ON ANALYTIC SETS IN TOPOLOGICAL SPACES

BY
MAURICE SION

1. Introduction. With a given family H of subsets of a space X there are
associated two classical families: Borel H, the smallest family containing H
and closed under countable unions and complementation, and Souslin H,
the family obtained by applying the operation 4 defined by Souslin (see
Definition 2.11). The case where X is a complete separable metric space and
H is the family of all closed sets in X has been extensively studied and various
relations between the Borel sets, Souslin sets, and continuous images of G; sets
established (see [4; 5; 7]).

The case where X is a Hausdorff space and H is the family of all compact
sets in X has been considered by Choquet [1; 2; 3] and Sneider [8;9; 10]
who replaced Borel H by Borelian H, the smallest family containing H and
closed under countable unions and intersections. However, the extensions of
some of the major results in the classical theory were left as open questions
(see [2]). In this paper, we extend some of these classical results. In particu-
lar, we prove the following:

Two disjoint Souslin sets can be separated by two disjoint Borelian sets
(Theorem 4.3). If X is the countable union of compact sets, then the Souslin
sets coincide with the continuous images of K,; sets, where K is the family
of all compact sets in some Hausdorff space X’ (Theorem 5.5). Taking K
and X as above, if the difference between two sets in K is a K, then the con-
tinuous, countable-to-one image of a K,; is Borelian (Theorem 6.10).

After this paper was presented for publication, the author learned that
Theorems 5.4 and 5.5 had also been proved by G. Choquet in [3]. These
results were obtained independently of each other and the methods of proof
are somewhat different.

2. Notation and basic definitions. We follow Choquet [2] in using the
terminology Borelian H, Souslin H, and analytic in X, but extend somewhat
the definition of the latter.

2.1. A non-negative integer n contains all smaller non-negative integers,
i.e., m&n iff m <n and m is a non-negative integer. Thus, 0 is both the empty
set and the smallest non-negative integer.

2.2. w denotes the set of all non-negative integers.

2.3. S, denotes the set of all n-tuples of non-negative integers, i.e., func-
tions on 7 to w.
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2.4. S’ denotes the set of all sequences of non-negative integers, i.e.,
functions on w to w.

2.5. f/A denotes the restriction of f to 4.

2.6. F(X) denotes the family of all closed sets in X.

2.7. K(X) denotes the family of all compact sets in X.

2.8. A is a K,(X) iff there exists a sequence B such that B,EK(X) for
every n&w and A =U,c, Bn.

2.9. A is a Kq(X) iff there exists a sequence B such that B, is a K,(X)
for every n€w and 4 =N, e, Ba.

2.10. A4 is Borelian H iff A belongs to the smallest family B such that:
HCB and if C,EB for every n€w then U,e, C,EB and N,e, C,EB.

2.11. A is Souslin H iff there exists a function E on U,e, S, to H such that

A= U N E(s/n).
2€8’ n€w

2.12. A is analytic in X iff, for some Hausdorff space X', 4 is the con-
tinuous image of a K,;(X').

2.13. = denotes the projection onto the first coordinate space, i.e.,
w(x, y) =x.

3. Preliminary lemmas. Throughout this section we assume that X and
X'’ are topological spaces.

3.1. LeMMA. If, for every n € w, 4, C X X X' and, for every x € X,
4, N7l {x}) is compact in the product topology and the family

U {(4. N {a])}

nEw
forms a nest then
w(n A,.) = N =(4,).
n€w nEw
Proof. Clearly
1r<n A,,) C N x(4,).

nEw n€w

Suppose xEN, e, 7(4,). Then, for every nCw, A,.f'\‘lr"l{x} #0 and, since
a nest of nonvoid compact sets has a nonvoid intersection, we conclude
Mco AnNT=Hx} =Npew (AN71{x}) 50 ie.,

xE 1r( n A,.).
nEw
3.2. LEMMA. Suppose for every nCw, pESa, ¢ES., p#q, we have A(p)
MNA(g) =0 and A(p) CA(p/(n—1)) for n>0. Then
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N U 4@) = U N A(s/n).

n€w pES, 2€ES’ n€w
Proof. Clearly
U NA@/mC N U 4(@p).

8ES’ n€w n€w PES,
Suppose *EN,e0 Upes, 4(p). Then for every n€w there exists a unique
p(n) €S, such that x€ A4 (p(n)). Since A (p(n+1)) CA(p(n+1)/n), we must
have p(n+1)/n=p(n). Thus, there exists s€S’ such that s/m=p(n) for
n€w and xEN e, A(s/n).

3.3. LEMMA. Suppose X is Hausdorff, DCX’, f is continuous on D to X,
E={(x,9): yED and x=f(y)}, and E is the closure of E in the product topol-

ogy. Then _
EN(X X D) = E.

Proof. Clearly ECEN(X XD). If (x, Yy €EN(XXD), then yED and
(%, ) is the limit of points (x’, ¥'), where (x’, ') EE, i.e., ¥ €D and &’ =f(v').
Then the 9’ tend to y and the %’ tend to x and, by continuity, also to f(y).
Since X is Hausdorff, we have x =f(y) and hence (x, y) EE.

3.4. LEMMA. If X is Hausdorff, D is a K.s(X') and f is continuous on D to
X and A =f(D) then there exist E and C(n, k), for n€w and k€w, such that:

(1) E=Nseco Urew C(n, B) CX X X'.

(i) A=7(E).

(iii) C(n, k)f\w"l{x} is compact in the product topology for every xEX.

iv) 7(Njen Cy, s5)) EF(X) for every sES’ and nCw.

Proof. Let
D= N U dn,k),

n€w k€w
where d(n, k) EK(X’) for every n€w and k€w, and
E={(x,9):y E D and x = f(y)}.
Thus, A =w(E). Let E be the closure of E in the product topology and
C(n, k) = EN (X X d(n, k)).
Then by 3.3,
E=EN(XXD)=N U Cn, k).

n€w k€w
Since
Cin, &)y N7 Ya} = EN ({2} X d(n, &)

we see that (iii) is checked.
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Finally, let s€S’ and n€w. If x€X —7(Njen C(, s;)) then {x} Xd(0, so)
is compact and has no point in common with Nje, C(j, s;) which is closed in
the product topology. Hence there exists a neighborhood U of x such that
UXd(0, so) has no points in common with Nje, C(j, s;) and therefore
UNr(Njen C(, s3)) =0. Thus, m(Nje. C(J, s;)) is closed in X.

4. Properties of Souslin sets.

4.1. THEOREM. If, for every nCw, A, is Souslin H then
U 4, and 0N A, are Souslin H.

nEw nE€w

Proof. See [4].

4.2. THEOREM. If u is ¢ Carathéodory outer measure and all the sets in H
are u-measurable then the Souslin H sets are p-measurable.

Proof. See [6].

4.3. TueoREM. If X is Hausdorff, A and B are Souslin K(X), and ANB
=0 then there exist A’ and B’ such that: A’ and B’ are Borelian K(X), ACA’,
BCB’, and A’'N\B’'=0.

Proof. Let
A= U N E(s/n),
2€ES’ n€w
B= U N F(s/n),
2€ES’' n€w

where, for s€.S’ and n€w, E(s/n) and F(s/n) are compact in X. We also as-
sume, without loss of generality, that

E(s/(n+ 1)) C E(s/n) and F(s/(n + 1)) C F(s/n).
For every n€w and pES,, let
8(p) = {#': §' € Sas1 and p'/n = p},
8'(p) = {s:s €S’ and s/n = p},
E(@)= U N E(s/m),

sesl(p) meEw

F'(p) = U N F(s/m).

:e8’ (p) mEw

We first check the following:

STATEMENT. If n€w, pES., ¢ES,, E'(p) and F'(p) cannot be separated
by Borelian K(X) sets, then for some p'E8(p) and ¢'ES8(q), E'(p’) and
F'(¢’) cannot be separated by Borelian K(X) sets.
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If the statement is false, then for every p'E€8(p) and ¢’ €8(g) there exist
Borelian K(X) sets a(p’, ¢') and B(#’, ¢’) such that

E(p") Calp',q), F(¢) CTBP, ), ap’,¢)NBG,¢)=0.
Let
o= U N« q),
»'€8(p) 'S (@)

= U N s, .

’€8(q) ' €S(p)

Then, since 8$(p) and 8(g) are countable, we see that o’ and B’ are Borelian
K(X), a’MB'=0,
E@p)= U E@)Cd,
»'€8(p)
F'(9 = U F'(¢)C#H,
a’eS ()
in contradiction to the hypothesis of the statement.
Returning to the proof of the theorem, if A and B cannot be separated
by Borelian K(X) sets then there exist s€S’ and t&.S’ such that, for every
n€w, E'(s/n) and F'(¢/n) cannot be separated by Borelian K(X) sets. Let

E" = N E(s/n) and F” = 0 F(t/n).
nEw PEW

Then E" and F'' are compact in X, E”"CA, F""CB and hence E”"NF"=0.
Since X is Hausdorff, there exist open sets U and V such that E"CU,
F'"CV, UNV=0. Then, for some n€w, E(s/n) CU and F(/n) CV so that
E'(s/n) and F’(¢/n) can be separated by compact sets, E(s/n) and F(t/n),
in contradiction to the above.

5. Relation between analytic and Souslin sets. The main theorem in this
section is 5.1. Theorem 5.3 was stated by Choquet [2], but we give a proof
here for the sake of completeness.

5.1. THEOREM. If X s Hausdorff and A is analytic in X then A is Souslin
F(X).

Proof. In view of Lemma 3.4, let A =#x(E) where
E=N UCmhk CXXX,

n€w k€w
for some topological space X’, and, for every x€X, n€w, k€w, s&5,
C(n, k)Na—1{x} is compact in the product topology and 7(Nje, C(j, s5)) is
closed in X. For every s€.S,, let

A'(s) = 1r< N @, s,)).

JEN
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We shall show that
A= U N A4'(s/n).

2€S’ n€w

(i) Suppose x&A. Then, for some y, (x, ¥y)EE i.e., there exists s€S’
such that, for every nCw,

(%, y) € C(n, sa).

Hence
(x, 9 € N CG,sy)
JEn
i.e.
x€ w( n cg, s,-)) = 4'(s/n)
JjEn
and

x € N A'(s/n).

nEw
(ii) Suppose, for some sE.5’,
x € N A'(s/n).

nEw

Then, by Lemma 3.1,

ce N ,( n C(j,sf))= w( N ncg, s,->) - w( N cGis))

nEw jEn n€w jEn jE€w
Cn(E) = A.
5.2. CoOROLLARY. If X ¢s Hausdorff, B is a K,(X), ACB, and A is analytic
in X then A is Souslin K(X).

5.3. CoroLLARY. If X is Hausdorff and A is analytic in X then A is
u-measurable for all measures u on X such that closed sets are u-measurable.

5.4. THEOREM. If X is Hausdorff and A is Souslin K(X) then A is analytic
n X.

Proof. We order the elements of S’ as follows:
If s€85’, tES’, s#t, let n be the first integer such that s, ¢, and then set
s<tiff 5,<t,. For pES,, let

$(p) = {s:sES’ and s/n = p}.

Then, in the topology on S’ induced by the above ordering, $(p) is a K,(S').
If 4 is Souslin K(X), let
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A= U N E(s/n)
8€S’ n€w
where, for every s€S and n€w, E(s/(n+1))CE(s/n)EK(X). Let X’
=X X.S', with the product topology,
B, = U (E(p) X 8(p)),
PES,
D= N B,
n€w
then D is a K.(X"), since S, is countable. We shall show that 4 =w(D).
(i) If x€A4 then for some s&.S5’:
€ N E(s/n)

neEw

and

(x,5) € N (E(s/n) X 8(s/n)) C D.

n€w

(ii) If xEw (D), then by Lemma 3.2

rer( N U @Epxse) = U N @e/mx s(6/m))

n€w PES, 2€S’ n€w
C U N E(s/n) = A.
8E€S’ n€w

5.5. CoroLLARY. If X is Hausdorff, ACB, and B is a K,(X), then A is
analytic in X iff A is Souslin K(X).

6. Relation between analytic and Borelian sets. Throughout this section
we suppose:

(1) X and X’ are Hausdorff spaces, X is compact.

(ii) For every CEK(X') and C'€K(X'), C—C" is a K (X').

(iii) For every n€w and k€w, d(n, k) is compact in X’ and for every
NCw,

D=N Udn k=N UdQN + n, k).
n€w k€w n€w k€w

(iv) fis a continuous function on D to X.

The aim of this section is to prove 6.3 and the much stronger result 6.9.
The key points of the proof of 6.9 are contained in 6.2 and 6.7.

6.1. DEFINITIONS. Let

a(4) = U U FDNANAn k) Nf(DN AN d(n, k') — d(n, k))),
k'€w k€w

al(4) = U  ai(4).

1€ (w—n)
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6.2. LEMMA. Let A be analytic in X', ACD, NEw. If B is analytic in X,
BCf(A) and BNay(A) =0 then there exists B’ such that B’ is Borelian K(X)
and BCB' ' Cf(D).

Proof. Let
E={(x,y:y€E 4 and z=fO},
E be the closure of E in X XX’ and, for #€w and kCw,
Cln, k) = EN (X X d(N + =, k)).
Then C(n, k) is compact in X XX’ and, by Lemma 3.3
(D) DxEN (X X D) = 1r( N U CH, k))

n€w k€w
D 1r( u n C(n,s,.)).
2€ES’ n€w

Let
€k

and, for every n€w and pES,,
a1 = 1(40 N @ +ip0)
i€n

Then H(p) is analytic in X,

") c«( 0 cG, p,-)),

jEn

BCf(4)=f(AND)=N U H(p).

n€w pES,
Moreover, since BNay(4) =0, if p#¢ES. we have
BN H(p) N H(g) = 0.
Then, by 4.3 and 5.5 and induction, for every n€w and pE&S.,, there exists

B(p) such that: B(p) is Borelian K(X); BNH(p) CB(p); if p#gE&S. then
B(pYMB(g) =0;

50) Co(p/n— 1) and 6p) Cx( N CG, 1))
Let
B =N U B@).

n€w peES,
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Then B’ is Borelian K(X) and
B=N U (BNH@P)CN U B = (by3.2)

n€w PES, n€w peS,

= U NBs/myC U N 1r( N c(, s,-)) = (by 3.1)

8€ES’ n€w 8€ES’ n€w JEn

-+( U 0cG,9)Cro.

8€S’ jEw
Thus, BCB'Cf(D).

6.3. THEOREM. Under hypotheses (i) and (ii) at the top of this section, every
one-to-one continuous image of a K,s(X') in X is Borelian K(X).

6.4. LEMMA. If A and B are Borelian K(X') then A — B is Borelian K(X').

Proof. Let H be a maximal family of Borelian K(X’) sets containing
K(X') and such that if A€ H and BEH then 4 —B is Borelian K(X’). We
easily check that H is closed under countable unions and intersections so that
H consists of all Borelian K(X') sets.

6.5. LEMMA. If A is Borelian K(X) then f~1(A) ¢s Borelian K(X').

Proof. If AEK(X) then 4 is closed in X and f~1(4) is closed in D and
hence f~1(4) is a K,5(X’). Moreover, if, for every n€w, f~1(4,) is Borelian
K(X') then

f"( U A,.) = U f-1(4,) is Borelian K(X")

nEw nE€w

and

f—l( n A,,) = N f-1(4,) is Borelian in K(X’).

n€w ncw

Thus, the set of all A4 such that f~1(4) is Borelian K(X’) contains K(X)
and is closed under countable unions and intersections.

6.6. DEFINITION. Let F, be the set of all finite families {Aq, - - -, An_1},
for any m&w, such that for every 1Em: A;&EK(X'); A;Cd(n,, k) for some
n=n,€Ew and k;Cw; A;NA;=0if :jEm.

6.7. LEMMA. Let 0<mEw, {Ao, + - + , A1} EF, and C=Nien F(DNA,).
If there is no C' such that C' is Borelian K(X) and CCC'Cf(D) then for some
n', n<n'Ew and, for every iEm, there exist A! and A!’ such that AI\JA!
CA;, {Ad, A, - -+, Ay, A} EF, and there is no C' such that C' is
Borelian K(X) and

N ((DN AN N ADN A CC" CAD).

1€Em
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Proof. Suppose the lemma is false. Then, if #n'€S,. with ! Z# for every
1Em, RES,, and k' €S, there exists C’ such that C’ is Borelian K(X) and

NHD N AN d(nd, k) NF(D N AN d(nl k) — d(nl k) C C" C f(D).

i€Em

Hence, recalling definition 6.1, since S,. is countable, there exists C'’ such
that C" is Borelian K(X) and

N aw (4) C C” C J(D).

1E€Em
Let
Bo = n a,.' (A{).

{Em
If Sp={n':n'ESn and n{ Zn}, we see that S, is countable and

Bo = U n an’.. (A‘t)

n'e§,,. i1€Em

so that there exists B{ such that B{ is Borelian K(X) and B,CB{ Cf(D).
Let

D¢ = ~'(By).
Then, by 6.5, D{ is Borelian K(X’) and, by 6.4, (DNA;—D{) is also Borelian
K(X"). Let
Ci = N (DN A — DJ).

i€m
Then C¢ is analytic in X, C{ =C—By, and
N a!(a; — D) C N af(A) — B = 0.

1€EM 1€m
For every j&m, let
BG) =CiN N af(A;— DJ).

iem—{j)
Then B(j) is analytic in X and B(j)Neaw (8;—D¢)=0. Hence, by Theorem
6.2, there exists 8’'(j) such that §'(j) is Borelian K(X) and
B(7) CB'(7) CA(D).
Let
B! = U B,

Jj€Em
D{ = D¢ \J f~(B{),
! = N /(DN a; — D).

1€EmM
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Then B{ is Borelian K(X), C{ is analytic in X, ¢{ =C—B¢ — By, and for
every jEm,

N ai(Ai — D{) =0.

iem--{;)
Next, for iEm and j2Em, let
ﬂ(jl’jﬁ) =C{N n a:.(A; - D{)

sem—{j1.73)
Again, B(ji, j») is analytic in X and
B(j1, j2) N an (A;; — D{) = 0.
Hence, by 6.2, there exists 8’(j1, jz) such that 8’(ji, jz) is Borelian K(X) and
B(j1, 72) C (4, 72) C f(D).
Let
B = U U g'(jy, jo),

J1EM jaEm
D{ = D{ U fi(BY),
Cci = N (DN A; — D{).
i€Em
Then B{ is Borelian K(X), C{ is analytic in X, C{ =C—BJ —B{ —B{ and
for every 1Em and j,Em,
N al(Ai— D{) =0.

iem—{jy,5a)

Proceeding this way, we see by induction that, for every 1€Em, there
exists B/ such that B/ is Borelian K(X) and

CC U B! Cf(D)

{EM
in contradiction to the hypothesis of the lemma.
6.8. LEMMA. If mEw, for every i&m, C; is compact in X and Nicpm Ci=0
then, for every 1&m, there exists A; such that A; is open, C;CA; and
ﬂ A.' = 0.

1EM
Proof. We use induction. The lemma is clearly true for m =2. Suppose it
is true for a given m 22 and let C; be compact in X for every ¢€(m+1) and

ﬂ C.'=0.

1€ (m+1)

Let
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C, = Cm f\ Cm_l.
Then
N N ¢i=o,

t€m—1

so that by the induction hypothesis there exist open sets 4’ and 4;, for every
1Em—1, such that C'CA4’, C;CA4; and

AN N 4;,=0.

1€m—1

Since (Chn—A"YN(Cp1—A") =0, let A}, and A’ be open,
Cn— A" C Awl, Cumoy— A" C Ameyy,  Am\ Ap_y = 0.
Let

Ap=A4"U 4, and Adn,= AU 4,_,.
Then, for every 1€ (m+1), 4; is open, C;CA; and

N 4;i=U@' VAN A'J AN\ N 4;,=4'N N 4;=0.

1€ (m4-1) i€Em—1 i€m—1

6.9. THEOREM. Under hypotheses (i) and (ii) at the top of this section, every
countable-to-one continuous image of a K.5(X') in X is Borelian K(X).

Proof. Suppose the theorem is false. Let
S, = {p: p € S, and, for every i € n, p; = 0 or p; = 1},
8 = {s: s ES" and, foreveryi € w, s; = 0 or s; = 1}.

In view of Lemma 6.7, using induction we see that for every n€w and pES,
there exist N,Ew and A(p) such that: N,<N,u, A(p) CA(p/(n—1)) for
n>0,

y {A(p)} € Fw,,

PED,

and there is no C, such that C, is Borelian K(X) and
N ADNA@) C Cu CAD).
€S,

P
In particular,

ey N f(DNA@P) #0.

PESD,

For every s€§’, let
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A(s) = n A(s/m)
new
so that A(s) is compact in X’ and A(s) CD.
We now check the following
STATEMENT. If 0 <mEw and, for every 1Em, sV €S’ then
N f(A(s®)) = 0.
€M
If the statement is false, since f(A(s®)) is compact in X, by Lemma 6.7,
there exist open sets A; such that f(A(s®?))C4; and Niem 4:=0. Let A/
=f-1(4;). Then for some n' Cw we have, for every :&m,

DM A(sW/n") C A,
hence

(DN AGD/n')) C A:
and

N ADNAR) C N fDNAGD/a)CT N 4:i=0

peS,,’ iEm i€Em

in contradiction to (I) above.
Returning to the proof of the theorem, we conclude from the above
Statement that
N f(A(s)) # 0.

lEc’

Moreover, if sE8’, t€8’ and s>t then A(s)NA(¢) =0. Thus, if
y € N j(Als)),
8’

since 8’ is noncountable, we conclude that D\f~'{y} is noncountable, in
contradiction to the hypothesis.

6.10. COROLLARY. Suppose X' is Hausdorff and, for every CEK(X') and
C'EK(X"),C—C"isa K, (X"); D isa K,s(X"); Y is Hausdorff and the counta-
ble union of compact sets. If f is continuous on D to V and, for every y, f~{y}
1is countable then f(D) is Borelian K(Y).
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