)SM, such that y(0)a is of

the form (0, N—1) where |3't^0. In order that a does not have property I,

there exists for each integer r, 2 St S N, an integer/(r), 1 Sj(r) S M, such that

j(T)_ is of the form (0, N—r) where 0'9*0. Thus corresponding to each a,
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ISaSN—l such that o'(cr) =0 there are at least two distinct elements a of

the tuple a both of the form (8, a— 1) where 8'VO. This yields the above men-

tioned result.

For each distinct polynomial C of the form (2) and each * we introduce

a function r(C, *) defined as follows: T(C, p) equals the sum X^-o X?w=i I c«| o»

augmented by 25 for each integer /, IStSh, such that XrfJ-i lc«l =0 pro-
vided that (i) C(p) =0 and (ii) there exists <z£^4i — F>i such that for the above

mentioned integer/ one has that

fl'(cr +  1)   =  (Cij>, dy, ■  ■ ■ , Ciy, 0) (cr = 0, 1, •  •  • , h),

a! (a) =0 (cr S h + 2);

if there exists no such element a or if C(P)t*0, we put r(C, *) = °°. For a

given * let us put T'(p) equal to the infimum of the numbers T(C, p) where

C runs over all distinct polynomials of the form (2). Then each solution y

satisfies an order relation

(3) y(x) = K + j gi+i + 0(x-« + x1-!" Cp))

where exp{l— r'(*); x) is replaced by log x if 1=T'(*). For each positive

5 one has T'(p) = oo except for a finite number of *. In the particular case

Mi = «2= ■ • ■ =ui we see by (3.2-2) that if * is not the reciprocal of an

algebraic integer then (2) is valid with T'(p)= oo for all positive 5. For the

special case of equation (1.1-1) this yields (1.2-1) and (1.2-2). We can im-

prove the result for (1.1-1) in the case that *= 1 and q>0. For the elements

ai = ((iB, 0), (2/3, 1)) and a2=((2B, 0), (,/3, 1)) one has ai!=a2!= -v/iu. By

the mean value theorem

y(x -f- 2c) — y(x + q) = 0x_{.

Hence, Qi is given by

-— cos(reo)  f g(tx)g(t)dt + Ox1"35
2m J x

where expjl—35; x} is replaced by log x if 5 = 1/3. Thus each real solution

y(x) satisfies an order relation

y(x) = K - — cos(reo) f g(tx)g(l)dl + 0(x~s + x1"35),
2u J x

again exp{l —35; xj being replaced by log x if 5=1/3. This shows that in

general T'(p) cannot be replaced by a larger number so that (3) represents a

"best possible" result.

As a second example we consider the system (1.4-2) and assume

g„(x) (fi= 1, 2, 3, 4) is a function of bounded variation in [X, <x> ] such that
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g„(x)—>0 as x—> oo and the total variation of g„(x) in [x, oo ] is 0(exp { — §,,; x})

where 0„ is a positive constant. Again using the notation of §3.2 we put

ei = 52 and e2 = 54. Consider a polynomial C ol the form

/ «2\ / «2\
I Cv, + dh — J pk +  ■  ■ ■ + ( Cn + C21 — J p + 1

where the numbers c„- denote arbitrary integers.

C is said to have an a-gap of length t if there is a positive integer i such

that

I cx.it* I  + I C2.i+, |=0        (v = 0, 1, • • • , J - 1),
(4) ,

Igi.,_i|  + |c2,,-i|   t*0;       ci,i+t = 0,        c2,i+t J* 0.

The gap is called a |3-gap if the last two relations in (6) are replaced by

Ci,i+t7*0, c2,,-+( = 0 and an a/3-gap if these relations are replaced by Ci,i+t9*0,

Ci,i+t9*0. A gap is called anticipated if [Ci,.-__| H-1c_.»—_| =0 where 7 — 2 is

positive and unanticipated otherwise. We recall the agreement on distinct

polynomials used in the preceding* example. For each distinct polynomial C

and each p we define a function T(C, p): it (i) C(p)9*0 or (ii) there exists no

aG-4i —7>i such that

(5) a' = (0, (±1, 0), (cn, di), (cn, c22), • • ■ , (cih, c2h), 0, 0, • • - )

then we put T(C, p) = oo; if (i) C(p)=0 and (ii) if there is aCAi — 7>i with

(5) then we put T(C, p) equal to the sum

n

(6) JZ | cu | s2 + | a, | dt
<-0

augmented as follows: for each anticipated a-gap in C of length 2t and

anticipated /3-gap of length 2t — 1 increase the sum (6) by

inf{2(2/ - 1 - 2j)S2 + 2j5A:j = 0, I, ■ ■ ■ , t - l};

tor each anticipated and unanticipated a-gap of length 2t + l, for each antici-

pated and unanticipated /3-gap of length 2t increase the sum (6) by

inf{4(/ - j)5i + 2jSt:j = 0, 1, ••-,/};

for each unanticipated a-gap of length 2/ and for each unanticipated /3-gap

of length 2t— 1 increase the sum (6) by

inf{2(2/ - 1 - 2/)52 + 2/84:/ = 0, 1, • • • , t - 1; 2/54};

for each a/3-gap increase the sum (6) by the lesser of the corresponding

amounts given above for a- and |3-gaps. For each choice of p denote by T'(p)

the infimum of the numbers P(C, p) where C runs over the polynomials of

the given type. We find that for each solution y, one has
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(7) yi(x) = Ki + j gi + 0(x1-r'(P) + x-h)

where exp{ 1—T'(p);x} is replaced by log x if 1 =r'(p). A similar result can

be obtained for k = 2. Denote by (*) the relation (7) with T'(p)= oo. Then, if

Ui/ui, is an algebraic integer, (*) holds, if * is not the reciprocal of an alge-

braic integer, for all positive 5M. If Ui/ui is not an algebraic integer, then the

set of * for which we can assert that (*) holds for all positive 5,, is a proper

subset of the reciprocals of the algebraic integers. Since similar remarks hold

for k = 2, we find that the strongest results, in the sense that a relation of the

type (*) holds for k=1 and k = 2 for all positive ba with fewest * excluded,

occurs in the case that u2/ui is an algebraic unit.
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