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A Hilbert space, whose elements are entire functions, is of especial inter-

est if it satisfies three axioms.

(HI) Whenever F(z) is in the Hilbert space and w is a nonreal zero of

F(z), the function F(z)(z — w)/(z — w) is in the Hilbert space and has the same

norm as F(z).

(H2) Whenever wis a nonreal complex number, the linear functional

defined on the Hilbert space by F(z)—>F(w), which gives each function in the

Hilbert space its value at w, is continuous.

(H3) Whenever F(z) is in the Hilbert space, F*(z) = F(z) is in the Hilbert

space and has the same norm as F(z).

If E(z) is an entire function such that \E(z)\ <\E(z)\ for y>0, the set

3C(£) of entire functions F(z) such that

\\F\\l=f \F(t)\2\E(t)\-2dl< oo

and

. .       ..   ... |£(z)|2- |£(z)l2
\F(z)\2^\\F\\El    "'       '    Wl

2m (z — z)

is a Hilbert space of entire functions which satisfies HI, H2, and H3. By

the theorem of [7], every nonzero Hilbert space of entire functions, which

satisfies these axioms, is equal isometrically to some such K.(E), where the

function E(z) can be chosen in various ways.

Theorem I. Let Ea(z) = Ca(z)—iSa(z) be an entire function such that

| Ea(z) | < | Ea(z) | for y > 0, where Ca(z) and Sa(z) are entire functions which are

real for real z. Let Co, So, G, G be real numbers such that GG+GG = 1- Let

Eb(z) = Ch(z) — iSb(z) where Cb(z) = Ca(z)C0 — Sa(z)Si and Sb(z) = Ca(z)So

+Sa(z)Ci. Then, Eb(z) is an entire function such that |£i,(z)| < | Eb(z) | for

y>0, and X(Ea) = 5C(Eb) isometrically. If E(z) is an entire function such that

\E(z)\ <|E(z)| for y>0 and 3C(£0)=3C(E) isometrically, then E(z)=Eb(z)

for some such choice of Co, So, G> G-

We use the word "Hilbert space," as Halmos [8], to mean "complete inner

product space," without any restriction on dimension. We use triangular

brackets for the Hilbert space inner product, often with the letter t used like
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a dummy variable of integration within the brackets.  For each complex

number w,

E(w)E(z) - E(w)E*(z)
(1) K(w, z) =-—-

2m (w — z)

is the unique element of 3C(7s) such that

(2) F(w) = (F(t), K(w, t))E

for each F(z) in X(£).

By Lemma 7 of [7], there is at most one real number a modulo w such

that eiaE(z)-e-iaE*(z) belongs to SC(E).

Theorem II. Let E(z) be an entire function such that \E(z)\ <|£(z)| for

y>0, and let G(z) belong to 3C(£). A necessary and sufficient condition that the

orthogonal complement of G(z) in K(E) be, in the norm of 3C(7£), a Hilbert

space of entire functions satisfying (HI), (H2), and (H3) and that for each

real number w there is an element F(z) of 5C(E) orthogonal to G(z) such that

F(w)/E(w)^0 is that G(z) be a constant multiple of eiaE(z) — e~iaE*(z) for

some real number a and that G(z) not span 3C(7£).

Certain Hilbert spaces, containing only entire functions of exponential

type, are of especial interest.

Theorem III. Let E(z) be an entire function such that \E(z)\ <\E(z)\ for

y>0, and let w be a complex number. A necessary and sufficient condition that

[F(z) — F(w)]/(z — w) belong to 5C(E) whenever F(z) belongs to 3C(£) is that

E(z) have exponential type, and

r*\ C log+ Im I j, ^
(3) I   -dt < oo

J        1 + t2

and

(4) f (l + t2)-*\E(t)\-2dt< ».

In this special class of Hilbert spaces, certain constructions are possible

which are relevant for the later Theorems VI and VII.

Theorem IV. Let E0(z) = Co(z) —iS0(z) be an entire function such that

| E0(z) I < | £0(z) | for y >0 where C0(z) and S0(z) are entire functions which are

real for real z. A necessary and sufficient condition that there exist an entire func-

tion Ei(z) = Ci(z)—iSi(z) such that |£i(z)| <|Ei(z)| for y>0, where G(z) and

Si(z) are entire functions which are real for real z and

(5) C0(z)Ci(z) + S0(z)S1(z) = 1

and
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(6) Re [Co(z)C1(z) + S0(z)Si(z)] &; 1,

is that Eo(z) have exponential type and (3) and (4) hold for E(z)=EB(z). In

this case, £i(z) can be chosen so that Ei(iy) =o(yE0(iy)) as y—>+ oo, and then

Ei(z) is uniquely determined within an added imaginary multiple of Eo(z).

The discovery in [7] of Hilbert spaces of entire functions satisfying our

axioms came as a result of the formula of [6] for mean squares of entire

functions. In case the entire functions are polynomials, these spaces are

implicit in the discussions of the Hamburger moment problem by Shohat and

Tamarkin [10] and Stone [ll]. A comparison of our results with this earlier

work led us to conjecture the next theorem.

Theorem V.A. Let E(z) be an entire function such that \ E(z) | < | E(z) I for

y>0. Let n be a non-negative measure on the Borel sets of the real line. A neces-

sary and sufficient condition that

IM|i=/ \F(t)\2\E(t)\-2d„(t)

for every F(z) in 3C(£) is that

y_ r dp(t) _ ^E(z) + E*(z)A(z)

TrJ(t-x)2 + y2        C E(z) - E*(z)A(z)

for y>0, where A(z) is defined and analytic for y>0 and | A (z) | ^ 1.

Theorem V.B. Let E(z) be an entire function such that \ E(z) | < [ E(z) | for

y > 0. Let p. be a non-negative measure on the Borel sets of the real line and let

a>0 be a number such that

y   r         dp(t)                             E(z) + E*(z)A(z)
— I-h ay = Re-
it J    (t - x)2 + y2        ' E(z) - E*(z)A(z)

for y>0, where A(z) is defined and analytic for y>0 and \A(z)\ jgl. Then

there is some real number a. (unique modulo ir) such that eiaE(z) — e~iaE*(z)

belongs to 3C(£) and there is some nonzero constant multiple G(z) of this function

such that

\\F\\E = j | F(t) |21 E(t) rVfl + I (F, G)E I2

for every F(z) in 3C(£).

Theorem VI. Let £o(z) be an entire function of exponential type such that

|£0(z)| <|£o(z)| for y>0 and (3) and (4) hold for E(z)=E0(z). We suppose

that there is no real number a such that eiaEo(z)—e~iaE*(z) belongs to SC(E0).

Let Ei(z) correspond to E0(z) as in Theorem IV, so that (5) and (6) hold and
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Ei(iy) =o(yEo(iy)) as y—>+ oo. Let n be a non-negative measure on the Borel

sets of the real line. A necessary and sufficient condition ||£|||0 = /| F(t)\ 2dp.(t)

for every F(z) in X(E0) is that

y   C dp(t) E!(z) + Ei*(z)A(z)
(8) — I-= Re-

x J    (I - x)2 + y2 Eo(z) - Eo*(z)A(z)

for y > 0, where A (z) is defined and analytic for y > 0 and \ A (z) | ^ 1.

These formulas for mean squares of entire functions will be used to find

conditions that one Hilbert space of entire functions be contained isometri-

cally in another.

Theorem VII. Let Ea(z) = Ca(z)—iSa(z) be an entire function such that

I Ea(z) | < | Ea(z) | for y >0, where Ca(z) and Sa(z) are entire functions which are

real for real z. Let E0(z) = Co(z) —iS0(z) and Ei(z) = G(z) — iSi(z) be entire

functions such that |£0(z)| ^ | £0(z) | and |£i(z)| ^|£i(z)| for y>0, where

CQ(z), So(z), G(z), Si(z) are entire functions which are real for real z and satisfy

(5) and (6). We suppose that if there is some real number a such that eiaEa(z)

— e~iaE*(z) belongs to 3C(£„), then

(9) Ei(iy) cos a — iEo(iy) sin a = o{y[E0(iy) cos a — iEi(iy) sin a]}

as y—>+ «>. Let Eb(z) = Cb(z) —iSb(z) where

G(z) = Ca(z)C0(z) - Sa(z)Si(z),

Sb(z) = Ca(z)S0(z) +Sa(z)Ci(z).

Then, \Eb(z)\ <|£i,(z)| for y>0 and 3C(Ea) is contained isometrically in

SC(Eb). Furthermore, 3C(£„) is a separating subspace of 3C(Eb) in the sense that

for each real w, there is some F(z) in 3C(£„) such that F(w)/Eb(w) 9^0.

Theorem VIII. Let Ea(z) and E(z) be entire functions such that \Ea(z) \

< | Ea(z) | and \ E(z) \ < | £(z) | for y>0. If 3C(£„) is contained isometrically in

3C(£) and is a separating subspace of 3C(£), then E(z) —Eb(z) for some choice

of Eo(z) and £i(z) as in Theorem VII.

Theorem IX. In the situation of Theorem VII, we suppose that there is no

real number P such that e^Eb(z)—e"i&E*(z) belongs to 3C(£&). A necessary and

sufficient condition that

IMf*»=/ \F(l)\2\Ea(t)\~W(t)

for every F(z) in SQ.(Eb) is that

y   C dp(t) Ec(z)+E*(z)A(z)
(11) — I   -= Re-

x J    (t - x)2 + y2 Eb(z) - Eb*(z)A(z)
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for y>0, where Ec(z) = Cc(z)—iSc(z) and

C,(z) = Ca(z)Ci(z) - Sa(z)So(z),

Sc(z) = Ca(z)S1(z) + Sa(z)C0(z)

and A (z) is defined and analytic for y>0 and \ A (z) | ^ 1.

The discussion of Sturm-Liouville differential equations by Stone [ll]

and of the Hamburger moment problem by Shohat and Tamarkin [10] and

Stone [ll] leads to the situation of Theorem VII.

Theorem X.A. Let Co, S0, G, Si be real numbers such that C0Ci+505i = 1.

Let a(t), b(t), c(t) be locally integrable real-valued functions of t^O such that

a(t) 2:0, c(t) StO, and b2(t) ^a(t)c(t). For each complex z, there exist unique ab-

solutely continuous functions C0(t, z), So(t, z), Ci(t, z), Si(t, z) of t^O such that

C0(0, z) = Co, S0(0, z) = So, Ci(0, z) = Ci, Si(0, z) = Si and

Co' (t, z) = - za(t)S0(t, z) - zb(t)C0(t, z),

So' (t, z) =      zb(t)S0(t, z) + zc(t)C0(l, z),

Ci (l, z) = - zc(t)Si(t, z) + zb(t)Ci(t, z),

Si (t, z) = - zb(t)S!(l, z) + za(l)Ci(t, z)

a.e. for t^O. For each t^O, Co(t, z), So(t, z), Ci(t, z), Si(t, z) are entire functions

which are real for real z and satisfy (5) and (6). If Eo(t, z) = Co(t, z)—iSo(t, z)

and Ei(t, z) = Ci(t, z)—iSi(t, z), then \E0(t, z)\ ^\Eo(t, z)\ and \Ei(t, z)\

^\Ei(t, z)\ for y>0.

Theorem X.B. Let Co, So, Ci, Si be real numbers such that CoCi-\-SoSi = 1.

Let an, bn, cn be real numbers defined for n = 0, 1, 2, • ■ • , such that a„S:0,

Cns^O, and b2n = ancn. Let Co(n, z), So(n, z), Ci(n, z), Si(n, z) be the polynomials

in z defined inductively by

C0(n, z) = Co — z E»<, a„So(m, z) — z 22„<n bmC0(m, z),

So(n, Z)   =  So   —   Z X)m<n 6»So(w, z)   +  Z Xlm<n  CmCo(m, z),
(14)

Ci(n, z) = Ci — z ^m<„ cJS^m, z) + z 2Zm<„ bmCi(m, z),

Sx(n, z) = Si — z 2Zm<„ bmSi(m, z) + z ^m<„ ad(m, z).

Then for each n, Co(n, z), S0(n, z), Ci(n, z), Si(n, z) are entire functions which are

real for real z and satisfy (5) and (6). If E0(n, z) = Co(n, z)—iS0(n, z) and

Ei(n, z) = Ci(n, z)—iSi(n, z), then \Eo(n, z)\ ^|£o(w, z)\ and \Ei(n, z)\

^ \Ei(n, z)\ for y>0.

Our proofs use the Poisson representation of a function positive and har-

monic in a half plane, discussed by Loomis and Widder [9]. We use a lemma

on linear fractional transformations.
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Lemma 1. A necessary and sufficient condition that the linear fractional

transformation

Az + B
w =-, (AD - BC ^ 0),

Cz+ D

map the upper half plane i(z — z) 2:0 into the upper half plane i(w — w) ^0 is

thati(AC-AC)^0,i(BD-BD)^0,andAD-BC + AD-BC^2\AD-BC\.

The basic Theorem V results from a study of closed linear isometric trans-

formations in Hilbert space. Given a closed linear isometric transformation

in a Hilbert space, we study the unitary extensions in a possibly larger Hilbert

space. The next three lemmas set notation.

Lemma 2. Let 3C be a Hilbert space and let U be a unitary transformation

in 3C, and let & be a closed subspace of 3C. For each complex number w in the

unit disk \w\ <1, there exists a unique bounded operator B(w) on 6 such that

/l + wB(w)        \      /l + wU*       \
(15) (- a, c ) = (- a, c )

\l - wB(w)       /     \l - wU*       /

for a and c in Q. The operator valued function B(z) is defined and analytic for

\z\ <1 and ||/3(z)[|gl.

In the statement of Lemma 2, we use a star for the adjoint and the norm

symbol for the operator norm.

Lemma 3. Let C be a Hilbert space. For each i—1, 2, let 3C,- be a Hilbert

space containing <5, let Ui be a unitary transformation in 3C,-, and let 3,(z) be

defined as in Lemma 2. Suppose that the smallest closed subspace of 3C<, which

contains Q and reduces Ui, is all of 3C<. If Bi(z) =B2(z), there exists a unique

linear isometric transformation T of 3Ci onto 3C2, which is the identity on C, and

such that for f in 3Ci, TUif= U2Tf.

Lemma 4. Let Q be a Hilbert space and let B (z) be an operator valued func-

tion, defined and analytic for \z\ <1, such that \\B(z)\\^1. Then, there exists

a Hilbert space 3C(J5) containing G and a unitary transformation U in 3C(B)

such that (15) holds for a and c in 6 and \w\ <1, and such that the smallest

closed subspace of 3C(B), which contains & and reduces U, is all of 3C(B).

In the situation of Lemma 4, we may construct a closed linear isometric

transformation 5 in 3C(B) by restricting U to elements / of 5C(B) such that

Uf is orthogonal to 6. Then, 6 is the orthogonal complement of the range

of 51. The transformation U is a unitary extension of 5 in 3C(B). We will look

at unitary extensions of 5 in a Hilbert space containing 5C(B).

Theorem XI. Let C be a Hilbert space and let Bi(z) and B2(z) be operator

valued functions, defined and analytic for \z\ < 1, such that ||5,(z)|| ^1 (*= 1, 2).

A necessary condition that there exist a linear isometric transformation T of
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3C(732) into 30(Bi), which is the identity on Q, and such that UiTf is orthogonal

to G and UiTf = TU2f, whenever f is in 3C(732) and U2f is orthogonal to 6, is that

Bi(z) — 732(z)733(z), for some operator valued function 733(z), defined and analytic

for \z\ <1, such that ||733(z)|| SI.

We were unable to show that the necessary condition of Theorem XI is,

in general, sufficient, but it is in a special case. Let 6(z) be the Hilbert space

of all power series f(z)=2~2,anzn with coefficients o„ in 6 such that ||/||2

= S||fln||2 < 0° • The index of summation ranges in the non-negative integers.

Theorem XII. If, in the situation of Theorem XI, 732(z)c, z732(z)c,

z2732(z)c, • • • , is an orthonormal set in Q(z) for every unit vector c in C, the

necessary condition of Theorem XI is also sufficient.

Lemma 5. Let C be a Hilbert space and letf(z) = 2~2a„zn be in Q(z). Then, for

\w < 1, the series f(w) = 2~2,anw" convergesin the metric of(3 and (1— \w\ 2)||/(w)||2

SS|,/||2. The formula

(16) f(w) = (f(t), ——)
\        1 — tw/

is valid in the sense that for each c in C, (1— zw)~1c= 2^2wnczn is in Q(z) and

(f(w), c) = (f(t), (l—tw)~1c) with the inner product taken in Q(z).

Lemma 5 allows us to think of our power series as C-valued functions de-

fined and analytic in the unit disk \z\ <1. We use the symbol/(z) ambigu-

ously for the formal power series or for the analytic function.

Lemma 6. Let Q be a Hilbert space and let SO be a closed subspace of C(z)

containing & and with the property thatf(z)/z belongs to 3C whenever f(z) belongs

to SO and /(0) = 0. Then, the orthogonal complement 3TC of SO in Q(z) is orthogonal

to 6 and has the property that zg(z) belongs to 911 whenever g(z) belongs to 9TL

Lemma 7. Let 6 be a Hilbert space and let 9TC be a closed subspace of Q(z)

orthogonal to 6 and with the property that zg(z) belongs to 3TC whenever g(z) be-

longs to yn. Then, the orthogonal complement 3C of 911 in Q(z) is a closed subspace

of C(z) containing C and with the property that f(z)/z belongs to 3C whenever

f(z) belongs to 3C and /(0) = 0.

Lemma 8. Let 6 be a Hilbert space and let 30. and 9TI be as in Lemmas 6

and 7. A necessary and sufficient condition that an element f(z) of Q(z) belong

to 3C and be orthogonal to every element g(z) of 3C such that zg(z) belongs to SO

is that zf(z) belong to 3TC and be orthogonal to every series zh(z) where h(z) be-

longs to 9TL

By an operator, we mean a bounded linear transformation of 6 into itself.

Lemma 9. Let 6 be a Hilbert space and let B(z) = ^73„zn be a formal power

series with operator coefficients such that B(z)c, zB(z)c, z2B(z)c, • • ■ , is an
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orthonormal set in B(z) for every unit vector c in G. If f(z) is in Q(z), the formal

power series product g(z) =B(z)f(z) is in Q(z) and \\g\\ =||/||.

Lemma 10. In the situation of Lemma 9, let 3U(B) be the set of formal power

series of the form g(z)=zB(z)f(z) where f(z) ranges in &(z). Then, 311(5) is a

closed subspace of C(z) orthogonal to 6 and with the property that zg(z) belongs

to 311(23) whenever g(z) belongs to 3Tl(JB). An element g(z) of 3TC(23) is orthogonal

to every series zh(z), where h(z) ranges in *3K(B), if and only if g(z) =zB(z)cfor

some c in 6, and then ||g|| =||c||. The series B(w)= 2^B„wn converges in the

operator norm for \w\ <1 and \\B(w)\\ ^1. If f(z) is in 311(23),

/        twB(t)B*(w)\
(17) f(w) = (f(t), )

\ 1 — tw    /

for \w\ <1. The interpretation is that for each c in Q, zw(l—zw)~1B(z)B*(w)c

is in 311(B) and (f(w), c) = (f(t), tw(l-twyiB(t)B*(w)c).

Lemma 11. In the situation of Lemmas 9 and 10, let 5Q.(B) be the orthogonal

complement of *3K(B) in Q(z). Then, X(B) is a closed subspace of Q(z) containing

6 and with the property that f(z)/z belongs to 3C(B) whenever f(z) belongs to

X.(B) and/(0) =0. For each c in C, B(z)c belongs to 3C(23) and is orthogonal to

every element g(z) of 3C(2?) such that zg(z) belongs to 3C(B). An element f(z) of

3C(B) which is orthogonal to every element g(z) of X(B) such that zg(z) belongs to

3C(B) is of the form f(z) =B(z)cfor some unique c in 6, and \\f\\ =||e||. The trans-

formation U in 3C(B), whose adjoint is defined by

(18) U*f(z) = (f(z) - f(0))/z + B(z)f(0)

is unitary. If f(z) is in 5C(B), then

/        1 - twB(t)B*(w)\
(19) f(w) = (f{t),- )

\ 1 — tw /

for \w\ <1. The interpretation is that for each c in Q,

(1 — zw)~1c — zw(l — zw)~lB(z)B*(w)c

is in 3C(B) and

(f(w), c) = (f(t), (1 - tw)-lc - tw(\ - lw)-lB(t)B*(w)c).

The 3C(B) notation of Lemma 11 is reconciled with the notation of Lemma

4 by the next lemma.

Lemma 12. In the situation of Lemmas 9, 10, and 11, we have for \ w\ <1

and a, c in C,

U* zB(z) - wB(w) 1
(20) -a = —-—-— a

1 — wU* z — w 1 — wB(w)

and (15) holds.
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Proof of Theorem I. The hypotheses imply that

Eb(w)Eb(z) - Eb(w)Eb*(z)      Eg(w)Ea(z) - Ea(w)E*(z)

2ti(w — z) 2iri(w — z)

On choosing w = z, it follows that |£&(z)| <|£6(z)| for y>0 since |£a(z)|

< | £a(z) | for y >0 by hypothesis. So 3C(£&) is defined and Kb(w, z) =Ka(w, z).

Because of the orthogonal sets in the proof of the theorem of [7], S0(Ea) and

S0(Eb) are isometrically equal.

On the other hand, if 3C(£)=3C(£a) isometrically, K(w, z)=Ka(w, z) or

in other words S(w)C(z)—C(w)S(z)=Sa(w)Ca(z)—Ca(w)Sa(z). By the dis-

cussion of [7], C(z)S'(z)-S(z)C'(z)>0 when z is real and £(z)r*0. So C(z)

and S(z) are linearly independent. So there exist unique complex numbers

Co, So, Ci, Si such that C(z) = Ca(z)C0 — Sa(z)Si and S(z) = Ca(z)S0+Sa(z)Ci.

Since C(z), S(z), Ca(z), Sa(z) are real for real z, Co, So, C\, Si are all real. Sub-

stitution in (1) yields K(w, z) = (CoCi+S0Si)Ka(w, z) and hence CoCi+S0Si
= 1.

Proof of Theorem II, the sufficiency. With this choice of G(z), we have

the identity G*(w)G(z)=G(w)G*(z). It follows that the orthogonal comple-

ment of G(z) satisfies H3. The axiom H2 follows from the properties of 3C(£).

To verify HI, note from (1) that

K(w, z)G(w) — K(w, w)G(z) = [K(w, z)G(w) — K(w, w)G(z)](z — w)/(z — w).

Let f(z) be any element of 3C(£) orthogonal to G(z) and with a nonreal zero

w. To verify HI, we need only show that F(z)(z — w) / (z — w) is orthogonal to

G(z). As a result of the axiom HI for 30(E) and the last identity,

(F(t)(t - w)/(t - w), K(w, t)G(w) - K(w, w)G(t))

= (F(l), K(w, t)G(w) - K(w, w)G(t))

with the inner product taken in 30(E). Since w is a zero of F(z) and w is a zero

of F(z)(z — w)/(z — w) and K(w, w) =K(w, w) >0, the expansion of these inner

products yields

(F(l)(t - w)/(t - w), G(l)) = (F(t), G(t)) = 0,

which verifies HI.

Let w be any fixed real number and choose F(z) = K(w, z)E~1(w)

-G(w)£-1(w)G(z)||G||-2, which belongs to 30(E) because of (1), and is

orthogonal to G(z) because of (2). By (2), ||F||2 = £(w)/£(w)^0 unless F(z)

vanishes identically. It is seen by (1) that this will not happen unless G(z)

spans 50(E), a case excluded by hypothesis.

Proof of Theorem II, the necessity. We claim first of all that G*(w)G(z)

= G(w)G*(z). For (G*, G)G(z)-(G, G)G*(z) is in 3C(£) and is orthogonal to

G(z). Since the orthogonal complement of G(z) satisfies (H3) by hypothesis,

this function is orthogonal to G*(z), and hence by linearity, to itself. There-



268 LOUIS DE BRANGES [August

fore, it is identically zero and the stated identity follows.

We claim next that for each nonreal complex number w,

[K(w, z)G(w)—K(w, w)G(z)](z — w)/(z — w) is a constant multiple of

K(w, z)G(w)—K(w, w)G(z). For let F(z) be any element of 3C(£) orthogonal

to G(z) and such that F(w)=0. Then F(z)(z — w)/(z — w) is orthogonal to

G(z) by our hypotheses, and it vanishes at w. So

{[K(w, z)G(w) - K(w, w)G(z)](z - w)/(z - w), F(z))

= (K(w, z)G(w) - K(w, w)G(z), F(z)(z - w)/(z - w)) = 0.

It follows that [K(w, z)G(w)—K(w, w)G(z)](z — w)/(z — w) depends linearly

on K(w, z) and G(z). Since K(w, z)G(w)—K(w, w)G(z) is, within a constant

factor, the only linear combination of these two functions which vanishes at

w, there is some number A =A(w) such that

[K(w,z)G(w) - K(w,w)G(z)](z - w)/(z - w) = A[K(w,z)G(w) - K(w,w)G(z)]

as claimed.

From the last formula and (1) we find that there is a linear function L(z)

and complex constants, a and b, not both zero, such that L(z)G(z) =a£(z)

+ &£*(z). If L(z) is not a constant, it has a zero w and G(z) is a constant

multiple of

[E(w)E(z) - E(w)E*(z)]/(w - z) = 2iriK(w, z),

if w is not a real zero of £(z), or G(z) is a constant multiple of

[E(w)E(z) - E(w)E*(z)]/[E(w)(w - z)] = 2iriK(w, z)/E(w),

if w is a real zero of £(z). Because of (2), our hypotheses rule out both of these

possibilities. Therefore, L(z) is a constant. The necessity now follows from

the fact that a and b must be chosen so that G*(w)G(z) =G(w)G*(z).

Proof of Theorem III, the necessity. By hypothesis, [F(z) — F(w) ]/(z — w)

belongs to X(£) whenever F(z) belongs to 3C(£). There must be some choice

of F(z) such that F(w) ?^0, for otherwise we can show inductively that

F(z)/(z — w)n belongs to X(£) for every w = 0, 1, 2, ■ • • , and hence F(z) is

zero by analyticity. If F(z) is chosen so that F(w) 5^0, then by the definition

of 3C(£)

A =  f | F(t) - F(w) \2\ t - w\~2\ E(t) \~2dt < oo,

B=f \F(l)\2\E(t)\-2dt< =c,

| F(z) - F(w) \2\ z - w\~2 ^ A[\ E(z) \2 -  | £(z) |2]/[2xi(z - z)],

| F(z) \2£B[\ E(z) \2 - | E(z) |2]/[2xi(z - z)].
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Since A and B are finite, (4) follows, and y\ (z+i)E(z) | _2 is bounded above for

y>0. By approximating from large semi-circles, it is easy to establish

Cauchy's formula

(z + i)-1£-1(z) = (2«)-J f (t+ ly'E-KtKt - z)~Ht

in the upper half plane y>0. Since for y>0,

(z + i)-1 = (2xi)-! f (t + i)~l(t - z)-'dl

for the same reason,

r E(z) - E(t)
I   —- (t + i)-lE-i(t)dt = 0

J z — t

for y>0, and hence for all complex z since the left hand side is an entire

function of z. Elementary estimates from this formula, similar to those for

the lemma of [2], show that E(z) has exponential type and that (3) holds.

Proof of Theorem III, the sufficiency. Let F(z) be in 3C(£) and let

G(z) = [F(z)-F(w)]/(z-w). Since F(z) belongs to 3C(£), /| F(t)\ 2\E(t)\~2dt

< oo, and since (4) holds, /| G(t) | 2| E(t) \ ~2dt < <x>. Since E(z) is of exponential

type by hypothesis, elementary estimates from the definition of 3C(£) show

that F(z) and hence G(z) is of exponential type. Since (3) holds, we see sim-

ilarly that /(l+t2)-1 log+ | G(t)|dt< oo. It follows from (3) and from Boas,

[1, pp. 85 and 93] that f(l+t2)-1 {loglG^E'1 (t)\\dt< oo and for some num-
ber o^O,

i     \rt  j--m^    , -M   < y  f   log 1 G(t)E-\t) \ dt
log | G(x + iy)E~\x + ly) \   ^ ay-\-I-—-—-—

it J (t — x)2 + y2

for y>0. Since F(z) belongs to 3C(£),

lim sup y~l log | F^y^E-1^) \   ^ 0.

By Boas [l, p. 76], we have as a general property of entire functions of ex-

ponential type,

lim sup | y |_1 log | E(iy) \   + lim sup y_1 log | E(iy) j   ^ 0.
J/—*— ao y—»-f- eo

Since |£(z)| < [£(z)| for y>0 by hypothesis, the second limit cannot be

negative. It follows that we can choose a = 0. Since for r>0, r2 is a convex

function of log r, it follows by Jensen's inequality, as in Boas [l, p. 100],

that
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. y   r   \G(t)\2\E(t)\-2dt

|G(* + iy)|2|£(* + *y)h=g-f        ,,      '        ' ,
it J (I — x)2 + y2

for y>0, and hence

7ry|G(z)|2|£(z)|-2^J \G(t)\2\E(t)\~2dt

is bounded above for y>0. It is now easy to establish the Cauchy formula

G(z)E~1(z) = (2m)"1 f G(f)Erl(0{t - z)~*dt

for y>0, and hence

0 = (2m)-1 f G(t)Er\t)(t - z)~ldt

for y<0. A similar argument shows that these last two formulas hold with

G(z) replaced by G*(z). It follows that G(z) =fG(t)K(z, t) \ E(t) | ~2dt for y >0

and for y <0, and hence by continuity for all complex z. One now sees by the

Schwarz inequality that G(z) belongs to 3C(£).

Proof of Lemma 1. We can write i(w — w)=[P(x)+Q(y)]\Cz+D\~2

where P(x)=i(AC-AC)x2+i(AD-BC-AD+BC)x+i(BD-BD) and Q(y)
= i(AC-AC)y2 + (AD-BC+AD-BC)y. Since

ii(AC - AC)i(BD - BD) - \ AD - BC - AD + BC |2

=  | AD- BC+ AD-BC\2 - 4] AD- BC\2,

the sufficiency follows, for the hypotheses imply that P(x)*±0 for all real x

and Q(y) 2:0 for all y 2:0. For the necessity, we must have P(x) 2:0 for all real

x, since we can choose y = 0, and hence i(AC—AC) 2:0, i(BD—BD)^0, and

|ZD-73C-M75-73C| 2:2|4P-73C|. These conditions in themselves make

the real axis map into the upper half plane. To make the upper half plane

map above rather than below, we must have Q(y) increasing when y = 0, and

hence AD+AD-BC- 73CS:0.
Proof of Theorem IV, the necessity. The hypotheses imply that

i[50(z) Co(z) -Co(z)S0(z) ] 2:0 and i[Si(z)C1(z)-Ci(z)S1(z)] 2:0 for y>0. These

inequalities, together with (5) and (6), imply that

i{So(z)Ci(z) - C0(z)S,(z)] 2: 0

and

i\Si(z)C0(z) - C!(z)So(z)] 2: 0

for y>0. Therefore,
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£o(z)I,(z) + £i(z)Io(z)

= 2 Re [C0(z)G(z) + S0(z)Si(z)] + i\Si(z)C0(z) - G(z)G(z)]

+ i\So(z)d(z) - C0(z)G(z)] ^ 2

for y^O. Therefore, |E0(z)£i(z)| ^1 for y^O, and both Eo(z) and Ei(z) are

without zeros there.

The hypotheses (5) and (6) imply that Re[Ei(z)/£0(z)]>0 for y>0 and

Re[G(z)/Eo(z)]= |-Eo(z)|-2 when z is real. By the Poisson representation of

a function positive and harmonic in a half plane, (4) follows for E(z) = 2io(z),

and there is some number a^O such that

y   r      | EB(t) \~2                           Ei(z)
— I   -dt + ay = Re-
x J    (t - x)2 + y2 Eo(z)

for y >0. If in addition, Ei(iy) =o(yE0(iy)) as y—> + », we can conclude that

o = 0 and this formula implies the uniqueness part of the theorem. Since

Re[£o(z)Si(z)]^l fory>0, Re[£i(z)/£0(z)]^ |-E>(z)|-2 for y>0. Therefore,

.        y  r     \ Eo(t) H
|£o(* + *y)|-2S-|   -f-TTZ-tdt + ay

x J     (I — x)2 + y2

for y>0. Arguments similar to the proof of sufficiency for Theorem III show

that

r Eo(z) - Eo(l)
I   ——-— (t + i)-lEo~i(l)dt = 0

J z — t

for all complex z, and E0(z) is of exponential type, and (3) holds.

Proof of Theorem IV, the sufficiency. For each complex number w,

[Eo(z)—E0(w)]/(z — w] belongs to 3C(E0), for the proof of sufficiency for

Theorem III applies with G(z) taken equal to this function. We will show that

there is an entire function G(z) such that

1 /Eo(t) - E0(z)    E0(t) - E0(w)\     Eo(w)Ei(z) + Ei(w)Ea(z) - 2
(21)    —( -, - ) =-

x\        t — z I — w       / t(w — z)

for all complex z and w, with the inner product taken in 3C(£o). Later, we will

show that this function G(z) has the required properties.

By Lemma 7 of [7], there is at most one real number a modulo x such that

eiaE0(z) — e~iaE*(z) belongs to 3C(£0). For simplicity in the calculations, we

suppose that Eo(z)—E*(z) = — iS0(z) is not in 3C(£0). We use the formula of

[6] with a = 0, so that
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for every F(z) in 3C(£0). If £o(z) — £*(z) does belong to 3C(£0), a similar argu-

ment can be made with a different choice of a. Therefore,

1   /Ep(t) - E0(z)    Ep(t) - E0(w) \

■w \        I — z t — w       /

_     -cm-.-
*" So' (l)(t - z)(t-w) ^ So' (t)(t - z)(t - w)

- £0(w) 2Z-
^ Sl(t)(t-z)(t- w)

+ E0(z)Eo(w) 22-
' ^ Co(t)Sl(l)(t-z)(t-w)

whenever So(z)t^O and S0(w)^0, where t ranges in the zeros of So(z) and

each sum is absolutely convergent. By the first formula in the proof of

Lemma 3 of [6] and the hypothesis that S0(z) does not belong to 3C(£o),

C0(z)      Co(w) _ Co(0 1
-= (w — z) y.--•-
S0(z)       S0(w) Si(t)   (t-z)(t-w)

when Se(z) 9^0 and S0(w) ^0. By the methods used in the proof of Lemma 2 of

[5], it is easily shown that

1 l V l

' So~(z) ~ S0(w) ~ {w~z Z* si(t)(t-z)(t-w)

when S0(z)^0 and So(w)t^O, and this formula is submitted without explicit

proof. Clearly,

^         1 + tz                 1
G(z) = So(z) T,-■-

is an entire function which is real for real z and

G(z)       G(w) 1
-= (w — z) 2-i-
So(z)      So(w) Co(t)Sl(t)(t-z)(t-w)

when So(z) ^ 0 and So(w) 9^ 0. Formula (21) now follows with £i(z)

= [iE0(z)G(z) — l]/So(z), which is an entire function because the left hand

side of (21) is an entire function of z.

Since when w = z, the numerator of the fraction on the right hand side of

(21) must vanish by continuity, we have the identity £0(z)£*(z)+£f(z)£0(z)

= 2, which is equivalent to (5).

By formula (2),
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1 /Eo(t) - Eo(z) , Eo*(w)Eo(t) - Eo(w)Eo*(t)\ E0(w) - E0(z)
(22) -(-,-) = 2i-:-

X \        / — z I — w / w — z

From this formula and (21) it follows that

1   /Ep(t) - EQ(z)    Ep*(t) - Eo*(w)\ _ E0(w)Ei(z) - Ei(w)Ep(z)

x\        t — z t — w        / i(w — z)

It follows from (21) and (22) by the properties of conjugation that

1 /E0*(t) - E0*(z)   Eo(t) - £o(«0\      Ei(v)Eo*(z) - E0(w)Ei*(z)
(23) —(-> -) =-

x\ t — z t — w       / i(w — z)

and

1 /E0*(l) - E0*(z)   E0*(l) - Eo*(w)\     Eo(w)E?(z) + Ei(w)E0*(z) - 2
(24) —( -> - )=-.

x \ / — z I — w        / —i(w — z)

By (21), (22), (23), and (24), for every complex number w,

E0(z)Ei(z) + Ei(z)E6(z) - 2 G(2)£o*(z) - 2o(z)G*(z)
-h w-

i(z — z) i(z — z)

E0(z)Ei(z) - Ei(z)E0(z) E0(z)E?(z) + Ei(z)E0*(z) - 2
-f- w-h ww-

i(z — z) —i(z — z)

Eo(t) - Eo(z) E0*(t) - E0*(z) |2
=-\-w-    ^0.

t — z t — z I

Therefore,

-[£o(z)£i(z) + G(z)£o(z) - 2][£0(z)£i*(z) + Ei(z)E0*(z) - 2]

-[Ei(z)Eo*(z) - E0(z)Ei*(z)][Ei(z)E0(z) - E0(z)Ei(z)] ^ 0,

an inequality which reduces to (6) on simplifying. Since

i[S0(z)Co(z) - Co(z)S0(z)]i\Si(z)Ci(z) - G(z)G(z)]

= | C0(z)G(z) - S0(z)Si(z) J2 — 1 S= 0

by (5) and (6) and since i[So(z)Co(z)—Co(z)So(z)]e%0 for y>0 because

|£0(z)| <|£o(z)| for y>0 by hypothesis, we have i[G(z)G(z)-G(z)Si(z)]

^0 for y >0, which implies that | G(z) | ^ | G(z) [ for y>0. By the Lebesgue

dominated convergence theorem,

/Eo(t) - E0(iy)    Eo(t) - EQ(w)\
lira  Eo\iy){->  -) = 0.

v—+" \       I — iy I — w       /

Therefore, (21) implies that Ei(iy) =o(yEQ(iy)) as y—>+oo.



274 LOUIS DE BRANGES [August

Proof of Lemma 2. Since U is a unitary transformation in SO, the self

adjoint part of the transformation

(1 + wU*)/(l - wU*) = 1 + 2WU-1 + 2w2U~2 + ■ ■ ■

is non-negative. We have as an estimate of the operator norm

\\(l + wU*)/(l -wU*)\\

£ 1 + 2| w|   + 2| w|2+ • • • = (1 + | w\)/(l -  \w\).

For a and c in G,

\((1 + wU*)(l - wU*)-!a,  c)\ g (1 + | w\ )(1 - | w|)_1||a||||c||.

It follows that there is a bounded operator <(>(w) on G such that for a and c

in 6,

(4>(w)a, c) = <(1 + wU*)(l - wU*)-la, c),

and ||0(w)|l S(l + |w|)/(l — \w\). The power series expansion (d)(w)a, c)

= (a, c)-\-2w(U~1a, c)+ ■ • • shows that (<p(w)a, c) is an analytic complex

valued function of w with a Taylor series bounded by 2||a|| ||c||. It follows

that <p(w) is an analytic operator valued function of w with a Taylor series

bounded by 2. Since the self adjoint part of (1 +wU*)/(l—wU*) is non-nega-

tive, for each c in G, the real part of {<b(w)c, c) is non-negative. Therefore,

<p(w)+<p* (w) 2:0 for |w| <1. On substituting w = 0, we find that #(0) = 1 is

the identity operator on Q.

Let 73(z) = [<t>(z)-1 ][d>(z) + l]-lz~l. Since (b(0) = l, [<p(z) -1 ]z~l is defined

and analytic for \z\ <1. Since4>(z)+<f>*(z) 2:0 for \z\ <1, ||^>(z)c+c|| 2:||c|| for

every c in Q when \z\ <1 and hence [^(z)-!-!]-1 is defined and analytic for

\z\ <1. So, 73(z) is defined and analytic for \z\ <1. Solving for </>(z), we find

that <^>(z)= [l+z73(z)]/[l-z73(z)]. Let c be any element of G and let

a = c — wB(w)c, an element of 6 which depends on both c and w. Then,

4>(w)a = c+wB(w)c and ||c||2 — ||w73(w)c||2 = Re (4>(w)a, a)2:0. Therefore,

||mB(w)c[|2S||e||2 for every c in C. By Schwarz's inequality,

| (wiB(wi)c, w2B(w2)c) |   ±£ ||c||2

for \wi\ <1 and |w2| <1. Since this inner product is an analytic function of

Wi, we have by Schwarz's lemma, | (73(w!)c, w2B(w2)c)\ ^||c||2. By the same

argument applied to the complex conjugate as a function of w2,

| (B(wi)c, B(w2)c) |   ^\\c\\2.

On choosing Wi = w2 = w, we have ||B(w/)c|| ^||c||, which by the arbitrariness of

c means that ||73(w)|| ^ 1.

Proof of Lemma 3. By hypothesis,

<(1 + wUi*)(l - wU?)-la, c), = <(1 + wU2*)(l - wU2*)-la, c>2.
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By expanding each side as a power series in w and comparing coefficients term

by term, we find that

(Urna, c)i = (Ufa, c), for n = 0, 1, 2, • • • .

The isometric character of Ui and U2 can be used to show that the formula

remains valid when the sign on the exponents is reversed. It can also be

used to show that if m and n are integers,

(Via, Uic)i = (U2a, U2c)2.

Let P(z) = 2~LanZn be any formal sum of integral powers of z with coeffi-

cients in C, all but a finite number of them being equal to zero. Bv what we

have shown || ZZ7?fl„||2 = 2Z(U?am, U?an)i= 2Z(U?am, Ufrn)* = \\2ZU*a»\\l
By the hypotheses on T, we must have T( 2~^ U"an) = 2~1 U^an. On the other

hand, the previous formula shows that there is such a transformation T, de-

fined at least on finite combinations y, G"fln so as to be linear and isometric,

to act identically on C, and to satisfy TUi= U2T. But the finite combinations

of the form 2^1 U"an above are dense in 3Ci by our hypotheses, since the closure

is a closed subspace of 3Ci which contains C and reduces Ui. The continuous

extension to 3Ci is easily seen to have the required properties.

Proof of Lemma 4. We will use an integration theory with operator

valued measures. Let 5 be a compact Hausdorff space, which in our applica-

tion will be the reals modulo 2x. By an operator valued probability measure

p. on the Borel sets of S, we mean a countably additive function n(E) of Borel

subsets E of S, whose values are non-negative operators on 6, and whose value

for 5 is the identity operator. By "countably additive," we mean that the

measure of the empty set is the zero operator and that if (En) is a disjoint

sequence of Borel subsets of S, fi([)En) = Sm(E„). The interpretation is that

for every c in 6,

<m(U£„)C, c) = 2Z {n(En)c, c).

In particular, for each unit vector c in C, (fi(E)c, c) is a probability measure

of Borel subsets E of S, in the ordinary numerical sense. Let f(8) be a Borel

measurable, complex valued function of 6 in S, such that f\f(6) | d(p:(8)c, c)

remains bounded as c ranges in the unit vectors of 6. We define ff(6)dp.(6)

to be the unique operator such that for each unit vector c in C,

/f f(e)dn(B)c, c\ = J f(6)d(p(9)c, c).

The integration theory is used to generalize a theorem of Herglotz. Let

<p(z) be an operator valued function, defined and analytic for \z\ <1, such

that <p(z) +<2>*(z) ̂0 and <£(0) = 1- Then there exists a unique operator valued

probability measure /j, on the Borel sets of the reals modulo 2x such that
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/ei$ + z—-MO).
e,e — z

For let c be any unit vector in G. Then the complex valued function (<t>(z)c, c)

is defined and analytic for \z\ <1, and Re (d>(z)c, c)2:0 and (<t>(0)c, e) = l. By

the usual form of the Herglotz theorem for complex valued functions, there

is a unique probability measure pc on the Borel sets of the reals modulo 2ir

such that

(<j>(z)c, c)=f (e« + z)(eie - z)~^c(B)-

For every Borel subset £ of the reals modulo 27r, consider the quadratic form

4>e on C such that for each unit vector c, 4>£(c) = pc(£). Since <$£ is bounded,

there is an operator p(£) such that (n(E)c, c)=$e(c) for every c in G. Obvi-

ously, p is the required operator valued, countably additive function of sets.

The Herglotz theorem will be applied to <p(z) = [l+z73(z)]/[l— z73(z)].

Since ||73(z)||^l, this function is defined and analytic for \z\ <1. The for-

mulas in the proof of Lemma 1 show that <j>(z)+<p*(z) 2:0. On substituting 0

for z, we find that d>(0) = 1. Therefore, the Herglotz theorem is applicable to

produce an operator valued probability measure p. We have

J"((e« + *)/(«" - z))dn(B) = [1 - z73(z)]/[l - zB(z)]

for \z\ <1. We now construct a Hilbert space L2(p) associated with p.

A function defined on the reals modulo 2ir will be called a simple function

if it assumes only a finite number of values, and if the set on which it assumes

each value is a Borel set. If / and g are simple ©-valued functions, we will use

p to define a complex number (/, g)p, which serves to define a Hilbert space

inner product. Let £i, • • • , £r be disjoint Borel sets with corresponding

characteristic functions xev • • • , Xet and let ai, ■ ■ • , ar and blt ■ ■ ■ , bT be

elements of G, all chosen so that/=aiXE1+ ■ • • +arXEr and g = biXEl+ ■ • ■

+brXEr. Define

(/, g), = </*(£i)a„ »!>+••• + HEr)ar, br),

using the inner product in Q. The definition does not depend on the choice of

representation by characteristic functions. If/, g, and h are simple C-valued

functions and if a and B are complex numbers, (ctf+Bg, h)p=a(f, fe)^+j8(g, h)„,

(g./)/.= </. gXT> and ||/||2= </, A-StO. To define £2(p), identify any two simple
C-valued functions/, g such that ||g— /||„ = 0, and let i2(p) be the completion

of the resulting inner product space.

Every element c of Q may be thought of as a constant function with that

value. The resulting simple function determines an element of £2(p). This
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transformation of 6 into L2(fi) is isometric, and we think of Q as contained

in L2(u). Since there is no danger of confusion, we drop the subscripts from

the inner products.

If £ is a Borel subset of the reals modulo 2x and if / and g are simple

C-valued functions, the products x«/ ar>d Xeg are simple C-valued functions,

and (xsf, g) = (f, XEg), and ||xfi/|| =||/||- l(: follows that the linear transforma-

tion, multiplication by xb, of simple C-valued functions into simple C-valued

functions determines a linear transformation P(E) of £2(ju) into itself. This

transformation in L2(p.) is an orthogonal projection. The transformation

£—>£(£) is a spectral measure. Every Borel measurable, complex valued

function of 0 in the reals modulo 2x now defines a linear transformation in

L2(n) according to the Stone operational calculus [6]. Let U be the trans-

formation corresponding to e'e, which is a unitary transformation in L2(p.).

Let a and c be in C and let [ w| <1. By the Stone operational calculus,

((1 + wU*)(\ - wU*)~la, c)  =  f (1 + weie)(l - weie)~1d(P(e)a, c).

By construction, for each Borel set £, (P(E)a, c) = (p,(E)a, c). Therefore,

<(1 + wU*)(l - wU*)~la, c) =  f (e« + w)(eie - w)~1d(p(d)a, c)

= ([1 + wB(w)][l - wB(w)]~1a, c).

We now show that the smallest closed subspace of L2(y.) which contains

6 and reduces U is all of L2(n), by showing that if/is in L2(ju) and (/, Unc) = 0

for every c in C and integral n, then/=0. For then

J   (eiB + w)(eie - w)-ld(P(6)c,f) = ((U + w)(U - w)~lc,f)

vanishes identically for every c in C and |w| <1. By the uniqueness part of

the Herglotz theorem, (P(E)c, /) = 0 for every Borel set £. Therefore, / is

orthogonal to (the image of) every simple C-valued function. Since these

are dense in L2(p.) by construction, /=0. The lemma follows on choosing

X(B)=L2(M).

Proof of Theorem XI. By hypothesis there exists a linear isometric trans-

formation T of 3C(232) into K(B{) with certain properties. Without loss of

generality we can suppose that 3C(B2) is actually contained in X(Bi) and that

T is the inclusion.

Let U be the unitary extension of U2 in 3C(Bi) which is the identity on the

orthogonal complement of X(B2). Let V be the unitary transformation in

5C(Bi) such that Ui=UV. It has the property that Vf=f whenever/ is in
3C(B2) and Uf is orthogonal to C.
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Let 3D be the set of elements / of 3C(732) such that Uf is orthogonal to 6,

and let (B be the orthogonal complement of 2D in 3C(732). The transformation U

takes G$ isometrically onto G. Let A(z) be the operator valued function, de-

fined and analytic for \z\ <1, such that ||^4(z)|| ^1 and

([1 + wA(w)][l - wA(w)]~la, c) = (U*a, (1 + wV)(l - wV)-lU*c)

for a and c in G and \w\ <1. The existence of A(z) follows by the proof of

Lemma 2 with obvious changes. We will prove the necessity by showing

that we can choose 733(z) =A(z).

First, we make a calculation with the adjoint (UV)*= V*U*. An arbi-

trary element of 3C(73i) can be written /+g where / is in 3C(732) and g is

orthogonal to 3C(732). By the definition of U, U*(f+g) = U*f+g. Let k be the

projection of / into Q. Since U is unitary, U*k is the projection of U*f into

(B. So U*(f+g) =U*(f-k)+U*k+g where U*(f-k) is in 2D. Since V is
the identity on 2D, (UV)*(f+g) = U*(f-k) + V*U*k+V*g.

Let o be in C and \w\ <1. We claim that there is an element g of 3C(73i)

orthogonal to 3C(732) such that

(UV)*[l - w(UV)*]-Ja = (U - w)~x[e - wB2(w)e] + g

where e is in G and e= [l— wA(w)B2(w)]~lA(w)a. Since UVis a unitary trans-

formation and \w\ <1, [l—w(UV)*]~1 is a bounded transformation of SO(Bi)

into itself. The left hand side of the proposed formula makes sense. We will

verify the formula by showing that

(UV)*a = [1 - w(UV)]*(U - w)-1^ - wB2(w)e] + [l - w(UV)*]g.

It can be seen from the definition of 732(w) that the projection of

(U—w)~l[e — wB2(w)e] into G is B2(w)e. On the other hand,

(U - w)~l[e - wB2(w)e] - B2(w)e = (U - w)~l[e - UB2(w)e].

By the formula of the last paragraph, we must show that

V*U*a = U*e - wV*U*B2(w)e + (1 - wV*)g.

On letting V act on each side, we find that the formula is equivalent to

U*a + U*wB2(w)e - wU*e = (V - w)(g + U*e),

or

(V - w)~lU*[a + wB2(w) - we] = g + U*e.

Each side has a projection of zero into 2D. By our freedom in the choice of g,

we need only verify that each side has the same projection into <S>. This will

be the case if we can show that for each d in Q, left and right hand sides have

the same inner product with U*d. Since (V+w)/(V— w) = l+2w/(V — w),

it is sufficient to show that
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((V + w)(V — w)~lU*[a + wB2(w)e — we], U*d) = (a + wB2(w)e + we,d).

Since [(V+w)/(V-w)]*=(l+wV)/(l-wV), the definition of 4(z) makes

this formula equivalent to

([l + wM(w)][l — wA(w)]~*[a + wB2(w)e — we], d) = (a + wB2(w)e + a/e, d).

But it is easily verified that with our choice of e,

[l + w-4(w)][a + wB2(w)e — we] = [l — w^4(w)][a + wB2(w) + we]

is indeed satisfied.

By the results of the last paragraph and the definition of B2(z),

((UV)*[l - w(UV)*]~la, c) = (B2(w)[\ - wA(w)B2(w)]~1A(w)a, c).

Since

B2(w)[l — wA(w)B2(w)]_1A(w) = B2(w)A(w)[l — wB2(w)A(w)]~1,

<[1 + w(UV)*][l - w(UV)*Yla, c)

= ([1 + wB2(w)A(w)][l - wB2(w)A(w)]~1a, c).

It follows that Bi(w) =B2(w)A(w) and that we can choose B3(z) =A(z).

Proof of Lemma 5. The series defining f(w)  is dominated by ||/(w)||

= XIWIM"- % the Schwarz inequality, ||/(w)||2^(Xl|k»||2)(I3l w\2")
= ||/||2(l-|w|2)-1. So, (l-|w|2)||/(w)||2^||/||2 as claimed. For each c in 6,

(l-wz)-1c=2~lcwnzn belongs to <5(z) because X||c||2| w| 2" = ||c||2(l- | w\ 2)~l

converges. By the definition of the inner product in (3(z), (f(w), c)

= (f(t),(l-tw)-^c).
Proof of Lemma 6. Let g(z) be in 3TC. Let f(z) be in 3C. By hypothesis

(/(z) -f(0))/z belongs to X. Therefore, (f(z) -f(0))/z is orthogonal to g(z)

and hence f(z) —f(0) is orthogonal to zg(z). Since zg(z) is orthogonal to/(0),

zg(z) is orthogonal to/(z). By the arbitrariness of/(z), zg(z) is in 3R.

Proof of Lemma 7. Let/(z) be an element of 3C such that/(0) =0. Then

f(z)/z belongs to Q(z). Let g(z) be in 3TC. The zg(z) belongs to 3TC by hypoth-

esis and so/(z) is orthogonal to zg(z), and so f(z)/z is orthogonal to g(z). By

the arbitrariness of g(z),f(z)/z belongs to 3C.

Proof of Lemma 8, the necessity. Let g(z) be any element of 3C. Then,

(g(z)— g(0))/z is in 3C by hypothesis, and so is its product by z. Therefore,

f(z) is orthogonal to (g(z)—g(0))/z and so zf(z) is orthogonal to g(z)—g(0)

and so zf(z) is orthogonal to g(z). By the arbitrariness of g(z), zf(z) is in 311.

Let h(z) be in 3TL Since/(z) is in 3C, f(z) is orthogonal to h(z) and so zf(z) is

orthogonal to zh(z).

Proof of Lemma 8, the sufficiency. If h(z) is in 3TC, then zf(z) is orthogonal

to zh(z) by hypothesis, and so/(z) is orthogonal to h(z). By the arbitrariness

of h(z),f(z) is in 3C. If g(z) is in 3C and zg(z) is also in 3C, then zf(z) is orthogonal

to zg(z) by our hypotheses and so/(z) is orthogonal to g(z).



280 LOUIS DE BRANGES [August

Proof of Lemma 9. Let f(z) = 22anz". Then g(z) = ^73(z)a„zn where the

hypotheses imply that (73(z)a„z"), n = 0, 1, 2, ■ • ■ , is an orthogonal set in

C(z), and ||73(0a„HI=lkn||. By the definition of the norm in G(z), ||/||2
= XH!a"l|2- By Parseval's formula, g(z) is in G(z) and ||g|| =||/||.

Proof of Lemma 10. By Lemma 9, 911(73) is a well defined closed subspace

of Q(z). Obviously, zg(z) belongs to 911(73) whenever g(z) belongs to 9TC(73),

and 911(73) is orthogonal to G. If g(z) =z73(z)/(z) is in 911(73) and is orthogonal

to every element zh(z) where h(z) is in 9TC(73), we can write h(z) =zB(z)k(z)

where k(z) is in G(z) and (g{t), th(t)) = (f(t), tk(t)) = 0 by Lemma 9, since a

linear isometric transformation preserves inner products. By the arbitrariness

of k(z), f(z)=c is a constant. Conversely, if f(z) is a constant, the same

formulas show that g(z) is orthogonal to zh(z) for every h(z) in 911(73).

The hypothesis that ||73(«)c||2 = ||c]|2 or that ^tl^"^!2 = llc!l2 implies that
||73„c|| ̂ ||c|| for every c in G, and so ||73n|| gl. It follows that B(w)= 2273nW

converges in the operator norm for | w | < 1 and ] 173 (w) 11 ̂ ^ I w I n = (1— IwI )-1-

Actually, ||73(w)||gl for \w\ <1. To see this, we claim first that for

| Wi\ < 1, | w2\ <1 and for a, c in Q,

/1 - B(wi)B*(w2)       \      II - B(t)B*(w2)      1 - B(t)B*(wi)   \
( - a, c ) = (-a,-c ).
\        1 — Wiii>2 /       \       1 — tw2 1 — twi /

This formula makes sense since for | w\ <1 and d in G, (l—zw)~ld is in G(z)

by Lemma 5, and hence 73(z)(l — zw)~'iB*(w)d is in G(z) by Lemma 9. The

desired formula follows on expanding the right hand side using these same

two lemmas. On taking Wi = w2 = w and a = c in this formula, we find that

||C||2-||73*(W)C||2        l-B(t)B*(w)     2
-j-:-=    -c      2: 0.

1 —  | w 12 1 — tw

So ||73*(w)c|| g||c|| for every c in G, and hence ||73(w)|| gl.

Proof of Lemma 11. The lemma follows from Lemmas 7, 8, and 10.

Proof of Lemma 12. Since U is unitary and \w\ <1, [l— wU*]~x is de-

fined. Since |[73(w)|| ̂ 1 and \w\ <1, c— [l — wB(w)]~la is a well-defined ele-

ment of 6. By Lemma 11, f(z) =B(z)c is in X(73). Let/(z)= 2~2anZn and let

fm(z) = X)a™+»2" for every m=0, 1, 2, • • • . Since /o(z) =/(z) and zfm+i(z)

=fm(z)—fm(0), we see inductively by Lemma 11 that fm(z) belongs to 3C(73)

for every m. It is clear that [|/m|| ^|]/||. Therefore, for \w\ <1, [zf(z) — wf(w)]

■ (z — w)~l = 52wm/m(z) converges in the metric of 6(z) and defines an element

of 3C(73). In other words, [z73(z)— wB(w)](z — w)_1[l— wB(w)]~la belongs to

3C(73). We will prove the lemma by showing that

U*a = [1 - wU*][zB(z) - wB(w)](z - w)~l[l - wB(w)]~"a

or equivalently that
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B(z)a = [zB(z) - wB(w)](z - w)~l[\ - wB(w)]~la

- w[B(z) - B(w)](z - w)-J[l - wB(w)]~ia

- B(z)B(w)[l - wB(w)]~la.

A few simple calculations show that this last formula is an identity. Formula

(15) follows on using the identity (\+wU*)/(\-wU*) = \ + 2wU*/(\-wU*).

Proof of Theorem XII. By hypothesis, Bi(z) =B2(z)B3(z) where the oper-

ator valued function B3(z) is defined and analytic for \z\ <1, and ||233(z)|| ^ 1.

Let 3C(JB3) be a Hilbert space constructed for B3(z) according to Lemma 4,

and let U3 be the corresponding unitary transformation in X(B3).

Now construct a Hilbert space 3C containing X(B2) isometrically, with

these properties. There is a linear isometric transformation L of 3C(233) into

3C whose restriction to C agrees with U* and whose restriction to the orthog-

onal complemenent of 6 in 3C(B3) maps onto the orthogonal complement of

3C(B2) in 3C. Let U be the unitary extension of U2 in 3C which is the identity

on the orthogonal complement of X(B2). Let V be the unitary transforma-

tion in 3C such that Vf = LU3L~lf whenever/ is in the range of L, and which

is the identity on the orthogonal complement of the range of L. By the proof

of Theorem XI, the composed unitary transformation UV in 3C has the

property that

<[1 + w(UV)*][l - w(UV)*]~la, c) = <[1 + wBi(w)][l - wBi(w)]~la, c)

for a and c in C and \w\ <1. The main problem is to show that the smallest

closed subspace of 3C, which contains & and reduces UV, contains X(B2).

To see this, let 3C4 be a Hilbert space containing 3C isometrically, with

these properties. There is a linear isometric transformation M of 3C(0) into

3C4 whose restriction to Q agrees with (UV)* and whose restriction to the

orthogonal complement of C in 3C(0) maps onto the orthogonal complement

of 3C in 3C4. Let Ui be the unitary extension of UV in 3C4 which is the identity

on the orthogonal complement of 3C. Let F4 be the unitary transformation in

3C4 such that V4f= MU0M~fl whenever/ is in the range of M, and which is

the identity on the orthogonal complement of the range of M. By the proof

of Theorem XI, the composed unitary transformation f/4F4 has the property

that

<[1 + w(UtVt)*][l - v>(UtVt)*]-la, c) = <a, c)

for a and c in C and \w\ <1, since Si(«>)-0 = 0. We will show that X(B2) is

contained in the smallest closed subspace of X, which contains 6 and reduces

UV, by showing that it is contained in the smallest closed subspace of 3C4,

which contains C and reduces C/4F4.

In fact, let/ be any element of X(B2). Let fm, m = 0, 1, 2, • • • , be the

elements of X(B2) defined inductively by/o=/and U2fm+i=fm — am, where am

is the projection of fm into C In view of Lemmas 11 and 12 and our hypoth-
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eses, X(732) can be mapped isometrically into G(z), where it is seen that

||/||2= X1IWI2- Cn tne other hand, the imbedding of X(732) in X is such
that UVfm+i=fm — am for every m, and the imbedding of X in X4 is such that

UtVifm+i=fm — am for every m. Since the smallest closed subspace of X4

which contains G and reduces I/4F4 is an X(0), the formula ||/||2= S||om||2

shows that /belongs to this subspace of X4. By the arbitrariness of/, X(732) is

contained in the smallest closed subspace of X4 which contains G and reduces

c74F4.

By Lemma 3, there exists a linear isometric transformation 7"o of X into

X(73j) which is the identity on G and such that T0UVf= UiTof for/ in X.

If/ is in X(732) and Utf is orthogonal to G, UVf= U2f. Therefore, we may

choose T to be the restriction of 7"o to X(732).

Proof of Theorem V.A. We consider first the case that £( — i)=0. The

function <£(z) =i(l+z)/(l — z) maps the unit disk \z\ <1 conformally onto the

upper half plane y>0 in such a way that the origin goes into the point i.

Let X be the Hilbert space of functions/(z), defined and analytic in the unit

disk |z| <1, of the form

f(z) = *w[l - i<t>(z)]F(<b(z))/E(d>(z))

for some F(z) in X(£), with [|/|| =\\f\\e. Define 73(z) for \z\ <1 by z73(z)

= E*(<t>(z))/E(4>(z)). Since we have supposed that E( — i) =0, 73(z) is defined

and analytic for \z\ <1. On conformal mapping, formula (2) becomes the

statement that for \w\ <1 and/(z) in X

/        1 - twB(t)B(w) \
(25) f(w) = ( f(t),-, ) •

\ 1 — tw        /

Let v, corresponding to p, be the non-negative measure on the Borel sets

of the reals modulo 2ir, with mass zero at the origin, such that for every

p-integrable function h(x) of real x,

7T-1 f (1 + t*)-lh(t)dn(f) =  f h(<j>(6))dv(0).

A necessary and sufficient condition that ||£||| = /| F(t)\ 2| E(t)\ ~2dfx(t) for

every F(z) in X(£) is that \\f\\2 = f\f(eie)\2dv(6) for every/(z) in X.

Since |£(z)| <|£(z)| for y>0, |73(z)| gl for |z| <1, and since £(z)

is analytic across the real axis, 73(z) is analytic across the unit circle except

for a singularity at z= 1, and 173(z) | =1 for \z\ =1 except at z= 1 where it is

undefined. Let G be the complex numbers thought of as a Hilbert space with

||c[| = I c\ for every complex number c. We may think of 73(z) as an operator

valued analytic function as in Lemma 9, since the operators are just complex

numbers. The hypotheses of Lemma 9 are satisfied because | B(eie) | = 1 a.e. for

O^0:S27r and we can use Parseval's formula for Fourier series to compute
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the inner products. Let X(B) be defined as in Lemma 11. We claim that

X = X(B).

Since ||F||| = /|£(0|2|£(0|-2^ for every F(z) in 3C(£), ||/||2

= (2ir)-lf\f(em) 12d6 for every f(z) in X. By Parseval's formula for Fourier

series, X is contained isometrically in C(z). For/(z) in X,

(f(t), tw(\ - lw)-1B(l)B(w)) = 0

for \w\ <1, with the inner product taken in C(z), since (25) holds and by

Cauchy's formula f(w) = (f(t), (l—tw)-1). By the arbitrariness of w, f(z) is

orthogonal to zB(z), z2B(z), • • • , in G(z). Therefore, f(z) is orthogonal to

311(23) and so is contained in X(B). So X is contained in X(B). Let g(z) be

any element of X(B) orthogonal to X. Since [l— zwB(z)B(w)]/(\— zw) be-

longs to X for \w\ <1, we see from (25) that g(w) =0 for \w\ <1, and hence

that the power series g(z) vanishes identically. Since X is complete and so a

closed subspace of X(B), it is all of X(B).

Let U be the unitary transformation in X(B) of Lemma 11. Then U*f(z)

=f(z)/z whenever/(z) is in X(B) and/(0) =0. We will match the situation of

Theorem XI with X(B2)=X(B) and f/2= U.

Let L2(v) be the Hilbert space of all (a.e. equivalence classes of) complex

valued measurable functions f(ew) defined for O^0:£2x such that ||/||2

=f\f(ew)\2dv(6)<oo and let Ui be the unitary transformation defined in

L2(v) by Uif(ew) =eaf(eie) a.e. Since 1 is an element of norm 1 in X, a neces-

sary condition that ||/||«= y|y(e*») | idv(0) for every/(z) in X is that fdv(8) = 1.

If this is the case, there is a complex valued function Bi(z), defined and

analytic for \z\ <1, such that |2?i(z)| 5^1 and

C e<» + z 1 + zBi(z)
I    -dv(B) = -

J    eie - z 1 - zBi(z)

for \z\ < 1. We may look upon Bi(z) as an operator valued function since the

operators on 6 are complex numbers, and we see that Z,2^) =X(Bi) in the

notation of Lemma 4.

If ||/||«=/|/(e«)| 2dv(8) for every/(z) in X, the transformation T oi X(B2)

into X(Bi) defined by T:f(z)—»/(e*9) is linear and isometric and 2T = 1.

Whenever/(z) is in X(B2) and U2f is orthogonal to Q, U2f(z) =zf(z) and hence

TU2f= UiTf. By Theorem XI, Bi(z) =B2(z)B3(z) for some complex valued

function B3(z), defined and analytic for |z| <1, such that |233(z)| Sgl.

On the other hand, suppose that Bx(z)=B2(z)B3(z) for some complex

valued function B3(z), defined and analytic for \z\ <1, such that |2?3(z)| gl.

We have already verified the hypotheses of Theorem XII. By that theorem,

there exists a linear isometric transformation T of X into L2(v) such that

T(l) = l and T(zf(z))=eiBT(f(z)) whenever/(z) and zf(z) are in X.

Let/(z) = ^a„zn be in X. We claim that Tf= ^fl„ein9 with convergence

in the metric of L2(v). To see this, let/m(z)= ^Zflm+nZ" for w = 0, 1, 2, • • • .
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We see inductively from Lemma 11 that fm(z) is in X for every m and

z/m+i(z) =/m(z) — am. Therefore, eaTfm+i(ea) = Tfm(eie) —am for every m, and so

Tf(eie)=2Zn<mei"ean+eimeTfm(e^). Since /m(z)-*0 in the metric of X as

m—K*>, and since T is isometric, 7/m—>0 in the metric of L2(v), and Tf(eie)

= 22einean as claimed.

Since/(z) is analytic across the unit circle \z\ =1 except for a singularity

at z=l, f(ew) = 22anein) converges uniformly in any interval —ir^d^e

or e5^0^7r where 0<e<ir. Since v has mass 0 at0 = 0 by construction, the last

paragraph shows that T:f(z)-J>f(eie) a.e. with respect to v. Since T is iso-

metric, \\f\\2=S\f(e^\2dv(Q).
We have now seen that a necessary and sufficient condition that ||/||2

= f\f(ea)\idv(ff) for every/(z) in X is that fdv(ff) < oo and

fe-^dKe) = 1 + zB(z)Bi{z)
J    eie - z 1 - z73(z)733(z)

for \z\ <1, where 733(z) is defined and analytic for \z\ <1, and |733(z)| gl.

Corresponding to such a 733(z), let A(z) be the function, defined and analytic

for y>0, such that 733(z) =A(<j>(z)). On conformal mapping, we find that a

necessary and sufficient condition that ||£J|| = /| F(t)\ 2\ E(t)\ ~2dy.(t) for every

F(z) in X(£) is that f(l+t2)-l\E(t)\-2dn(t) < oo and

r   1 + tz   dn(l)            E(z) + E*(z)A(z)
I-= iir -

J     t - z   1 + I2 E(z) - E*(z)A(z)

for y > 0, where A (z) is defined and analytic for y > 0 and | A (z) | g 1. Because

we have supposed E( — i)=0, this statement is equivalent to Theorem V.A

in that case.

In general, if E(z) has a nonreal zero 5, Theorem V.A can be proved by

the method just used in the case 5= — i. The major change is to alter the

linear fractional transformation to $(z) = [ — 5Z + s]/(l —z). The case in which

£(z) has no nonreal zeros cannot be handled that way, and we will be con-

cerned with it for the rest of the proof. Since £*(z)/£(z) is analytic and with-

out zeros for y2:0 and is bounded by 1 there and has absolute value 1 when

z is real, we see by Boas [l, p. 92] that E*(z)/E(z) =be2iaz for some o>0 and

\b\ =1. Therefore, E(z) =e~""G(z) where G(z) is an entire function which is

real for real z and has only real zeros. Since G(z) must be a divisor of every

F(z) in X(£), there is no loss of generality in supposing that G(z) = l, for

otherwise we can consider a new Hilbert space of entire functions of the form

F(z)/G(z) where F(z) ranges in X(£).

To see the necessity in this case, define for each h>0, Ek(z) = Ch(z)—iSh(z)

where C/,(z) =e~h cos az and S>,(z) =ek sin az. By Theorem I, | Eh(z) \ < | £a(z) |

for y>0 and X(£*)=X(£) isometrically. The function Eh(z) has a zero for

z = iy where 2ay = - log (ek + e~h) + log (eh - e~h) < 0. If ||F|||

= /| F(t) 12\E(t) | ~2dn(t) for every F(z) in X(£), then
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\\F\\l = J | F(t) |21 Eh(t) |-21 Eh(t) \2dp.(i)

for every F(z) in X(£) since | E(z) | = 1 when z is real. By the cases in which

the necessity has already been established,

y   r   \Eh(t)\2du(t)            Eh(z) + Eh*(z)Ah(z)
— I   -= Re-
x J    (t- x)2 + y2 Eh(z) - Eh*(z)Ah(z)

for y>0, where Ah(z) is defined and analytic for y>0, and |^4*(z)| ^1. It

follows by partial fraction decompositions that

i(w - z) r    J Eh(t)\2dn(t)       Eh(z) + Ei*(z)Ah(z)      Eh(w) + Eh(w)Ah(w)

x     J     (I - z)(l -w)~  Eh(z) - Eh*(z)Ah(z)      Eh(w) - Eh(w)Ah(w)

for i(z — z)>0 and i(w — w)>0. Let w be held fixed. Since |.<4a(w)| SI, there

is a sequence hn such that /s„\ 0 and \imAhn(w) exists. It follows from the last

formula that A(z) =lim Ahn(z) converges uniformly on every compact subset

of the half plane y>0 and that

i(w-z)r dp(t) E(z) + E*(z)A(z)      E(w) + E(w)A(w)

x     J    (t - z)(t - w) ~ E(z) - E*(z)A(z)      E(w) - E(w)A(w)

for i(z — z)>0, where ^4(z) is defined and analytic for y>0 and |.4(z)| gl.

The convergence problems are easily handled since /(l+/2)_1d^(/) < oo and

Ek(z)—>E(z) boundedly on the real axis and uniformly on compact subsets of

the complex plane, and | E(z) | = 1 when z is real. Clearly, the limit function

A (z) does not depend on the choice of w and the last formula holds for all z

and w with i(z — z)>0 and i(w — w)>0. On choosing w = z, we get (7), which

completes the proof of necessity in the case that £(z) =e~iaz.

For the sufficiency when E(z)=e~iai, suppose (7) holds where A(z) is

defined and analytic for y>0 and |.<4(z)| gjl. Define £a(z) for h>0 as in the

proof of necessity. Let p.h be the non-negative measure on the Borel sets of

the real line such that

y_ r        dp.h(t) Eh(z) + Ek*(z)A(z)

irJ    (t-x)2 + y2~     C Eh(z) - Eh*(z) A (z)

for y>0. This measure is given by the Poisson representation of a function

positive and harmonic in a half plane since the right hand side is o(y) as

z = iy where y—>+ <», because

lim   Eh*(iy)/Eh(iy) = (e~h - eh)/(e~h + eh)

has absolute value less than 1. If f(t) is a continuous function of real t which

is o(t2) as \t\ —>oo ,
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f f(t)dn(t) = lim   f f(t)d/xh(t).
J h\0   J

This follows because (l+t2)f(t) can be approximated uniformly by finite linear

combinations of the functions (l-\-t2)/[(t—x)2+y2] where yj^O as a result of

properties of the Poisson kernel. Since e~h^ | Eh(z) \ ^eh for real z, e-2,l||7;'|||

^/|£(0|2^pA(0^e2"|k||l for every F(z) in X(£). Therefore, if F(z) is in

X(£) and if F(t)=o(t) as 11\ ->°o , f\ F(t) \ 2dn(t) =\\f\\2e. By Fourier analysis,
such F(z) are dense in X(£) for the norm metric, and so the same formula

holds for every F(z) in X(£). Since |£(z)| =1 for real z, this completes the

proof of sufficiency in this case.

Proof of Theorem V.B. Consider first the case E(—i) =0. We proceed as

for Theorem V.A except that v, corresponding to p, is to be the non-negative

measure on the Borel sets of the reals modulo 2ir, with mass a at the origin,

such that for every p-integrable function/(x) of real x, ir~lJ(l-\-t2)~xh(t)dix(t)

= Jh(<p(8))dv(6). Then, v is a probability measure such that

r eie + z 1 + zB(z)B3(z)
I -dv(e) =-

J    e" - z 1 - zB(z)B3(z)

for | z| <1, where 733(z) =A(cp(z)). As before, there is a linear isometric trans-

formation T of X into L2(v), and if f(z) = 2~2anZn is in X, Tf(ew) = 2~2aneine

with convergence in the metric of L2(v), and Tf(eie)=f(eie) a.e. with respect

to v for 0^0. Therefore, ||/||2=/Mo|/(ei«)| 2dv(0)+a\ Tf(l)\2 for every/(z) in

X. It follows on conformal mapping that there is a continuous linear func-

tional L on X(£) such that

\\f\\2e=J \F(t)\2\E(t)\~2dM(t)+ \LF^

for every F(z) in X(£). By the Riesz representation of a continuous linear

functional on a Hilbert space, there is an element G(z) of X(£) such that

LF=(F, G) for every F(z) in X(£). Since o>0 by hypothesis, we see from

Theorem V.A that G(z) is not identically zero. Since the orthogonal comple-

ment of G(z) in X(£) is just the set of elements F(z) of X(£) such that

\\F\\2E=f\F(t)\2\E(t)\-2dn(t), it is, in the norm of X(£), a Hilbert space of

entire functions which satisfies (HI), (H2), and (H3).

First let us investigate the case in which there is a real number w such

that the orthogonal complement of G(z) is the set of elements F(z) of X(£)

such that F(w)/E(w) =0. We will see that G(z) spans X(£) in this case. For

there clearly is a non-negative measure pi on the Borel sets of the real line

such that pi(S) =p(S) for every Borel set S which does not contain w, and

\\F\\2=J\ F(t)\2\E(t)\-2dm(t) for every F(z) in X(£). By Theorem V.A and

the hypothesis that E( — i) =0,
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r 1+fe .   E(z)+ E*(z) A i(z)
- dui(t)   =   ITT -

J    t-z E(z) -E*(z)Ai(z)

for y > 0, where A i (z) is defined and analytic for y > 0 and | A i (z) | ^ 1. B ut for

some real number e,

/l + tz dp.i(t)       r 1 + tz dp(t) 1 + wz

I - z  1 + I2     J    t - z  1 + t2 w - z

for y>0, and so

E(z) + E*(z)Ai(z) .   E(z) + E*(z)A(z) 1 + wz
i-K-1- xaz = ix-V e-

£(z) - £*(z).4!(z) £(z) - E*(z)A(z) w - z

for y>0. It follows that £(z) cannot have a nonreal zero zo other than

Zo= — i, for substitute z = Zo in this formula. Similarly, the zero of £(z) at — i

must be simple, for compute the derivative of each side at z = i. It follows

from the factorization given by Boas [l, p. 92] that

E*(z)/E(z) = b(z - i)(z + i)-le2icz

where \b\ =1 and c^O. But it is equally clear from the same formula that

E*(iy)/E(iy) is not o(l) as y—>+ °= since a>0 by hypothesis. Therefore,

c = 0. So there is an entire function J(z), which is real for real z and has only

real zeros, such that E(z) = (z+i)J(z). It is clear that X(£) is one dimen-

sional and hence is spanned by G(z). The theorem is obvious in this case.

Otherwise, there is no real number w such that F(w)/E(w) =0 for every

F(z) in X(£) orthogonal to G(z). By Theorem II, there is some real number a

such that eiaE(z) — e~iaE*(z) belongs to X(£), and G(z) is a constant multiple

of this function. This completes the proof of the theorem in the case E(—i)

= 0. A similar argument applies if £(z) has any nonreal zero.

The case in which £(z) has no nonreal zeros cannot occur here, for as we

saw in the proof of Theorem V.A, £*(z)/£(z) =be2i" where | b\ = 1 and c>0.

Since E*(iy)/E(iy) =o(l) as y—* + =o ,

[E(iy) + E*(iy)A(iy)]/[E(iy) - E*(iy)A(iy)] = o(y)

as y—>+ oo. Since the left hand side of (7) is o(y) when x = 0 and y—>+ oo,

by the Lebesgue dominated convergence theorem, this contradicts the

hypothesis that fl>0.

Proof of Theorem VI, the necessity. By hypothesis there is a non-negative

measure n on the Borel sets of the real line such that ||£||l0=/| F(t)\ 2dp.(t)

for every F(z) in X(£o). Because of (5), £o(z) is without real zeros. By Theo-

rem V.A,

y   r   | £„(/) \2dp(t)            Eo(z) + E0*(z)A(z)
— I   -= Re-
x J    (t- x)2 + y2 E0(z) - E0*(z)A(z)
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for y>0, where A(z) is defined and analytic for y>0 and | A(z)\ gl. By par-

tial fraction decompositions, we find that

i(w-z) f   Eo(t)Eo(t)dn(t)       Eo(z) + E0*(z)A(z)      Ea(w) + Eo(w)A(w)
(26) - I    -=-1- —-—-

x      J     (t-z)(t-w)       E0(z) - Eo*(z)A(z)      Eo(w) - Eo(w)A(w)

for i(z — z) >0 and i(w — w) >0. By symmetry, the same formula holds when-

ever z and w are not real, if we define A(z) for y <0 so that A *(z)A(z) = 1.

We claim that whenever z and w are not real

i(* ~ z) r    Eo(t)dn(t)     _ 2_2_

t      J   (t-z)(t-w)      E0(z) - E0*(z)A(z)      E0(w) - Eo(w)A(w)

If £o(z) has a nonreal zero 5, this formula follows from formula (26) with w

replaced by 5, and from formula (26) with z replaced by w and w replaced

by s, and from formula (21) with w replaced by 5, and from the partial frac-

tion decomposition

(w - z)(l - z)~l(t - w)-1

= (s - z)(t- z)"H< - J)"1 - (S - w)(t - w)-l(l - j)"1.

If £0(z) has no nonreal zeros, formula (27) can be obtained by an approxima-

tion technique as in the proof of Theorem VA.

If in formula (27), we take the complex conjugate of each side and inter-

change z and w, we find

i(w ~ z)  r      E0(l)dn(t)_2_2_

t      J     (t-z)(t-w)~ Eo(w) - Eo(w)A(w)      E0*(z) -E0(z)A*(z)

when z and w are not real. If follows from (21), (26), (27), and (28), using (5),

that

i(w - z)  r d„(t) = Ei(z) + Ei*(z)A(z)      £\(w) + Ei(w)A(w)

t      J     (t-z)(t-w)~ E0(z) - E0*(z)A(z)      Eo(w) - E0(w)A(w)

when z and w ard not real. Formula (8) follows on choosing w = z.

Proof of Theorem VI, the sufficiency. By hypothesis, p is a non-negative

measure on the Borel sets of the real line such that formula (8) holds, where

A (z) is defined and analytic for y > 0 and | A (z) \ g 1. Consider the right hand

side of (7) with this choice of ^4(z) and E(z)—E0(z). Since this function is

positive and harmonic for y>0 and since £o(z) is without real zeros, there is

a non-negative measure v on the Borel sets of the real line and a number

a 2:0 such that

y   r   | Ee(t) \2dv(t) E0(z) + E0*(z)A(z)
— I-h ay = Re-
J     (t-x)2 + y2 Eo(z) - Eo*(z)A(z)
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for y>0. By Theorem V.B and the hypothesis that there is no real number

a such that eiaEo(z) -e-iaEt(z) belongs to X(£0), o = 0. By the proof of

necessity, formula (8) holds with p. replaced by v, with the same choice of

A(z). Therefore, p. = v and the sufficiency follows from Theorem V.A.

Proof of Theorem VII. Since

Eh(w)Eh(z) - Eb(w)Eb*(z)       Ea(w)Ea(z) - Ea(w)E*(z)

2iri(w — z) 2wi(w — z)

■7* / n^ / n So(w)C0(z) - Co(w)S0(z)
= Ca(w)Ca(z)-

x(w — z)

C0(w)Ci(z) + So(w)S!(z) - 1
- Ca(w)Sa(z)-

ir(w — z)

Ci(w)C0(z) + Si(w)S0(z) - 1
+ Sa(w)Ca(z)-—-

t(w — z)

Si(w)Ci(z) - Ci(w)Si(z)
+ Sa(w)Sa(z)   -—-

v(w — z)

where

[So(w)Co(z) - Co(w)So(z)]\Si(w)Ci(z) - Ci(w)Si(z)]

+ \Co(w)Cx(z) + SB(w)Si(z) - \][Ci(w)Co(z) +Si(w)S0(z) - l]

= - [Co(w)Ci(z) +So(w)Si(z) + GWCo(z) + Si(w)So(z) - 2],

our hypotheses imply that

Eb(w)Eh(z) - Eb(w)Eb*(z)      Eg(w)Ea(z) - Ea(w)E*(z)

2iri(w — z) 2iri(w — z)

when w = z is not real. Therefore, |E&(z)| <|£0(z)|  for y>0. From the same

inequality and the definition of X(£„), we see that

2xi(z — z)

for every F(z) in X(£„).

Our hypotheses imply that Re [£0(z)£i(z)]>0 for y>0, and so A(z)

= [Ei(z) — Eo(z)]/[Ei(z) +E0(z)] is defined and analytic for y>0 and \A(z)\

SI. Therefore,

Ea(z) + E*(z)A(z)
Re -> 0

£.00 - E*(z)A(z)

for y>0, and because of (5), this function has value |£a(z)| 2|£6(z)| ~2 when
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z is real. By the Poisson representation of a function positive and harmonic

in a half plane, there is a number a 2:0 such that

V   C   \Mt)\2 dl Ea(z) + E*(z)A(z)
(31) — I   -.-i-H ay = Re-

J    | Eb(t)\2   (l-x)2 + y2 Ea(z) - E*(z)A(z)

fory>0. If there is no real number a such that eiaEa(z) —e~iaE*(z) belongs to

X(£a), then a = 0 by Theorem V.B. If there is a real number a such that

eiaEa(z)—e-iaEt(z) belongs to X(£„), then

lim E*(iy)/Ea(iy) = e2ia,
y—¥ oo

then
Ea(iy) + E*(iy)A(iy)

a =  hm y_1 Re-
v ̂  + » Ea(iy) — E* (iy) A (iy)

Ei(iy) cos a — iEo(iy) sin a
=   lim y_1 Re-= 0

y->+» Eo(iy) cos a — iEi(iy) sin a

by (9). By (31) and Theorem V.A, [|£|||0=/| F(t)\ 2\Eb(t)\~2dt for every F(z)

in X(£s). It now follows from (30) that X(£0) is contained isometrically in

50(Eb). By (10) and the analyticity of £o(z) and £i(z) on the real axis, every

real zero of Ea(z) is a real zero of Eb(z) of the same multiplicity. It follows

that for every real w, Ka(w, z)/Eb(z)r^0 when z = w.

Proof of Theorem VIII. It is easy to see from the definitions that for each

complex number w, [Ea(z)E(w)—E(z)Ea(w)]/(z — w) belongs to X(£) as a

function of z. There is an entire function Ec(z) such that

1 /Ea(t)E(z) - E(t)Ea(z)    Ea(t)E(w) - E(t)Ea(w)\

■K \ I — Z t —  W /

(32) _ Ec(w)E(z) + E(w)Ec(z) - 2Ea(w)Ea(z)

i(w — z)

with the inner product taken in X(£). Since the proof is exactly analogous

to that of formula (21), it is omitted. It follows from (32) that

1 /Ea(t)E(z) - E(t)Ea(z)    Ea(t)E*(w) - E*(t)Ea(w)\

w \ t — z t — w /
(33)

E(w)Ec(z) - Ec(w)E(z)

i(w — z)

1 /Ea(t)E*(z) - E*(t)Ea(z)    Ea(t)E(w) - E(t)Ea(w)\

IT  \ t  —   Z t  —  W /

(341
V    ' Ec(w)E*(z) - E(w)E*(z)

i(w — z)
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1  /Ea(t)E*(z) - E*(t)Ea(z)    Ea(t)E*(w) - E*(l)Ea(w)\

x\ t — z t — w /

Ee(w)E*(z) + E(w)E*(z) - 2Eg(w)Ea(z)

i(w — z)

in the same way that (22), (23), and (24) followed from (21). Since the

numerator on the right hand side of (32) must vanish for continuity when

w = z, we find that

(36) E*(z)Eb(z) + Eb*(z)Ec(z) = 2£0*(z)£a(z).

For each real number P, let -2iS(P, z)=e^E(z)-e~^E*(z). It follows

from (32), (33), (34), and (35) that

2(w - z) /Ea(t)S(p, z) - S(p, t)Ea(z)    Ea(t)S(p, w) - S(p, t)Ea(w)\

(37) x       \ t - z t - w /

= [ei"£c(z) + e-^E*(z)]S(p, w) - S(P, z)[e^Ec(w) + e^Ec(w)].

Let p(P) be the measure on the Borel sets of the real line which is sup-

ported at the points t such that e^E(t), or its first nonvanishing derivative, is

real, and which has mass 2iri\E(t)\2[E(t)E'(t)-E(t)E'(t)]-i at each such

point t. By the formula of [6], ||£|||=/| F(t)\ 2\E(t)|-*dp(B, t) for every F(z)

in X(£), if S(P, z) does not belong to X(£). In this formula, p is just an index

on the measure, and t is the dummy variable of integration. Formula (37)

now becomes

i(w - z)  r I Ea(t) I2       dp(p, 0r n  r
<w     -  I T^TI n      u       -^ = i[e*E°(z) + e~i^(z)]/[2S(p, z)]
(38) x      J   | E(t) I2  (t — z)(t — w)

- i[e-^Ec(w) + e^Ec(w)]/[2S(P,w)]

whenever S(P, z)^0 and S(P, w)^0, if S(P, z) does not belong to X(£).

Since X(E„) is contained isometrically in X(£),

\\F\\la = f \ F(t)\2\ E(t)\~2dp(p, t)

for every F(z) in X(£tt), if S(P, z) does not belong to X(£). Since X(£tt) is a

separating subspace of X(£) by hypothesis, Ea(z)/E(z) =^0 when z is real.

By Theorem V.A,

y   r\Ea(t)\2       dp(p,l) Ea(z) + E*(z)A(p,z)
— I   -.-:-= Re-
x J    | £(0 |2  (t - x)2 + y2 Ea(z) - Ea*(z)A(p, z)

for y>0, where A(p, z) is defined and analytic for y>0 and \A(P, z)\ S\, if

S(P, z) does not belong to X(£). Therefore,
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i(w - z) r   \Ea(t)\2       dn(p, t)

7T     J     I £(/)|2 (t-z)(t-w)
(39) '        ' V

_ Ea(z) + Ea*(z)A(B, z)      Ea(w) + EaWAfaw)

" £„(z) - E?(z)A(0, z)      Ea(w) - Ea(&)A~{p, w)

for t(z — z) >0 and i(w — to) >0, if S(/3, z) does not belong to X(£). Note from

the definition of Ee(z) in (32) that it is unique only within an added imaginary

multiple of £(z). Compare the right hand sides of (38) and (39) and choose

this added multiple of £(z) in such a way that

,    N «*£«(*) + e-VE*(z)      Ea(z) + Ea*(z)A(B,z)
(40) i-=-

2S(B,z) Ea(z) - E*(z)A(B,z)

for y>0, when S(B, z) does not belong to X(£). In other words, if w is a non-

real zero of £*(z), we require that e^Ec(w)+e~ifiE*(w) =e®E(w)— e~$E*(w),

or if E*(iy)=o(Ea(iy)) as y—>+o°, we require that [e^Ec(iy)+e~vE*(iy)]

= o [e*E(iy) —e~vE*(iy) ] as y—>+ oo. It follows from (37) that this normaliza-

tion does not depend on the choice of B. From (40) we find that

[e»E.0O + e-*E*(z) - e~i»E(z) + e*E*(z)]Ea(z)

= [e^Ec(z) + e-^E*(z) + e^E(z) - e~^E*(z)]Ea*(z)A(B, z).

Since Ea(z) and S(B, z) are without zeros for y >0, it follows from this formula

that

W(B, z) = [ej»Ec(z) + e-^E*(z) + e^E(z) - e-^E*(z)]/Ea(z)

is analytic for y < 0. 11 is analytic for y > 0 because Ea(z) is without zeros there.

It is analytic for real z as a result of the hypothesis that 30(Ea) is a separating

subspace of X(£), and this can be seen from formula (32). In other words,

W(B, z) is an entire function of z and A(8, z) = W*(8, z)/W(B, z) for y>0.

Let Co(z), So(z), Ci(z), Si(z) be the entire functions which are real for real

z such that

W(B, z) = Ci(z) cos 3 + Si(z) sin /3 + iCo(z) sin 3 - iS0(z) cos /3.

By the arbitrariness of 8, we have (10) with Eb(z) =£(z) and (12). Formula (5)

follows from substituting in (36).

Since | W*(B, z)/W(B, z)\ ^1 for y>0,

Sa(z) cos 8 — Co(z) sin 8
Re — i-2: 0

Ci(z) cos 8 + Si(z) sin 8

for y>0. By the arbitrariness of 8, it follows from the proof of Lemma 1 that

| Re [Co(z)Ci(z)+So(z)5i(z)]| 2:1 for y>0, and hence by symmetry and con-

tinuity, for all z. Since Co(z)Ci(z) +S0(z)Si(z) = 1 2:0 for real z, we see by con-

tinuity that (6) holds. The same considerations show that
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i\S0(z)Co(z) - G(z)G(z)] ^ 0,

and

i\Si(z)Ci(z) - Ci(z)Si(z)] ^ 0, for y > 0,

and hence |£o(z)| ^|£o(z)| and |£i(z)| 5S|£!(z)| for y>0. If there is some

real number a such that eiaEa(z)—e~iaE*(z) belongs to X(£a), we see from

Theorem V.A that formula (31) must hold with a = 0, and hence from the

proof of Theorem VII,

Ei(iy) cos a — iEo(iy) sin a
lim y~l Re-;-;— = 0

„—+«, Eo(iy) cos a — iE\(iy) sin a

which implies (9) by use of the Poisson representation.

Proof of Theorem IX, the necessity. By hypothesis there is a non-negative

measure p. on the Borel sets of the real line such that

\\F\\k=j \F(l)\2\Ea(t)\-2dp(t)

for every F(z) in X(£&). We have seen before that because of (5), Ea(z)/Eb(z)

?^0 when z is real. By Theorem V.A,

y   r   \Eb(l)\2       dp(l) Eb(z)+Eb*(z)A(z)
— I    -.-1-= Re-
x J    | Ea(t) |2 (t - x)2 + y2 Eb(z) - Eb*(z) A (z)

for y>0, where ^4(z) is defined and analytic for y>0 and |^4(z)| ^1. It fol-

lows by partial fractions that

i(w - z)  r   | Eb(t) |2 dp(t)

x      J     I £<,(/) I2 (t-z)(t- w)
(41) ' _ _

£i,(z) + Eb*(z)A(z)      Eb(w) + Eb(w)A(w)

' Eb(z) - Eb*(z)A(z)      Eb(w) - Eb(w)A(w)

when z and w are not real, provided A(z) is extended to the half plane y<0

so that^*(zM(z) = l.
We claim that when z and w are not real

i(w - z) r  Eb(l)        dp(t)

x      J    Ea(i) (t - z)(t- w)
(42)

2£„(z)_2Eg(w)

' Eb(z) - Eb*(z)A(z)      Eb(w) - Eb(w)A(w)

as an absolutely convergent integral. The formula is derived most easily in

the case that Eb(z) has a nonreal zero s. We use formula (32) with £(z)
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= Eb(z) and to replaced by 5, and formula (32) again with z replaced by w

and to replaced by s. Formula (42) follows on using the partial fraction expan-

sion (w-z)(t-z)-1(t-w)-1 = (s-z)(t-z)-1(t-s)~1-(s-w)(t-w)-1(t-s)-1

and (41). The case in which Eb(z) has no nonreal zeros can be obtained as a

limiting case of the case with zeros, as in the proof of Theorem V.A; we omit

the details.

If in (42), we take the complex conjugate of each side and interchange z

and to, we find that when z and to are not real

i(w - z)  r   Eb(t) dn(t)

r      J    Ea(t) (t-z)(t-w)

_ 2Ea(w)_2E*(z)

~ Eb(w) - Eb(w)A(w)      Eb*(z) - Eb(z)A*(z)  '

Formula (11) now follows from (32) with E(z)=Eb(z), and from (41), (42),

and (43), using (36).

Proof of Theorem IX, the sufficiency. The proof is so closely analogous

to the proof of sufficiency for Theorem VI, that it is not included explicitly.

Proof of Theorem X.A. The existence and uniqueness of solutions of the

differential equations (13) with the given initial conditions will not be shown,

since similar results are presented in Stone [ll]. Since Co, So, G, Si are real,

the uniqueness implies that CQ(t, z), S0(t, z), Ci(t, z), Si(t, z) are real for real z.

By the equations (13), C0(t, z)Ci(t, z)+So(t, z)Si(t, z) is absolutely continuous

with respect to t and has a derivative of zero a.e. This function must then be

independent of t and have the value 1 which it has at / = 0 by hypothesis.

This verifies (5). Similarly, for each real number a, we find on computing the

derivative of the function

{ \S0(l, z) cos a — Ci(l, z) sin a] X [C0(t, z) cos a + Si(/, z) sin a]

= [Co(l, z) cos a + Si(l, z) sin a] X [So(l, z) cos a — Ci(t, z) sin a]}/(z — z)

that it is nondecreasing as a function of t. Since it vanishes for t = 0, it is non-

negative for all values of t. Formula (6) now follows from the arbitrariness

of a, as well as the inequalities | E0(t, z) | ^ | E0(t, z) | and | Ei(t, z) | ^ | Ei(t, z) |

for y>0.

Proof of Theorem X.B. The recurrence relations (14) imply that

CB(n + 1, z) = (1 — zbn)Co(n, z) — zanS0(n, z),

S0(n + 1, z) = (1 + zbn)So(n, z) + zcnC0(n, z),

(44)
Ci(n + 1, z) = (1 + zbn)Ci(n, z) — zcnSi(n, z),

Si(n + 1, z) = (1 - zbn)Si(n, z) + zanCi(n, z).

Since an, bn, c„ are assumed real, we see inductively that Co(n, z), S0(n, z),

Ci(n, z), Si(n, z) are real for real z. It follows from (44) that
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C0(n + 1, z)G(w + 1, z) + So(n + 1, z)Si(n + 1, z)

= Co(n, z)Ci(n, z) + S0(n, z)Si(n, z).

Since GG+GG=1 by hypothesis, we see inductively that (5) holds for

every n. It also follows from (44) that

{[S0(n, z) cos a — Ci(n, z) sin a] X [C0(n, z) cos a + Si(n, z) sin a]

— [C0(n, z) cos a + Si(n, z) sin a] X [So(n, z) cos a — Ci(n, z) sin a]}/(z — z)

is a nondecreasing function of n. Since it is zero when « = 0, it is non-negative

for all n. Formula (6) now follows from the arbitrariness of a, as well as

the inequalities \E0(n, z)\ S\E0(n, z)\ and |£i(«, z)| ^|£i(ra, z)\ for y>0.
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