
ON ANALYTIC SETS IN TOPOLOGICAL SPACES

BY

MAURICE SION

1. Introduction. With a given family H of subsets of a space X there are

associated two classical families: Borel H, the smallest family containing 22

and closed under countable unions and complementation, and Souslin II,

the family obtained by applying the operation A defined by Souslin (see

Definition 2.11). The case where X is a complete separable metric space and

H is the family of all closed sets in X has been extensively studied and various

relations between the Borel sets, Souslin sets, and continuous images of gs sets

established (see [4; 5; 7]).

The case where X is a Hausdorff space and H is the family of all compact

sets in X has been considered by Choquet [l; 2; 3] and Sneider [8; 9; 10]

who replaced Borel 22 by Borelian H, the smallest family containing H and

closed under countable unions and intersections. However, the extensions of

some of the major results in the classical theory were left as open questions

(see [2]). In this paper, we extend some of these classical results. In particu-

lar, we prove the following:

Two disjoint Souslin sets can be separated by two disjoint Borelian sets

(Theorem 4.3). If X is the countable union of compact sets, then the Souslin

sets coincide with the continuous images of Kai sets, where K is the family

of all compact sets in some Hausdorff space X' (Theorem 5.5). Taking K

and X as above, if the difference between two sets in £ is a Kc then the con-

tinuous, countable-to-one image of a K,s is Borelian (Theorem 6.10).

After this paper was presented for publication, the author learned that

Theorems 5.4 and 5.5 had also been proved by G. Choquet in [3]. These

results were obtained independently of each other and the methods of proof

are somewhat different.

2. Notation and basic definitions. We follow Choquet [2] in using the

terminology Borelian H, Souslin H, and analytic in X, but extend somewhat

the definition of the latter.

2.1. A non-negative integer w contains all smaller non-negative integers,

i.e., wG« iff»» <w and m is a non-negative integer. Thus, 0 is both the empty

set and the smallest non-negative integer.

2.2. co denotes the set of all non-negative integers.

2.3. Sn denotes the set of all w-tuples of non-negative integers, i.e., func-

tions on w to co.
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2.4. S' denotes the set of all sequences of non-negative integers, i.e.,

functions on u to w.

2.5. f/A denotes the restriction of / to A.

2.6. 5(X) denotes the family of all closed sets in X.

2.7. K(X) denotes the family of all compact sets in X.

2.8. A is a KC(X) iff there exists a sequence B such that Bn^K(X) for

every «G« and A =U„eu Bn.

2.9. A is a K„S(X) iff there exists a sequence B such that Bn is a TC^X)

for every «Gw and 4 =n„eo> 73„.

2.10. .4 is Borelian 77 iff A belongs to the smallest family B such that:

HQB and if Cn£;B for every wGw then U„eu C„GP and n„6« C„GP.

2.11. A is Souslin 77 iff there exists a function £ on U„su-SB to 77 such that

A =   U    n £(*/n).
»€S'   nE«i

2.12. A is analytic in X iff, for some Hausdorff space X', A is the con-

tinuous image of a K„t(X').

2.13. 7r denotes the projection onto the first coordinate space, i.e.,

7r(x, y) =x.

3. Preliminary lemmas. Throughout this section we assume that X and

X' are topological spaces.

3.1. Lemma. If, for every n G «, An C. X X X' and, for every i;GI,
(4n f^ ir_1{x}) is compact in the product topology and the family

u |u.nr-'(*!))

forms a nest then

x(n ^n)= n xu„).
\n6u / n€o>

Proof. Clearly

7r(n ^c n *■(,!,).

Suppose xGn„6a, 7r(4n). Then, for every wG&>, ̂ 4nr^7r_1{x} ?*0 and, since

a nest of nonvoid compact sets has a nonvoid intersection, we conclude

nne„4nn7r-1{x}=n„ew(4nn7r-1{x})^0i.e.,

*g*-( n ^n).
\»€l( /

3.2. Lemma. Suppose for every «G«, p(ESn, qG.S„, p^q, we have A(p)

nA(q)=0 and A(p)CA(p/(n-l)) for n>0. Then
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0     U   A(p) =   U     0  A(s/n).
new  j>e<s„ «eS'  new

Proof. Clearly

U    0 A(s/n) C 0     U   A(p).
«6S'  new new  j>es„

Suppose xGfinew Ud6S„ A(p). Then for every n£&i there exists a unique

P(n)ESn such that iGi(f(«)). Since A(p(n + l))CA(p(n + l)/n), we must

have £(ra + l)/w = £(w). Thus, there exists sES' such that s/n — p(n) for

wGw and xEftnew A(s/n).

3.3. Lemma. Suppose X is Hausdorff, DQX', f is continuous on D to X,

£ = {(x, y): yED and x =f(y)}, and E is the closure of E in the product topol-

ogy. Then
E H (X X D) = £.

Proof. Clearly ECEC\(XXD). If (x, y)EEC\(XXD), then yED and
(x, y) is the limit of points (x\ y'), where (x', y')EE, i.e., y'ED and x'=/(y').

Then the y' tend to y and the x' tend to x and, by continuity, also to/(y).

Since X is Hausdorff, we have x—f(y) and hence (x, y)EE.

3.4. Lemma. If X is Hausdorff, D is a Ktti(X') and f is continuous on D to

X and A =f(D) then there exist E and C(n, k), for nEco and kEco, such that:

(0 £=nne,ute„a»,i)axr.
(ii) A=tt(E).
(iii) C(n, ^r^Tr^jx} is compact in the product topology for every xEX.

(iv) ir(riy6n C(j, Sj))E$(X) for every sES' and nEco.

Proof. Let

D = fl    U d(n, k),
new   fc€tij

where d(n, k)EK(X') for every nEco and kEco, and

E = {(x,y):yED and x = f(y)}.

Thus, A =tt(£). Let £ be the closure of £ in the product topology and

C(n, k) = EC\ (XX d(n,k)).

Then by 3.3,

E = EC\(XXD)=r\    U C(n, k).
n€u   i6w

Since

C(n, k) n t-^x} = £H ({x} X d(n, k))

we see that (iii) is checked.
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Finally, let s(ES' and bGw. If x(EX—7r(nye„ C(j, sf)) then {xj Xa^O, So)

is compact and has no point in common with riySn C(j, Sy) which is closed in

the product topology. Hence there exists a neighborhood U of x such that

UXd(0, So) has no points in common with flyen C(j, Sj) and therefore

Ur\ir(0ien C(j, Sj)) =0. Thus, ir(flySn C(j, sy)) is closed in X.

4. Properties of Souslin sets.

4.1. Theorem. If, for every nCu, An is Souslin H then

U   An    and      f)  An are Souslin 77.
new new

Proof. See [4].

4.2. Theorem. If n is a Carathiodory outer measure and all the sets in 77

are p-measurable then the Souslin 77 sets are p-measurable.

Proof. See [6].

4.3. Theorem. If X is Hausdorff, A and B are Souslin K(X), and AC~\B
= 0 then there exist A' and B' such that: A' and B' are Borelian K(X), A C.A',

BCB',andAT\B' = 0.

Proof. Let

A =   U    D E(s/n),
»es'  new

B =   U    0 F(s/n),
<€5'   new

where, for s<ES' and wG«, E(s/n) and F(s/n) are compact in X. We also as-

sume, without loss of generality, that

E(s/(n + 1)) C E(s/n)    and    F(s/(n + 1)) C F(s/n).

For every «G« and p(ESn, let

§(/>) = \P'-P' G Sn+i and />'/w = />},

S'(/>) = {5: s G -S" and s/n = />},

E'(p) =    U      PI £(s/m),

P(^) =    U      0 F(s/m).
»sS (p) mew

We first check the following:

Statement. If »G«, pG5„, gG-S„, £'(p) and P'(p) cannot be separated

by Borelian K(X) sets, then for some p'GS(p) and a'GS(o), E'(p') and

P'(g') cannot be separated by Borelian K(X) sets.
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If the statement is false, then for every p'E$>(p) and ff'GS(a) there exist

Borelian K(X) sets a(p', q') and P(p', q') such that

E'(P') C a(p', q'),    F'(q') C Pip', <?'),    a(p', q') f\ P(p\ q>) - 0.

Let
a'=      U fl     a(P',q'),

p'eS(p)  q'eSiq)

P' =      U fl     p(p',q').
s'eS(«) p'eS(p)

Then, since S(p) and S(g) are countable, we see that a' and /3' are Borelian

2C(X),aTV3' = 0,

E'(p) =     U    £'(/>') C «',
p'eS(p)

£'(«?)  =     U     F'(q') C £',
8'eS(«)

in contradiction to the hypothesis of the statement.

Returning to the proof of the theorem, if A and B cannot be separated

by Borelian K(X) sets then there exist sES' and tES' such that, for every

nEco, E'(s/n) and F'(t/n) cannot be separated by Borelian K(X) sets. Let

£" =  fl E(s/n)    and   F" =  fl F(t/n).
n£u pGw

Then £" and £" are compact in X, E"CA, F"CB and hence £"H£" = 0.

Since X is Hausdorff, there exist open sets U and V such that E"(ZU,

F"CV, UC\V = 0. Then, for some nEco, E(s/n)CU and F(t/n)CV so that

E'(s/n) and F'(t/n) can be separated by compact sets, E(s/n) and F(t/n),

in contradiction to the above.

5. Relation between analytic and Souslin sets. The main theorem in this

section is 5.1. Theorem 5.3 was stated by Choquet [2], but we give a proof

here for the sake of completeness.

5.1. Theorem. If X is Hausdorff and A is analytic in X then A is Souslin

HX).

Proof. In view of Lemma 3.4, let A =ir(E) where

£ =  0    U C(w, k) C X X X',
n£u   kEto

for some topological space X', and, for every xEX, nEco, kEco, sES',

C(n, k)r\ir~1{x} is compact in the product topology and 7r(riye„ C(j, sf)) is

closed in X. For every sES„, let

A'(s) = T(riC(j,s])).
\yen /
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We shall show that

A =   U    0 A'(s/n).
«eS'  new

(i) Suppose xG-4. Then, for some y, (x, y)(EE i.e., there exists s£S'

such that, for every kGw,

(x, y) G C(n, sn).

Hence

(x, y) G  0  C(/, 5y)

i.e.

jfGifncy.jj)) = ̂ '(V«)
\ yen /

and

xG n A'(s/n).
n€u

(ii) Suppose, for some sG-S",

xG 0 A'(s/n).
n€w

Then, by Lemma 3.1,

x g n *( n co,5y)) = J n n c(j,*y)) =,/ n c(j,sy))
new    \ yen / \ new yen / \ yew /

Ct(E) = A.

5.2. Corollary. 7/X m Hausdorff, B is a KC(X), A C.B, and A is analytic

in X then A is Souslin K(X).

5.3. Corollary. If X is Hausdorff and A is analytic in X then A is

p-measurable for all measures p on X such that closed sets are p-measurable.

5.4. Theorem. If X is Hausdorff and A is Souslin K(X) then A is analytic

in X.

Proof. We order the elements of 5' as follows:

If s£S', t£S', s^t, letw be the first integer such that 5„7^/„and then set

s<t iff sn<t„. For pG5„, let

S(/>) = ji:iG5' and s/n = p\.

Then, in the topology on S' induced by the above ordering, S(p) is a TC(S').

If A is Souslin K(X), let
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A =   U    fl E(s/n)

where,  for every  sES'  and   «G«,  E(s/(n + l))CE(s/n)EK(X).  Let X'

— XXS', with the product topology,

P„=    U    (E(P)XS(P)),
j>esn

7) = n B„,
new

then D is a 7C,,s(^')i since Sn is countable. We shall show that A =7r(P).

(i) If xG-4 then for some s(ES':

xG (1 P(j/»)
new

and

(x, s) G  0 (£(*/«) X §(*/«)) C 7).
new

(ii) If xGtt(7?), then by Lemma 3.2

x G t ( fl    U (£(£) X §(/>))) = * (  U     fl  (E(s/n) X &(s/n)))
\ new pes,, / \ «eS' new /

C  U    fl E(s/n) = A.
»es'  new

5.5. Corollary. If X is Hausdorff, AQB, and B is a K„(X), then A is

analytic in X iff A is Souslin K(X).

6. Relation between analytic and Borelian sets. Throughout this section

we suppose:

(i) X and X' are Hausdorff spaces, X is compact.

(ii) For every CGTC(X') and C'GTC(X'), C-C is a K,(X').
(iii) For every wGw and £Gw, d(n, k) is compact in X' and for every

iVG«,

D =  D    U d(n, k) =   fl    U d(N + n, k).
new fcew new Aew

(iv) / is a continuous function on D to X.

The aim of this section is to prove 6.3 and the much stronger result 6.9.

The key points of the proof of 6.9 are contained in 6.2 and 6.7.

6.1. Definitions. Let

an(A) =   U    U (f(D r\AC\ d(n, k)) r\f(DC\Ar\ d(n, k') - d(n, k))),
k'eu *ew

a,'01)=      U     cti(A).
*e (w—n)
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6.2. Lemma. Let A be analytic in X', A ED, NEco. If B is analytic in X,

BEf(A) and Br\a'N(A)=0 then there exists B' such that B' is Borelian K(X)

andBEB'Qf(D).

Proof. Let

E={(x,y):yEA    and    x=f(y)\,

£ be the closure of £ in XXX' and, for nEco and kEco,

C(n, k) =Er\(XXd(N + n, k)).

Then C(n, k) is compact in XXX' and, by Lemma 3.3

f(D) D ir(S n (X X D)) = t( D    U C(n, k)\
\nGw   kEta /

Dw( U    fl C(n,sS).
\ tGS'   n£o> /

Let

d'(n, k) = d(n, k) - U <*(«,/)
St

and, for every nEco and pESn,

H(p)=f(AC\ r\d'(N + i,Pi)).

Then H(p) is analytic in X,

h(p)Ett( nc(j,p3)),
\ jen I

BEf(A)=f(AC\D)=  0    U   H(p).
nEco   pSSn

Moreover, since Br\a'N(A) =0, if p7±qESn we have

2? H 27(/>) r\ 22(a) = 0.

Then, by 4.3 and 5.5 and induction, for every nEco and pESn, there exists

P(p) such that: j3(£) is Borelian K(X); BC\H(p)CP(p); if p^qESn then

/3(^)n£3(a) = 0;

0(/O C £(/>/(«- 1))    and    0(/>)C>(nC(./,/>y)Y
\ yen /

Let

B' =  D     U  /3(£).
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Then B' is Borelian K(X) and

b = n   u (b r\ H(py c n   u b(p) = (by 3.2)
new »>es„ new j>es„

= u  n 8(s/n) c u  n *( n c(j, $,)) = (by 3.1)
«eS'   new jeS'   nSw        vj'Sn /

= »( u  n c(j,Sj))cf(D).
\ «eS' yew /

Thus, BQB'Cf(D).

6.3. Theorem. Under hypotheses (i) and (ii) af the top of this section, every

one-to-one continuous image of a K„s(X') in X is Borelian K(X).

6.4. Lemma. 7/^4 and B are Borelian K(X') then A —B is Borelian K(X').

Proof. Let 77 be a maximal family of Borelian K(X') sets containing

K(X') and such that if A EH and 73G77 then A -B is Borelian K(X'). We
easily check that 77 is closed under countable unions and intersections so that

77 consists of all Borelian K(X') sets.

6.5. Lemma. If A is Borelian K(X) then f~1(A) is Borelian K(X').

Proof. If A EK(X) then A is closed in X and f_1(A) is closed in D and

hence f_1(A) is a K„s(X'). Moreover, if, for every nEu, f~l(An) is Borelian

K(X') then

*-*( U A A =  U f~l(An) is Borelian K(X')
\ nGw / new

and

f~l( fl An J =  D f~l(An) is Borelian in K(X').

Thus, the set of all A such that/-1(.4) is Borelian K(X') contains K(X)

and is closed under countable unions and intersections.

6.6. Definition. Let P„ be the set of all finite families {A0, • • • , ATO_i},

for any mEu, such that for every iEm: AiEK(X'); A,C^(w,, ki) for some

n^niEu and &iG«; A,/>\Ay = 0 if i^jEm.

6.7. Lemma. Let 0<mEoi, {A0, • • • , Am-i}EFn and C = n,em f(DHiAi).

If there is no C such that C is Borelian K(X) and CEC'Ef(D) then for some

n', n<n'Eu> and, for every iEm, there exist A/ and A/' such that A,'WA/'

CA,-, {Ao', A0", • • • , A'm_i, A^'-iJGFn- and there is no C such that C is
Borelian K(X) and

n (f(Dr\M) r\f{Dr\ a-)) c c c/(d).
iem
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Proof. Suppose the lemma is false. Then, if n'ESm with w/ igw for every

iEm, kESm and k'ESm, there exists C such that C is Borelian K(X) and

(\(f(Dr\ A<H d(nl, ki)) r\f(Dr\Air\d(nl,k[) - d(n(,ki))) C C Ef(D).
iem

Hence, recalling definition 6.1, since Sm is countable, there exists C" such

that C" is Borelian K(X) and

0 a„-.(A,)CC"C/(2>).
i€ro

Let

B0= n «n'(A<).

If Sm= {n': n'ESm and n< ^n}, we see that 5m is countable and

B0 =    U     0 «n; (Af)

so that there exists B0' such that B0' is Borelian 2C(X) and B0CB0' Cf(D).

Let

29,' = f~\Bi).

Then, by 6.5, D0' is Borelian K(X') and, by 6.4, (PHA,—Z?0') is also Borelian

£(X'). Let

Co' = n/(2?n A, - DS).
•em

Then Co is analytic in X, Co' =C—Bo, and

n a„'(A, - Do') C  0 an'(Ai) - 2J0'  = 0.
iem iem

For every jEm, let

P(j) = Cin    0    «„'(A,— 2?0').
•em—I/)

Then P(j) is analytic in X and P(j)r\an'(Ay — 2>0') =0. Hence, by Theorem

6.2, there exists /3'(j) such that P'(j) is Borelian K(X) and

P(j) C /8'(i) C f(D).

Let

B{ =  U /3'(i),
j'Gm

2?/ = Po' yjf-KBi),

C{ = flpAii- A').
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Then B{ is Borelian K(X), Ci is analytic in X, Ci =C—Bi —73/, and for

every jEm,

fl     «„'(A,- 7?,') = 0.
iem-ly!

Next, lor jiEnt and j2Em, let

B(ji,J2) = CiC\       n       an(A-Z>i).
>em—Iji.yjl

Again, B(ji, j2) is analytic in X and

B(ji,jt)nal(Ah- Dl) = 0.

Hence, by 6.2, there exists B'(ji,j2) such that j3'(ji, /2) is Borelian K(X) and

B(juJ2)C8'(j1,J2)Cf(D).

Let

Bi =   U     U  /3'(/i,/2),
yiem yjem

Dl = Dl U/-»(£,'),

a = n/(i?na,- t)2').

Then P2' is Borelian 7C(X), C2' is analytic in X, Ci =C-Bi -Bi -Bi and

for every jiEm and j2Em,

n       a.'(A<- 2?/) =0.
•€m—Iii,i]l

Proceeding this way, we see by induction that, for every iEm, there

exists Bi such that Bi is Borelian K(X) and

CC U Bi Cf(D)
i€m

in contradiction to the hypothesis of the lemma.

6.8. Lemma. If mEu, for every iEm, d is compact in X and n,-em C, = 0

then, for every iEm, there exists Ai such that Ai is open, dEAi and

fl  Ai = 0.
t'em

Proof. We use induction. The lemma is clearly true for m = 2. Suppose it

is true for a given mSi2 and let Ci be compact in X for every iE(m + l) and

fl     d = 0.
.€ (nt+1)

Let
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C    —   Cm 11 Cm-1.

Then

c r\ n d = o,
»em-i

so that by the induction hypothesis there exist open sets A' and Ai, for every

iEm — 1, such that C'EA', dQAt and

A'C\    D    ^, = 0.
• Gm—1

Since (Cm — A')C\(Cm-i — A') =0, let A'm and -4'm-i be open,

Cm ^4     C_  Jim , Cm_l A    C_  ^im-lj "m '    I  "m-1   =   "•

Let

.4m = ^' \J Am   and    ^4m_i = A' W 4m_i.

Then, for every t'G(w + l), ^4,- is open, CiC^i and

n   Ai = (a'\j Ai)r\ (a'yj A'm-i)r\ n Ai=A'r\ n x, = o.
ie (m+l) »€m—1 iem—1

6.9. Theorem. Under hypotheses (i) awo" (ii) at the top of this section, every

countable-to-one continuous image of a K„s(X') in X is Borelian K(X).

Proof. Suppose the theorem is false. Let

Sn = {p: p E Sn and, for every i E n, pi = 0 or pi = 1},

S' = {s: s E S' and, for every i E co, Si — 0 or Si = l}.

In view of Lemma 6.7, using induction we see that for every wG« and pE§>n

there exist 7V„Gw and A(p) such that: Nn<Nn+i, A(p)E&(p/(n-l)) for

w>0,

U   {HP)) EFNn,
j>eS„

and there is no Cn such that C„ is Borelian K(X) and

fl f(DC\A(p))CCnCf(D).
peS„

In particular,

(I) n f(D^A(p))*0.
j>eS„

For every sG§\ let
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A(s) =  fl  Hs/n)
nEa

so that A(s) is compact in X' and A(s)QD.

We now check the following

Statement. If 0<mEco and, for every iEm, s(i)GS' then

n /(A(s«>)) * 0.
i€m

If the statement is false, since /(A(s(i))) is compact in X, by Lemma 6.7,

there exist open sets At such that /(A(s(i)))C.4i and Chem-d < = 0. Let AI

=f~l(Ai). Then for some n'Eco we have, for every iEm,

Dr\A(s^/n') C AI,

hence

f(DC\A(s^/n')) C Ai

and

n f(Dr\A(p)) c n /(2»n a^^/w')) c n a( = o
peS„' »em iem

in contradiction to (I) above.

Returning to the proof of the theorem, we conclude from the above

Statement that

n /(*(,)) * o.
,eS'

Moreover, if s&', tES>' and s^t then A(s)C\A(t) =0. Thus, if

y€   f\/(A(5)),
• eS

since S' is noncountable, we conclude that DC\f~i{y\   is noncountable, in

contradiction to the hypothesis.

6.10. Corollary. Suppose X' is Hausdorff and, for every CEK(X') and

C'EK(X'), C-C is a K„(X'); D is a Kai(X'); Y is Hausdorff and the counta-

ble union of compact sets. Iff is continuous on D to Y and, for every y, /_1 {y}

is countable then f(D) is Borelian K(Y).
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