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Introduction. It is shown in this paper that the identity component of the

group G(M) of all homeomorphisms of a closed manifold of dimension ^3 is

(1) simple in the algebraic sense;

(2) equal to the group of deformations of M (i.e., the group of homeo-

morphisms of M isotopic to the identity homeomorphism) ;

(3) open in G(M).
The proofs for dimensions 2 and 3 are given separately; the proof for

dimension 1, the circle, is not given here, but can be modeled after the proof

for dimension 2.

Theorem 9 of this paper (the main tool in obtaining the above results in

the case ra = 3) is very similar toa recent independent result of Kister appear-

ing elsewhere in this journal (see also [l]).

It is possible to deduce from the above results that the space of homeo-

morphisms of M is locally arcwise connected. However, since this is a quite

special case of more general theorems of Hamstrom and Dyer [2 ] and Ham-

strom [3], we omit the proof.

It is also shown in this paper that if ra^3, then the group of deformations

of the sphere 5„ is of index 2 in G(Sn). Furthermore, we find a characteriza-

tion of homeomorphisms of degree 1 on a closed orientable manifold M of

dimension ^3 which admits a homeomorphism of degree —1. Finally, we

conclude as a corollary that if ra^3, then two homeomorphisms of 5B are

isotopic if and only if they are homotopic.

These two sets of results are related by the following fact. In showing the

results of the first paragraph, we show that if M is a closed manifold of dimen-

sion ^3, then a homeomorphism A of M is a deformation if and only if

A = Ai ■ ■ ■ hk where A,- is a homeomorphism of M which is the identity out-

side some internal closed «-cell £,• in M,n = dim M (a closed cell is internal if

it lies in an open cell ; actually, we do not use all of the internal closed ra-cells

in M.) In showing the results of the second paragraph, we show that if M

is a closed orientable manifold of dimension ^ 3 which admits a homeomor-

phism of degree — 1, then a homeomorphism A of M is of degree 1 if and only
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if A = Ai • ■ • fa where A< is a homeomorphism of M which is the identity

inside a closed «-cell in M, « = dim M (again we do not use all of the closed

«-cells in M).

The history of these problems is, to the best of my knowledge, as follows.

In 1914, Tietze showed that the group of indicatrix-preserving homeomor-

phisms of the 2-sphere S2 is of index 2 in the group G(S2) of homeomorphisms

of S2 [4]. This was shown again by Kneser in 1926 [5] who also shows that

G(Si) is locally arcwise connected (see [2]), and that these results hold also

for G(5i). In 1928, Baer showed that two homeomorphisms of an orientable

closed 2-manifold are homotopic if and only if they are isotopic [6; 7]. In

1934, Schreier and Ulam [8; 9] showed the index 2 result for the arc-com-

ponent of the identity of G(Si) and G(S2), and they showed that the arc-

component of the identity of G (Si) is simple (using results of Kneser [10 ]

and Poincaré [ll]). In 1947, Ulam and von Neumann announced in an ab-

stract [12] that the component of the identity of GOS2) is simple. In 1955,

Fine and Schweigert studied G(7) and G(Si) (where 7/ is the closed arc) [13].

They found the normal subgroups of G(7), obtained a group-theoretic char-

acterization of G(7), and proved certain theorems on the factoring of homeo-

morphisms of 7/ and Si into involutions. In 1958, Anderson showed that the

groups of all "orientation-preserving" homeomorphisms of 52 and 53 are

simple [14]. Also in 1958, Hamstrom and Dyer showed that the group of all

homeomorphisms of a compact 2-manifold is locally contractible [2]. They

remark that this generalizes results of Fort [15] and Roberts [l6]. In 1959,

Hamstrom announced that the space of homeomorphisms of a compact 3-

manifold is LCn for every « [3]. Roberts observes in [l6] that Sanderson has

proved that the group of all homeomorphisms of S3 is locally arcwise con-

nected.

1. Preliminary remarks on manifolds. Let X denote a topological space,

and A a subspace of X. The complement, closure, interior, and boundary of

A in X are denoted by X — A, Cl(A), Int(.4), and Bndy(^4); or, when neces-

sary, by Cl(A; X), etc. Let G(X) denote the group of all homeomorphisms

of X, with identity e (or, when necessary, ex). Let 7?" denote the «-dimen-

sional cartesian space, with the topology induced by the pythagorean metric

d. For each a in 7?" and each r in R = Rl, set

Cn(a;r) = {x E R": d(x, a) = r},

On(a;r) = {* G R": d(x, a) <r},

Sn-i(a;r) - {x G 7?": d(x, a) = r}.

SetI={xER:0 = x^l}.
A subspace C of 7?" is a closed n-cell in 7?" if there exists a homeomorphism

A of C onto C„(0; 1). Open n-cells and (n — l)-spheres in 7?" are defined sim-

ilarly. A closed «-cell C in 7?" is tame if there exists a homeomorphism A in
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G(Rn) such that A(C) = C„(0; 1). Otherwise the cell C is wild. Tame and wild

open ra-cells and (ra — l)-spheres are defined similarly. Furthermore, tame and

wild m-cells and (m — 1) -spheres in Rn can be defined for any mgra.

It is easily verified that in 2c1, every 0-sphere and 1-cell is tame. Schoen-

flies has shown [17; 18; 19] that in R2 every m-cell and (m — 1)-sphere is

tame, m ^2. The result of Schoenflies on 1-spheres in R2 can be stated as

follows (cf. also the Riemann mapping theorem) :

Schoenflies extension theorem. Let S and 5' be 1-spheres in R2, let A

be any homeomorphism of S onto S', let B and B' be the bounded components of

R2 — S and R2 — S' (Jordan curve theorem), let C=SOB and C = S'OB', and

let A be any 2-cell in R2 such that COC'Qlnt(A). Then there is a homeomor-

phism h! of C onto C such that h'\ 5 = A, and h! can be extended to a homeomor-

phism h* in G(R2) such that h*\R2—A is the identity.

In R3, the situation is quite different. Antoine [20] and Alexander [21]

have shown that there are m-cells and (m — 1)-spheres, 1 gm^3 (except for

0-spheres), which are wild in R3 (see also Fox and Artin [22]). Nevertheless,

a partial substitute in R3 for Schoenflies' theorem can be obtained by combin-

ing a result of Alexander [23] as proved by Graeub [24] (and Moise [25]),

and results of Bing [26; 27; 28] which were originally obtained using results

of Moise [29].

A manifold or n-manifold is here a connected separable metric space each

point of which has a neighborhood (open set in the metric topology on M)

whose closure in M is homeomorphic to Cn(0; 1). If ra = 0, connectedness is

not required; a 0-sphere, consisting of two points, is a 0-manifold. More

precisely, it is required that if x is in M, then for some neighborhood U of x,

there is a coordinate homeomorphism k of CB(0; 1) onto C1(Z7). If C is a tame

closed ra-cell in 2?", then there is an A in G(Rn) such that A(G) = CB(0; 1),

and kh is a homeomorphism of C onto Cl(£7). Any such AA is also called a

coordinate homeomorphism.

The core of M, denoted by Core(M), is the space of all points of M which

have a neighborhood homeomorphic to On(0; 1). The rim of M, denoted by

Rim(M), is the space M-Core(M). Thus Core(M) is open in M, and

Rim(M) is closed in M. (The core and rim of a manifold are traditionally

called the interior and boundary; in this paper, the latter words are reserved

for the point-set concepts with these names.) A manifold M is closed if it is

compact and rimless (Rim(M) = 0).

Cells and spheres in M are defined as in R". Let F0 be a subspace of M.

A subspace F of M is tame with respect to F0 if there is an A in G(M) such that

h(F) = £o- Otherwise, F is wild with respect to F0.

We note, for later use, the following two easily verified facts: (1) if M

is an ra-manifold, then Rim(M) (which is closed in M) is nowhere dense in

M; (2) if M is connected, then so is Core(M).
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2. The smallest nontrivial normal subgroup G°(M). A closed «-cell F in

an «-manifold is internal if there is an open «-cell U=k(On(0; 1)) in M such

that, for some C„(d; r) in O»(0; 1), F = k(Cn(a; r)). Thus such an F lies in

Core(M). (It appears to be true that any closed «-cell in Core(M) is internal*

but this will not be needed in what follows.)

Let $ denote the set of all internal closed «-cells in M. Let E°(M) denote

the set of all A in G(M) such that, for some F in ï, A is the identity on M—F;

this happens if and only if A is the identity on M-lnt(F). Such an A is the

identity outside F, or supported on F, and F is the support of A. If A is in

E°(M), say A is supported on F in ï, then A-1 is also supported on F, so A-1

is in E°(M). If /is in G(M), then/A/-1 is supported on /(£). The homeomor-

phism/A of O„(0; 1) onto/(f7) is a coordinate homeomorphism for f(U), and

fk(Cn(a; r))=f(F), so /(£) is in £. Hence/A/"1 is in £°(Af). Let G°(M) be
the subgroup of G(M) generated by E°(M). Since E°(M) is closed under in-

version and conjugation, G°(M) is a normal subgroup of G(M), and A is in

G°(71i) if and only if A can be factored into a finite product, h — fa- • -fa,

of homeomorphisms A,- of M, each supported on some £< in F.

In this section it will be shown that G°(M) is the smallest nontrivial

(?*e) normal subgroup of G(M), and that it is simple.

Theorem 1. Let M be an n-manifold. If F is any internal closed n-cell in

M, and F' is any closed n-cell in M, there is a homeomorphism f in G°(M) such

thatf(F)EF'.

Proof. As we remarked in §1, Core(M) is connected. The set F' of all

interiors of cells of F is an open covering of Core(M). Hence, by a standard

theorem of topology, there is a finite collection Vi, • • • , Vk of cells from F'

such that F,nF<+i?í0, Fi meets Int(70 and Vk meets Core(F'). We may

assume Fi = Int(£). Each C1(F.) is in F. Hence C1(F<) =fa(C,)Efa(0), where
the ki are coordinate homeomorphisms, C,= C„(a,-; n), and O = O„(0; 1). It is

easily seen that ^< = Int(Cl(F,)nCl(Fi+i))Fí0. Select 7?, = C„(tV, si) in
krl(¿i)- There exists an £ = Cn(0; t),t<l, such that DJJdEEEO for every

*'. It is easy to describe a homeomorphism A,- of 0 which takes C.onto £\and

is supported on £. Define /< by fi = kifakr1 on A,(£) and /< = identity on

M-lnt(k,(E)). Then/,- is in E°(M) and takes C1(F<) into A{. The homeo-

morphism /=/*-i • • -/i is in G°(M), and takes Cl(Fi) = F into Ak-iEF'.
The next theorem stems from a theorem of Anderson ([14], Theorem I).

Theorem 2. Let M be an n-manifold, and take any h^e in G(M). If f is

in G°(M), then f is a product of conjugates of A a«¿ A-1 by homeomorphisms in

G°(M).

Proof. As we remarked in §1, Rim(ilT') is nowhere dense in M. Hence, by

the continuity of A-1 and the assumption h^e, there is an x in Core(M) such

that h~1(x) 9^x. Using again the continuity of A-1 and other elementary facts,
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it follows that there is an open ra-cell Z7 = A(O„(0; 2)) in Core(Af) such that

Ur\h~1(U) = 0. We will construct in U a pairwise disjoint sequence of closed

«-cells converging to a point of U and a homeomorphism of M which takes

each ra-cell of the sequence onto the next ra-cell of the sequence.

Let .4o=CB((3/8, 0, • • • , 0); 1/9). Then .40 is a closed solid ra-sphere

with center on the £i-axis which is caught between the two (ra —l)-spheres

5„_i(0; 1/2) and 5„_i(0; 1/4); that is, A0 is contained in the interior of

Cn(0; l/2)-Int(C»(0; 1/4)). Define a function n by n(x)=x on OB(0; 2)

— Int(GB(0; 1)) and n(x) =d(x, 0)x on CB(0; 1) (here 2?" is regarded as a vector

space over R). Set Ai+i = ri(Ai), i^O. The sequence A0, Ai, • • • of closed

solid ra-spheres is pairwise disjoint and converges to the origin 0 of Rn. One

verifies that ri is a homeomorphism of On(0; 2).

Set £ = A(Cn(0; 1)), Bi = k(Al), and 23 = UB<. Then 230, Bu ■ ■ ■ is a pair-
wise disjoint sequence of closed ra-cells in Int(£), and the homeomorphism

defined by r2 = AriA-1 on £ and r2 = identity on M— Int(£) is in £°(M), and

satisfies Bi+i = r2(Bi), i^O. It will be convenient to set r = r2l. Then r is in

E°(M) and r(Bj+i) =Bit t^O, so r takes each ra-cell in the sequence Bi, B2, - ■ •

onto the ra-cell just preceding it in the sequence. Furthermore, r(Bo) misses

B completely.

Let g be any homeomorphism of M supported on the cell B 0. Then

r~lgr{ is supported on r_i(B0) =25,-, i^O. Define ci by (p\Bi = r~igri\Bi and

ci = identity on M— Int(23). In particular, t/>|23o = g|230. One verifies that <f> is

in G(M) (because the pairwise disjoint sequence 2?0, Bit ■ • • converges to a

point). (It is sometimes helpful to think of cp as acting like g on each Bit al-

though this is only true modulo r.) Since BQE and <f> is supported on B,

<j> is supported on £, so <p is in £°(M).

Consider

w = (r-,*-1Ar1*r)(^1*»')Ar1(*'"1A*)

= (r-1<¿>-1A-V>A)r(A-10-1A)<*>.

The first expression for w shows that w is a product of four conjugates of h

and A-1. We will show that w = g. (It is perhaps interesting to note in the

second expression for w that w is a commutator of r and h~l<frlh4>, while

h~l4>~lb4> is in turn a commutator of A and c/>.)

Since <j> is supported on £, A_1tf>-1A is supported on h~l(E). Therefore, since

r is supported on £ and EC\h~1(E) = 0, r(h~l^rlh) = (A~1c/)~1A)r ; that is, r and

h~l4>~lh commute. It follows, after canceling in the second expression for w,

that w = r~l4>~lr<p. Since <j> is supported on B and whenever x is not in 23, r(x)

is also not in 23, w is supported on 23. An easy calculation shows that w\ Bi

= identity for teil. In this connection, note that <f>\ B i = r~igri\ B, (so tí» "puts

g on each Bi"), r takes B{ back to 23,_i, c/r1!^^-«-^-1^-1^-! (so

0_1 "puts g~l on each B,_i" and "cancels the g which </> put there"), and r~l

takes each B,_i back to Bi. Thus w is supported on B0. On 230, the action of w
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is different, and in fact w\ 730 = g| 730. For, <p is g on 730, r moves 730 onto the

set r(Bo) which misses 73, <j>~1 leaves r(B0) pointwise fixed since it is supported

on 73, and r-1 takes r(B0) back onto 730 (with g "left on it"). Hence, since w

and g are both supported on 730 and w|73o = g|730, w = g.

Take any/ in E°(M), say/ is supported on the internal closed «-cell F.

By Theorem 1, there is a homeomorphism / in G°(M) such that t(F)EBo-

The homeomorphism tft~l of M is supported on t(F), therefore on 730. Hence,

as we have just shown, tft~l = (r~lfa'yh~'ifa)(r~lhr)h'~l(<b~lh4>). Therefore

f=(t-ir-1<p-1h~l<l>rt)(t-1r-1hrt)(t-1h-H)(t-i<b-1h<bt), so / is a product of four

conjugates of A and A-1 by homeomorphisms in G"(M). If / is in G°(M), say

f=h ' ' "/* where each/,- is in E°(M), then each/, is a product of four con-

jugates of A and A-1, so/ is a product of 4k conjugates of A and A-1, by homeo-

morphisms in G°(M).

A subgroup 73 of a group A is normal ii aB = Ba for every a in A or, what

is the same, if for every a in A and o in 73, the conjugate aba'1 is in 73. A

subgroup 73 of a group A is nontrivial if 73 ̂ e, and proper if 73 ¿¿e and B^A.

A group C is simple if it has no proper normal subgroups.

Theorem 3. Let M be an n-manifold, and let N be the set of all nontrivial

normal subgroups of G(M). Then G°(M) =ri7V, and this group is simple.

Proof. Since G°(M) is a nontrivial normal subgroup of G(M), to obtain

the first conclusion it is sufficient to show that if N is any nontrivial normal

subgroup of G(M), then G°(M)C7V. Take any such TV, and any h^e in N.

If/ is in G°(M), then, by Theorem 2, / is a product of conjugates of A and

A-1. Hence/is in 7Y, so G<>(M)EN.

If A ¿¿e is a subgroup of G°(M), normal in G°(M), h?*e is in A, and/ is in

G°(M), then, by Theorem 2, / is a product of conjugates of A and A-1 by

homeomorphisms in G°(M), so/ is in A. Hence A =G°(M), which means that

G°(M) is simple.

Two homeomorphisms g and A in G(X), X any space, are isotopic if

there is a family {Til}, tEI, each Ht in G(X), such that Ha = g, Hi = h, and

the function H from MXI onto M defined by H(x, t) =Ht(x) is continuous;

that is, g and A are homotopic, and the homotopy is at each stage a homeo-

morphism of X. An A in G(X) which is isotopic to the identity e is a deforma-

tion of X. The set of all deformations of X is denoted by D(X).

Theorem 4. The set D(X) of deformations of a space X forms a normal sub-

group of G(X). If X = M is an n-manifold, then every f in the group G°(M) of

homeomorphisms of M is a deformation of M. (Cf. the theorem of Veblen and

Alexander [30; 31].)

Proof. The family {77,}, Ht = e for all t in I, is an isotopy of e and e. If

{Ht} is an isotopy of A and e, then {77i_,A-1} is an isotopy of A-1 and e. If

{77/} is an isotopy of g and e, then {gHu: 0 = t = 1/2}U{77¿_i: l/2=t^l}

is an isotopy of gh and e. lí p is in G(M), then {pHtp~1} is an isotopy of
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pAp-1 and e. Hence D(X) is a normal subgroup of G(X). The second state-

ment of the theorem now follows from Theorem 3.

3. Deformations of a 1-sphere or closed 2-manifold. It is easily verified

that every 1-manifold is triangulable. It is known that every 2-manifold and

3-manifold is triangulable (Rado [32], Gawehn [33], Moise [29], Bing [26;

28]). These facts will be used throughout the rest of this paper.

If X is a compact space, F is a metric space with metric d, and/ and g are

(continuous) maps of X into Y, then

p(f,g) = lnh{d(f(x),g(x):xQX}

defines the Frêchet metric in the set of all maps of X into Y. If X= Y, then

the set G(X) of homeomorphisms of X is a topological group in the topology

induced by p (see, e.g., [3]).

We will need the following theorem, which can be thought of as an exten-

sion of the theorem of Schoenflies quoted in §1. A proof of this theorem can

be found in [2, Lemma 2], or can be obtained using conformai mapping

theory. The referee has informed me that Roberts has also given a proof of

this theorem (mentioned by him in [16]).

Theorem 5. Let dA and dB be two circles in R2 with center at the origin 0

bounding the closed discs A and B, where AQB. For every r>0, there is an

s>0 smcA that, given any homeomorphism h of A into B for which d(x, h(x)) <s

for every x in A (i.e., p(h, es) <s), there is a homeomorphism h* in G(B) such

that A*|.4=A, h*\dB = identity, and d(x, h*(x))<r for every x in B (i.e.,

p(h*,eB)<r).

Theorem 6. Let M be a closed 2-manifold or the 1-sphere. There is a number

s>0 such that, if A is in G(M) and p(h, e) <s, then A is in G°(M). That is, the

subgroup G°(M) of the topological group G(M) contains a neighborhood of the

identity e, open in G(M).

Proof. A proof for M a closed 2-manifold will be given; the case M = 5i

can be handled analogously.

Let T be a euclidean 2-complex which triangulates M, and <p a homeomor-

phism of T* onto M. Since M is a closed 2-manifold, so is the polyhedron T*.

We will first prove the theorem for T*.

Let T' denote the subdivision of T obtained by joining each barycenter

of a 2-simplex of T to the three vertices of that simplex. Let Tm denote the

second barycentric subdivision of T. Let Ui, ■ ■ ■ , Uk be all those subspaces

of T'* which are the union of two closed 2-simplexes of T' which have a com-

mon edge in T. Since T is finite, there are only a finite number of such sets.

We may assume that each Ui and each 2-simplex of T is internal (for exam-

ple, we could take a covering of T* by open 2-cells and a complex K of all

whose simplexes are of diameter less than a Lebesgue number of this cover-

ing, and then start from the beginning with K). Let V be the union of the
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closed stars in T<-2) of the vertices of T (the closed star S[2) in Tf1 of a vertex

Vi of T is the union of all closed simplexes of Ti2) which contain »<). Let r > 0

be the least distance between any two components of T'* — V, where T{ is

the 1-skeleton of T' (the set of closed 1-simplexes in T').

We assert that any/ in G(T*) satisfying/! V = identity and p(f, e) <r/2-

is in G°(T*). In fact, let 5 be a 2-simplex of T'. Let gs be defined on Bndy(S)

by gs —f on the edge of 5 which is in T, and gs = identity on the other two

edges of S; this is possible since/| V = identity. Then gs is a homeomorphism

whose domain is Bndy(S). Since p(f, e) <r/2, the range of gs is contained

in the Vi containing S. By the Schoenflies theorem quoted in Chapter I, gs

can be extended to a homeomorphism whose domain is 5 and whose range

is contained in the Í7,- containing S; denote the extension of gs again by gs.

The homeomorphisms gs, S in T, can be pieced together in an obvious way

to obtain a homeomorphism g' of T* (there are 2k of the homeomorphisms

gs, where k is the number of edges in T). The homeomorphism g' is the

identity on Bndy(t7.) for each i. Hence g'=gl • ■ ■ g¿, where gí\ Ui = g'.

Therefore, since each 77,- is an internal closed 2-cell in T*, g is in G°(7"*).

Now/=g'g'-1/, and since g' =f on the boundary of every 2-simplex in T,

we have that g'-1/ is the identity on the boundary of every 2-simplex S in T.

Hence, as in the last paragraph, g'~1f=fi • • •/*', where /,] S = g'~lf\ S; the

integer k' is the number of 2-simplexes in T. Since each 2-simplex S in T is

internal, g'~lf is in G°(T*). Therefore, since g' is in G°(T*), so is g'g'_1/=/.

We now assert that there is a number s>0 such that, if A is in G(T*)

and p(h, e) <s, then there is a g in G"(T*) such that g_1A| F= identity, and

p(g~lh, e) <r/2. The theorem (for T*) follows from this assertion, since if A

is in G(T*), p(h, e) <s, and g in G°(T*) is of the kind just described, then

A = gg_1A and, by what we proved above (taking f = g~1h), g-1A is in G°(T*);

hence A is in G°(T*).
Let Vi, • • • , vm be the vertices of T (by the Euler-Poincaré formula,

m = x(T*)+k — k', where x(T*) is the Euler characteristic of T). Let Sj1' be

the closed star of î\ in the first barycentric subdivision T(1) of T, and let

Sj2) be the closed star of vt in the second barycentric subdivision Tm. Let A

and 73 be the closed discs of Theorem 5, and let fa. he any homeomorphism of

73 onto S[^ which takes A onto £[2) (that such a fa. exists is a consequence of

the Schoenflies extension theorem, see, e.g., [19]). Let d be the pythagorean

metric in 7?2, and let d' be the pythagorean metric in T* (subspace of 726).

Let r'>0 be so small that if d(x, y) <r', then d'(<f>i(x), fa(y)) <r/4 for all x
and y in 73 and all i; such an r' exists because of the uniform continuity of the

fa. on 73. Let s' >0 be so small that if / is a homeomorphism of A into 73 and

p(f, es) <s', then/has an extension/* to 73 such that/* = identity on Bndy(73)

and p(f*, eB) <r'\ such an s' exists by Theorem 5. Let s>0 be so small that

5<r/4 and, if d'(x', y') <s, then d(fa~l(x'), fa~l(y'))<s' for all x' and y' in

St^; such an s exists by the uniform continuity of the c^r1 on S?\

Take any A in G(T*) such that p'(h, eT') < s.  If x is  in A, then
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d'(htpi(x), (¡>i(x))<s for all i. Hence d(4>Tlh^>i(x), $t14>í(x)) =d(c/>r1A<í>¿(x), x)

<s', so p(4>r1h<pi\A, Cb) <s' for all *. Therefore <bTlh<bi\A has an extension

A¿* to B such that A*| Bndy(23) = identity and p(h,*, e¿)<r' for all i. Since

d'(h*<pTl(x'), (br^x')) <r' for all x' in 0(23) = 5?' and all i, we have

d'(<pihi*4>Tl(x'), <pi <Pr1(x'))=d'(<l>ih*<pr1(x'), x') <r/4 for all x' in 5J1* and all i.
Define A¿ by A,(;c') = W>tA *c/>rl) (*') for a;' in 5}1' and A< = identity otherwise;

this is possible because A¿*| Bndy(23) = identity. Then p'(A„ er*)<r/4,

A,-15f = A| Sf, and A< is in G°(T*).
Let g = Ai • • • hm. Then g is in G°(T*) and, because the supports 5J1' of

the hi meet only in edges on which they are the identity, p'(g, er')<r/4.

Hence p'(g~lh, eT')úp'(g-\ eT')+p'(h, ef)=p'(g, eT-)+p'(h, er«)<r/4+r/4

= r/2. Moreover g\ Sf = hi\ Sf = h\ 5j2). Therefore g~% = identity on 5f, î
= 1, •• -, m, so g-1A = identity on V=\JSf.

This proves the theorem for T*. To prove the theorem for M, let d" be

the given metric in M, and let / > 0 be so small that if x and y are in Af and

d"(x, y)<t, then d'(<p~1(x), $-1(y)) <s; such a Í exists by the uniform con-

tinuity of the triangulation homeomorphism c¡> oí T* onto M. Take any A in

G(M) such that p"(A, eM) <t. Then p"(fop, 4>) <t, so p'(4rlhp, cr*) <s. There-

fore 0_1A0 is in G"T*), so 0_1Ac6=/i • ■ •/*,/< supported on FiQT*. Hence

A = dyfrf-tytdy-1 ■ ■ ■ 4>fk<tr\

<j>ft4>~1 supported on <p(Ft)QM. Hence A is in G°(M).

In connection with the following theorem, we note that the identity

component Ce(M) of the topological group G(M) is the largest connected

subspace of G(M) containing e; in any topological group, the identity com-

ponent is a closed normal (topological) subgroup. We also note that it is

easily verified that D(M) is the arc-component of the identity in the topo-

logical group G(M); that is, D(M) is the set of all A in G(M) which can be

joined to e by an arc lying in G(M).

Theorem 7. Let M be a closed 2-manifold or the 1-sphere. The identity

component Ce(M) of the group G(M) of all homeomorphisms of M is simple,

open in G(M), and equal to (1) the group G°(M) of all A in G(M) such that

A = Ai • • • A* where hi is supported on an internal closed 2-cell £,• in M (or

1-cell if M=Si), and (2) the group D(M) of all deformations of M (all A in
G(M) isotopic to the identity e).

Proof. By Theorem 6, G°(M) is an open subgroup of G(M) (since the

neighborhood of e can be translated to any point of G°(M)). Therefore G°(M)

is a closed subgroup of G(M).

As we remarked above, Ce(M) is a closed normal subgroup of G(M), and

by its definition it is connected. By Theorem 3, Ga(M)QCe(M). Since G°(M)

is open and closed in G(M) and contained in Ct(M), it is open and closed in

Ce(M). Hence G°(M) = Ce(M). Since G°(M) is open in G(M), so is Ct(M).

Since D(M) is the arc-component of e, it is connected and contains e, so
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D(M)ECe(M).  By Theorem 4,  G°(M)ED(M). Therefore G*(M) =D(M)
= C.(M)-

4. Deformations of a closed 3-manifold. The terms locally tame, locally

polyhedral, and piecewise linear used in this section are defined in [26].

In place of the Schoenflies extension theorem of §1, and Theorem 5 of §3,

the following three theorems will be used:

Alexander's extension theorem [23] (as proved by Graeub [24, Theo-

rem 1, §5]). Let S and S' be polyhedral 2-spheres in a triangulated 3-manifold

M which are contained in the interior of a closed polyhedral 3-cell A in M, let

B and 73' be the rimless components of A—S and A—S' (Jordan-Brouwer

theorem), and let C=SV)B and C' = 5'U73'. There is a piecewise linear homeo-

morphism h' of C onto C such that h'\ S = h, and A' can be extended to a homeo-

morphism A* in G(M) such that A*| M — A is the identity.

Note. Graeub only shows that A can be taken to be a 3-simplex. How-

ever, if A is polyhedral, then lnt(A) can be taken piecewise linearly onto 7?3,

a 3-simplex containing the images of C and C chosen, Graeub's version of

Alexander's theorem applied, and then the whole taken back to Int(.4).

Bing's extension theorem [26]. Let M be a triangulated 3-manifold, C a

closed subspace of M, K a locally tame closed subspace of M such that K is

locally polyhedral at each point of KC\C, and <p a positive continuous function

on M—C. There is a homeomorphism f in G(M) such thatf(K) is a polyhedron,

f is the identity on C, and d(x, f(x)) <<p(x) for every x in M— C.

Sanderson's extension theorem [34]. Let L be a closed polyhedral 2-

manifold in a closed triangulated 3-manifold M, let U be an open neighborhood

of L, and take any s>0. There is an r>0 such that if h is a piecewise linear

homeomorphism of L into M and p(h, e) <r, then there is a piecewise linear

homeomorphism g in G(M) such that g\L = h\L, gis the identity on M— U, and

p(g, e)<s.

Note. Sanderson proves there is a simplicial s-isotopy which takes h(L)

pointwise onto L and is the identity on M— U. If / is the end-stage of such

an isotopy, fhix) =x for all x in L. We take g=f~l.

Theorem 8. Let M be a closed 3-manifold. There is a number s>0 such

that, if h is in GiM) and pih, e) <s, then h is in G°iM). That is, the subgroup

Ga(M) of the topological group GiM) contains a neighborhood of the identity e,

open in GiM).

Let r, denote the 7-skeleton of a triangulation T of M. We will consider

tubular neighborhoods of T*, as defined by Moise in [35].

We will deal first with homeomorphisms of M which are the identity in-

side of a tubular neighborhood TV of TV. By the definition of tubular neighbor-
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hood, N is polyhedral in M (with respect to T). Let V be the subdivision of

T obtained by taking the join of each barycenter of a 3-simplex of T with

the vertices of that simplex. It follows from the definition of tubular neighbor-

hood that the components of T2* — N are the interiors of a disjoint collection

of closed polyhedral 2-cells in M, each lying in a face of some tetrahedron of

T. Let ii>0 be the least distance between components of T2* — N, let <2>0

be the least distance between a component of T* — N and a 2-simplex of T2

not in T2, and set / = min {tu t2 ). Let A be any homeomorphism in G(M) such

that p(A, e) <t/2 and h\ N=identity. We will show that A is in G°(M).

Consider, on each 2-simplex s2 in T2, the homeomorphism A|s2. Because

A| N is the identity and p(A, e) <t/2, h(s2) is contained in the union U = s3Ot3

of two simplexes s3 and t3 of T{ which have s2 as a common face. By Bing's

extension theorem, there is a homeomorphism / in G(M) such that / is the

identity on all 2-simplexes of Tí except those in Tt, p(f, e) <t/2, and /A(s2)

is a polyhedral 2-cell (take K to be h(T2*), and C to be the union of the 2-

simplexes of T2 not in T2; then Ki~\C= 0). Since p(fh, e) <t, fh(s2) is con-

tained in U. Now fh(s2) together with the three faces of s3 besides s2, and

/A(s2) together with the three faces of t3 besides s2, form two polyhedral 2-

spheres 5 and 5'. Define a homeomorphism A, on Bndy(s3) by hs\s2—fh\s2,

and A, = identity on the other three sides of s3; define similarly an ht for fs.

By Alexander's extension theorem, there is an extension cp, of A„ to s3, and

an extension <pt of A( to t3. The homeomorphisms <p, and <pt agree on s2, and

can be pieced together to give a homeomorphism <pu of U which is the identity

on Bndy(t/), and/A on s2. The homeomorphisms <pu (one for each s2 in T2)

can be pieced together in an obvious way to give a homeomorphism <p of

T* such that <p is the identity on each Bndy([/), and fh on each s2 in T2.

The homeomorphism /_1<f> is also the identity on each Bndy(tV), and is A on

each s2 in T2. Consider h=f~1<jxf>~1fh. Since /-1tf> is the identity on each

Bndy(¿7), it can be factored into a finite number of homeomorphisms, each

the identity outside a U. We may assume that U is an internal closed 3-cell

in M (by starting out with a triangulation T of sufficiently small mesh).

Therefore /_1cf> is in G°(M). Since c6-1/ is A-1 on each s2, <f>-1/A is the identity

on each s2. Hence c6_1/A can be factored into a finite number of homeomor-

phisms, each supported on an s3 in T3. We may assume that each s3 is internal.

Then cp^fh is in G°(M). Therefore /-'cixfr'/A = A is in G°(M).

We will now deal with homeomorphisms which are the identity outside

a tubular neighborhood Ni oí T* lying in the interior of a tubular neighbor-

hood A^ of 7i*. On each 1-simplex s1 in 7\, select three inner points x, y, z (in

the cylindrical part of N2), and three polyhedral discs Dx, Dv, Dt which are

disjoint cross-sections of (the cylindrical part of) N2; they are to contain,

respectively, x, y, z. Assume that y is between x and z on s1, and call Dv the

middle disc for s1, and Dx, D, the end discs for s1. We assume that this has

been done in such a way that to each edge in 7\ there have been assigned ex-
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actly three discs. Let tíi>0 be the least distance, for any s1 in T\, between a

middle disc of an sl and its two end discs. Let tí2>0 be the distance from

Bndy(TVi) to Bndy(TV2). Let 7i = min{«i, tí2}, and take any homeomorphism

A in G(M) such that A is the identity outside TVi and p(h, e) <u/2. We will

show that A is in G°(M).

Each two end discs Dx, Dt of an s1 in Ti determine in TV2 a polyhedral

3-cell consisting of Dx, Dt, and that component of TV2 — (DXVJD,) which con-

tains the point y of s1. Denote one of these cells by V. The middle disc Dy

splits V into two smaller polyhedral 3-cells W and W. Bndy(JF) consists,

say, of Dx, Dy, and that part of Bndy(F) between Dx and Dy, and Bndy(JF')

consists of Dy, Di, and the rest of Bndy(F). By Bing's extension theorem,

there is an/ in G(M) such that/ is the identity outside each V, p(f, e) <u/2,

and fh(Dy) is a polyhedral disc for every Dy (take K to be the union of the

sets h(Dy) and C to be Bndy(TV2)). Define a homeomorphism hw on each

Bndy(JF) by setting Ajr = identity except on Dv, where hw is fh\Bndy(W);

define similarly an hw for each Bndy(IF'). Each hw is then a homeomorphism

of a polyhedral 2-sphere onto another such, so by Alexander's extension

theorem, there is a fay taking the 3-cell W bounded by the first 2-sphere onto

the 3-cell bounded by the second; and similarly there is a fay for W. Each

fay and fay can be pieced together to give a homeomorphism of V which is

the identity on Bndy(F), and agrees with/A on Dy. The homeomorphisms so

obtained (one for each s1 in 7\) can be pieced together to give a homeomor-

phism <b in G(M) which is the identity outside the union U of the sets V, and

is /A on each Dy. The homeomorphism /-1<fj is also the identity outside U,

and it is A on each Dy. Consider A =f~1faj>~1fh. Since /-1$ is the identity out-

side U, it can be factored into a finite product of homeomorphisms, each sup-

ported on some one of the 3-cells V; hence /_10 is in G°(M). Since c/r"1/ is

A-1 on each Dy, fa~lfh is the identity on each Dy. Consider the sets P which

are obtained by running out from a vertex v of T, along each edge of T

which meets this vertex, until we come to the Dy corresponding to this edge,

and then taking the union D of these sets Dy together with that part of

Ni — D which contains v. It follows from the definition of tubular neighbor-

hood that the sets P are 3-cells. Now, since <b~lf is the identity outside U,

it is the identity outside TV2 (since £/GTV2), and A is the identity outside TVi

by hypothesis. Therefore, since TViGTV2, A is the identity outside TV2, so

</>_I/A is the identity outside TV2. Furthermore, since /_10 is A on each Dx,

<b~lf is A-1 on each Dx, so fa~lfh is the identity on each Dx. Thus c/>-1/A can be

factored into a finite product of homeomorphisms each supported on some

one of the 3-cells P. Therefore fa~lfh is in G°(M). Therefore/~10<¿>-1/A = A is

in G\M).
Now let TVi, TV2 and TV3 be three tubular neighborhoods of 7V such that

TViCInt(TV2) and TV2CInt(TV3). Let i>0 be as in the second paragraph of the

proof (using now components of T{ — TVi), and let «>0 be the number of

the last paragraph, determined by discs in N3. Let w = min {t/6, w/6}. By

Sanderson's extension theorem, there is an r such that, if g is any piecewise
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linear homeomorphism of BndyiA7!) into M such that p(g, e) <r, then there

is a piecewise linear <p in G(M) such that <b\ Bndyí/Vi) =g\ BndyiA7!), <p is the

identity outside A^, and p(<j>, e)<w (take U to be lnt(N2), and L to be

Bndy(A7i) ; that L is a closed 2-manifold follows from the definition of tubular

neighborhood and the fact that M is closed). Set s = min {w,r/2}. Take any A

in G(M) such that p(A, e) <s. We will show that A is in G°(M).

By Bing's extension theorem, there is an/ in G(M) such that/A(Bndy(Ari))

is a polyhedron, / is the identity outside N2, and p(f, e)<s (take K to be

A(Bndy(7Vi)) and C to be Bndy^) ; then Kf\C=0). Since p(fh, e) <r, and
fh is a piecewise linear homeomorphism of BndyiA7!) into M, there is a piece-

wise linear <p such that <f>| Bndyí/Vi) =/A| Bndy(7Vi), t/> is the identity outside

Nt, and p(<¡>, e) <w. Consider h=f~l<p<irlfh. Since f~x<b is the identity outside

Ni, NtQlnt(N3), and pCf-ty, e)<u/6+u/6<u/2, f~l<p is in G°(M), as we
showed above. Also <b~lfh is the identity on BndyiA7!). Hence <i>_1/A can be

factored into two homeomorphisms, <p~lfh = ab, where a is the identity out-

side Ni and a\ A7i=c/>_1/A| Nu and 6 is the identity inside Ni and b\ M—Ni

=t/>-1/A| M-Ni. We have p(4>~1fh, e) <min{i/2, u/2), so p(a, e) and p(6, e)

are also less than either t/2 or m/2. Hence, as we showed above, o and b are

in G°(M). Thus 4>~lfh is in G°(M), and therefore so \sf~l<p<jrlfh = h.

This completes the proof of Theorem 8.

Theorem 9. Let M be a closed 3-manifold. The identity component C.(M)

of the group G(M) of all homeomorphisms of M is simple, open in G(M), and

equal to (1) the group G°(M) of all A in G(M) such that A = Ai • • • A* where hi

is supported on an internal closed 3-cell in M, and (2) the group D(M) of all

deformations of M (all A in G(M) isotopic to the identity e).

Proof. Same as Theorem 7, using Theorem 8 instead of Theorem 6.

5. The group G(S„), ra^3. Let M be an ra-manifold, and let E'(M) denote

the set of all A in G(M) such that A is the identity inside some closed ra-cell

in M (not necessarily internal). Let G'(M) be the subgroup of G(M) gener-

ated by E'(M). Just as in §2, one verifies that G'(M) is the set of all A in

G(M) such that A = Ai • • • A* for some hi in G(M) such that A,- is the identity

inside some closed ra-cell £,■ in M.

The following lemma is a consequence of the Alexander and Bing exten-

sion theorems quoted in §4.

Theorem 10. Let M be a manifold, dim M ^¡3. There is an internal closed

n-cell Fo in M, ra = dim M, such that, for any A in G(M), there is anfin G°(M)

such that f(Fo) =A(£0) (setwise).

Proof. The cases ra = 0 and ra = l are elementary. If ra = 2, the theorem is

true for any internal closed 2-cell in M ; this follows from the Schoenflies

extension theorem of §1, together with a chain argument similar to that in

Theorem 1.

Let dim M=3, and let M be triangulated by the locally finite complex T.
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Let F0 be an internal closed 3-simplex in some barycentric subdivision

F(<) of T (the open 3-cell in which F0 lies need not be polyhedral). Take an

A in G(M) and let s and s' be closed 3-simplexes in the barycentric subdivision

r<i+2> of F such that iCInt(F0) and s'CInt(A(F0)). Set T'=T<i+2K Since T

is strongly connected, so is V, and there is a chain Si = s, s2, ■ ■ ■ , sr = s' of

closed 3-simplexes from 5 to s' (such that s<Pis,+i is a common 2-face of s,-

and 5,+i). In the second barycentric subdivision F'(2) of T', let Si, • ■ • , 52r_i

be the closed stars in F'(2) of the barycenters of the 3-simplexes s,- together

with the closed stars in F'(2) of the barycenters of the 2-simpIexes s,As<+i.

Each Si is a closed polyhedral 3-cell, and we can assume that Si, • • ■ , S2r-i

are ordered in such a way that each SjVJS.+i is a closed polyhedral 3-cell

and each SiC\Si+i is a closed polyhedral 2-cell. In each 5,-, choose a closed

3-simplex /< such that i,CInt(S,). It is not difficult to describe a homeomor-

phism gí of 5,U5,+i onto itself which takes /, onto i,+i and is supported on

SiKJSi+i (or one can invoke Alexander's extension theorem). Each g/ can

be extended to a g,- in G°(M) by defining g,-1 S,-WS,-+i = g,' and g, = identity

outside Int(5,U5,-+i). The g = g2r-2 • • ■ gi is in G°(M) and g(¿i)=í2r-i, where

hElnt(Fo), tiT-iElnt(h(Fo)). Set íi=í, tW-?.'
Since the closed 3-simplex Fo is internal, say F0 is contained in the open

3-cell U, there is a closed 3-simplex £0' (not a simplex of a subdivision of T',

but a union of simplexes of a subdivision of 7"', or F0VJ(Bndy(F0) XT), where

7 is a sufficiently short interval) such that £oCInt(£o')C£o' C U, and there

is a homeomorphism r' which takes £0 onto t and is supported on £0', hence

can be extended to an r in G°(M) such that r(Fo) =t.

Since A(£o) is internal, h(Fo)Eh(U), there is a closed 3-cell £' such that

A(£o)CInt(£')C£'CA(i7). For example, in k-lhrl(h(U)) =O3(0; 1), where A
is a coordinate homeomorphism for U, there is a C3(0; /) containing

A_1A_1(A(£o)) in its interior; take £' = AA(C3(0; t)). By a theorem of Bing

(Theorem 1 of [27] or Theorem 5 of [28]), there is a polyhedral 3-cell £ such

that A(Fo)GInt(£)C£CA(Z7).
By Bing's extension theorem, there is a homeomorphism p in G(M) such

that p(h(Fo)) =P, where F is a polyhedral 3-cell in M, FCInt(£), and p is

supported on £ (so g is in G°(M)). By Alexander's extension theorem, there

is a homeomorphism q' of i' onto F which is supported on £, and can be ex-

tended to g in G"(M) such that q(t')=P. Hence f=p~lqgr is in G°(M), and

wehave/(Fo)=A(F0).

An Fo satisfying the conditions of Theorem 9 is called a pivot cell in M.

Let Tkf be a manifold, dim 717^3, let Fo be a pivot cell in M, and let T(F0)

be the set of all cells in M tame with respect to Fo (i.e., F is in F(F0) if and

only if there is a w in G(M) such that F = w(F0)). For each F in F(F0), let

F(F) denote the set of all A in GiM) such that, for some / in G°(Tkf), /| F

= A| F. For each F in F(F0), let <2(F) denote the set of all A in G(Tlf) such that,

for some/ in G°(M),/(F) =A(F) and/-^l 73 is in G°(73), where 73 = Bndy F.
(The Brouwer invariance theorem implies that f~lh takes 73 onto itself.)
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A clearer view of the geometric meaning of P(F) and Q(F) can be obtained

by applying Theorems 7 and 9, and replacing the groups G°(M) and G°(B)

by the deformation groups D(M) and D(B). Thus A is in P(F) if and only

if the ra-cell h(F) (ra = dim M) can be "slid back" by an/-1 pointwise onto F

(i.e., f~%(x) =x for all x in F) ; and A is in Q(F) if and only if the ra-cell A(£)

can be "slid back" setwise by an/-1 onto F, and/-1A|23 is a deformation of

the (ra —l)-sphere bounding F.

Theorem 11. Let M be a manifold, dim M^3, and let F0 be a pivot cell in

M. For each F in T(F0), P(F) is a normal subgroup of G(M). For each F in

T(Fo),P(F)=P(Fo).

Proof. Take any F in T(F0) and any A in P(F). By definition, there is an

/ in G°(M) such that f\ F=h\F. Hence /-!A| F = identity. Since G°(M) is
normal in G(M), A"1/-^ is in G°(M). Since hrlf~lh\ F = h~l\ F, A"1 is in P(F).

Take A, g in P(F). Then, as we have just shown, A-1, g_1 are in P(F). Hence

there are p and q in G°(M) such that p\ F=h~1\ F, q\ £ = g-1| F. Since G°(M)

is normal in G(M), A((gt7_1g_1)p_,)A_1 is in G°(M). Hence, since

(hg)(q-1g-1)(p~1h-i)\F = hg\ F, hg is in P(M). Take any k in G(M). Since F
is in T(Fo), there is a w in G(Af) such that F = w(F0). By Theorem 10, there

are r and s in G°(M) such that r(£0) = w(F0) = F, and s(£0) = *w(£0) =k(F).

Set f = sr~1. Then í is in G°(M) and t(F) = k(F). Since G°(M) is normal in

G(M), ^((hth-^ft-^k is in G°(M). Since (k-xhk)(k-H)(h-lf)(t-lk)\ F
= A_1A*|£ (because A-11 F = identity), *_1A* is in P(F). This proves that

P(F) is a normal subgroup of G(M).

Take A in P(£0) and / in G°(M) such that /|F0 = A|F0. Since F is in

T(Fo), there is a w in G(M) such that F = w(F0). By Theorem 10, there is a g

in G°(M) such that g(F0) = w(Fo) = £. We have gAg"1! £=g/g_1| F. Therefore,

since gfg~l is in G°(M), we have that gAg-1 is in P(F). Since, as we showed

above, P(F) is a normal subgroup of G(M), we have that g~1(gAg~1)g = A is in

P(F). This shows that P(F0)QP(F). Since the argument is symmetric in

£o and F, we have P(F) =P(£0).

Theorem 12. Let M be a manifold, dim M^3, orad /e/ F0 be a pivot cell in

M. For any F in T(Fo), P(F)=G'(M). Hence an A in G(M) is in G'(M), so

that h = hi ■ ■ ■ hk, hi the identity inside some closed n-cell £< in M (ra = dim M),

if and only if for any n-cell Fin M tame with respect to Fo, there is a deformation

f of M such that f(x) =h(x) for every x in F.

Proof. Take h in E'(M), say A is the identity inside the closed cell £. By

Theorem 1, there is an/ in G°(M) such that/(£0)E£- Then A is the identity

inside f(F0). Hence there is a homeomorphism in G°(M), namely the identity

e, such that e\f(Fo) =h\f(Fa). Hence A is in P(f(F0)). Now/(£0) ¡s in 7Y£0).
Therefore, by Theorem 11, A is in P(F0). Hence, since P(£o) is a group by

Theorem 11, the group G'(M) generated by E'(M) is contained in P(Fo).

Take A in P(Fo) and / in G°(M) such that f\ £0 = A| F0, so that f~'h\ £0
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= identity. Since G1iM) is normal in GiM), G°(M)EGI(M) by Theorem 3.

Hence / is in G'(M). Also f~% is in GZ(M) (even E'(M)), since f~lh\Fo

»identity. Therefore h=ff~xh is in G'(M). Thus P(F0)EGI(M).
By the previous two paragraphs, P(Fo) =GI(M). Therefore, by Theorem

11, P(F)=GI(M) for every F in T(F0).

The following lemma will be needed later; the group Q(Fo) was defined

just before Theorem 11.

Theorem 13. Let M be a manifold, dim 7li^3, and let F0 be a pivot cell in

M. For every F in T(F0), P(F) = Q(F0).

Proof. Take A in P(F0) and/ in G\M) such that /| F0 = h\ F0. Then f~%\ Bo
= identity, where 730 = Bndy F0, so A is in Ç(F0). Thus P(F0)EQ(F0).

Take A in Q(F0) and / in G°(M) such that f(F0) = A(F0) and f~lh\ Bo is in
G°(73o). By Theorem 4, /""'AIFo is in D(B0). Hence there is a family {Ht}

EG(Bo) such that .CFo =/_1Ä1730, Hi = e\ Bo, and H from T30X7 onto F0 defined
by H(x, t) =Ht(x) is continuous. Since F0 is internal, there is a 77 such that

Fo = A(C„(0; r,)EU=k(On(0; 1)) for some coordinate homeomorphism k

(where n = dim M). Set C=Cn(0; r<), and take C' = C„(0; r') such that

C'CO„(0; 1) and CCInt(C'). Fiber the (generalized) annulus A = C'-C by

the closed arcs obtained by taking the intersection of A with each straight

line through the origin of Rn. Also fiber A by the (« —l)-spheres 5„_i(0; s),

r^s^r'. Define a homeomorphism <p of A as follows. If x is in 5„_i(0; s),

run along the unique arc fiber through x to the point y on A-1(730) =5„_i(0; r)

lying on this arc fiber (an endpoint), move to krlHJt(y) where u = s—r/r'—r,

run back along the unique arc fiber of which krlHuk(y) is an endpoint to the

unique point fax) in which this arc fiber meets 5„_i(0; s). Define a g in G0(M)

by g|A(C')-Int(Fo)=A0A->, g\ Fo=f~lh\ F0, g\ M-lnt(k(C')) = identity.
This definition is consistent, since g|T3o = A#A_1|F0 = AA~1TioAA~1|T3o = TTo|73o

=f~1h\Bo, and setting T3 = Bndy(A(C')), g| B = fabk'1 \ B = kk^Hikk'- \ B
= TFi| B = identity. We have/g| F0 = A| F0. Therefore, since fg is in G°(M), A is

in F(Fo). Thus Q(F0)EP(Fo) =Q(F0). The theorem now follows from Theo-

rem 11.

Let M be an orientable closed «-manifold. In the sequel, when we speak

of a homeomorphism A of degree 1 or — 1 of M, we refer to the original defini-

tion of Brouwer [36]. We will use this concept only in connection with orien-

table closed manifolds of dimension ~3 and the «-sphere, all of which are

triangulable ; hence the original definition in terms of simplicial approxima-

tions can be used. When we say that such a manifold is orientable, we mean

this in the sense of the theory of simplicial complexes. These concepts can,

of course, also be introduced using homology theory, but we will find it more

convenient to use the original definitions.

We recall the following facts about the set 73 (M) of all homeomorphisms

on M of degree 1 (Tkf as in the last paragraph), to be used below. (1) B(M) is a

normal subgroup of G(M). This follows from the fact that if/ and g are any



1960] THE GROUP OF ALL HOMEOMORPHISMS OF A MANIFOLD 209

two maps of M into itself, then degree (fg) = degree (gf) = degree (/) • degree (g).

(2) For any ra, 5„ admits a homeomorphism of degree — 1. Namely, regard

Sn as the boundary of an (ra + l)-simplex, and consider a simplicial homeo-

morphism which interchanges exactly two vertices. Hence B(Sn) is a proper

normal subgroup of G(Sn). (3) Since a homeomorphism of M is either of

degree 1 or —1 (see, e.g., [37]), B(M) is of index 2 in G(M). (A subgroup 23

of a group A is of index 2 in A if there are exactly two left (right) cosets in

.4/23. If B is normal, the "left (right)" can be omitted.)

We note also the following facts about subgroups of index 2 to be used

below. (1) 23 is of index 2 in A if and only if there is an r in A but not in B

such that, for every A in A but not in B, A_1r is in 23; (2) if B is of index 2 in

A, then there is no subgroup of A properly larger than B and smaller than A.

Theorem 14. For any ra, G°(5„) =G'(Sn), and this group is a simple proper

normal subgroup of G(Sn). If ra ̂  3, the index of G"(Sn) in G(Sn) is 2. Hence, for

ra^3, G(5n) Aos exactly the one proper normal subgroup G°(Sn) =GI(Sn).

Proof. By Theorem 3, G0(5„)CGi(5»), since G^Sn) is normal in G(Sn). If

A is in £7(5B), say A is the identity in the closed ra-cell F, then there is a closed

ra-simplex s in F, and 5B —Int(s) is an internal closed ra-cell in 5„. Since A

is the identity inside F, A is the identity outside 5„ — Int(s). Hence A is in

E°(Sn). Therefore G°(Sn)=GI(Sn), and this group is simple by Theorem 3.

By Theorem 3, G°(Sn)QB(Sn). Since B(Sn) 9^G(Sn) (in fact (2) about B(Sn)),

G°(S„) is proper (clearly, G°(Sn)9áe).

To show that G°(S„) is of index 2 in G(Sn) for ra^3, we proceed by induc-

tion. The assertion is true for the 0-sphere 5o. For, there are only two homeo-

morphisms of 5o, the identity e, and the homeomorphism r which inter-

changes the two points of 5o. Since r is not in £°(5o), £°(5o)=e; hence

G°(5o)=e. Therefore G(5o)/G°(50) has exactly two cosets, {e} and {r}.

Suppose the assertion is true for ra—1, where l^ra^3. Choose a pivot

cell £0 in 5„ (Theorem 10), and set 230 = Bndy£0. Since G0(Sn)QB(Sn)

^0(5«), there is a homeomorphism r of 5B not in G°(Sn). We will show that

for any A in G(Sn) but not in G°(Sn), h~lr is in G°(Sn). By fact (1) about groups

of index 2 noted above, this will complete the proof.

Since r is not in the group G°(Sn), neither is r_1. By Theorem 10, there are

/, g and A in G°(5B) such that f(Fo) = r~i(Fo), g(£o)=A(£0), and *(£»)

= h~Jr(Fo). By the first part of this theorem, together with Theorems 12 and

13, G°(Sn) = GI(Sn) = Q(Fo). Hence, since r"1 and A are not in Q(Fo),t1r~i\Bo

and g_iA|Bo are not in G°(B0). Now Bo is an (ra —l)-sphere. Hence, by the

induction hypothesis, G°(Bo) is of index 2 in G(Bo). Therefore

(f-h-^BoXg-'hlBo) is in G°(230). Now A(£0) = A"1r(£„) =A-1r/-1r-1(£0)
= h-hf-'r-'g-^HFo), since f-'r'^Fo) = £0 = g~lh(Fo). Moreover,

A_1((r/-1r-1)g_1)A is in the normal subgroup G°(Sn) of G(Sn), since/ and g are.

Hence, since G°(Sn) = G7(5n) = Q(F0), we have, by the definition of Q(F0), that

*-1A-1r/-1r-1g-1A|230 = (A-1A-1r|Bo)(/-1r-1|230)(g-1A|23o) is in G"(Bo). Since,
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as we showed above, (Z-1?--1!730)(g-1A| 730) is in G°(B0), we have A_1A~V| 730 is

in G°(T3o), since G°(T30) is a group. Thus A^r is in Q(F0) = G7(S„) = G°(Sn),

as was to be shown.

The group G°(S„) is, as we have seen, a proper normal subgroup of G(Sn).

If TV is any proper normal subgroup of G(Sn), then G°(Sn) CTV by Theorem 3.

We have shown that G°(5„) is of index 2 in G(SH) for «^3. Therefore, by

fact (2) about groups of index 2 noted above, G°(5„) = TV.

Theorem 15. If n — 3, the following subgroups of G(Sn) are simple, open

and closed in the topological group G(Sn), and equal to one another:

(!) the group D(Sn) of deformations of Sn;

(2) the group H(S„) of all homeomorphisms of Sn which are homotopic to

the identity e;

(3) the group B (Sn) of homeomorphisms of Sn of Brouwer degree 1 ;

(4) the identity component Ce(Sn) of G(Sn) ;

(5) the group of homeomorphisms G°(5„) = GI(Sn).

Proof. By Theorem 14, G°(5„) = GI(Sn) is a proper normal subgroup of

G(Sn). By Theorems 7 and 9, Ce(Sn) =D(Sn) =G°(Sn), and this group is sim-

ple and open (and closed since Ce(Sn) is closed). Since Sn admits a homeo-

morphism r of degree —1, B(Sn) is a proper normal subgroup of G(Sn).

Since degree (e) = 1, r is not homotopic to e, by a theorem of Brouwer [36]

(now a standard theorem of homology theory; see [38], where it is an im-

mediate consequence of Axiom 5). Hence H(Sn) is a proper normal subgroup

of G(Sn) (that it is a normal subgroup is verified as in Theorem 4). Thus,

by Theorem 14, B(S„) =H(Sn) = G°(S„).

Theorem 16. If n — 3, then two homeomorphisms f and g of Sn are isotopic

if and only if they are homotopic.

Proof. If/ is isotopic to g, then/g-1 is homotopic to e, hencefg~l is isotopic

to e by Theorem 15, hence/ is isotopic to g.

6. Preliminary results on the group Gl(M).

Theorem 17. Let M be a manifold, dim M — 3. The index of G'(M) in
G(M) is =2.

Proof. If G1(M)=G(M), then G'(TI7) is of index 1 in G(M). If Gl(M)
7iG(M), take an r not in GI(M). Then r_1 is not in G'(M). Take any A not

in G'(M). Choose a pivot cell F0 in M (Theorem 10), and set 73o = Bndy F0.

Now proceed exactly as in the induction step of the proof of Theorem 14 to

show that A_1r is in GI(M); this is possible because Theorems 12 and 13 are

for manifolds M, dim M^3, rather than for spheres S„, «^3. As in Theorem

14, this shows that G'(M) is of index 2 in G(M).

Theorem 18. If M is an orientable closed manifold, dim 717^3, awd T17
admits a homeomorphism of degree —1, then G'(M) =73(717). That is, a horneo-
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morphism h of M is of degree 1 if and only if his a finite product, h = fa • • • fa,

of homeomorphisms hi such that hi is the identity inside a closed n-cell F,- in 717,

w = dim 717.

Proof. It follows from the definition of degree as given by Brouwer [37];

(see also [38]) that any homeomorphism which is the identity inside an «-cell

in 717, « = dim 717, is of degree 1. Hence EI(M)EB(M). Therefore, since 73(717)

is a group (see §5), G7(T17)C73(TIT). By hypothesis, 73(717) ;¿ G (M). Since
G'(M) and B(M) are both of index 2 in G(M) (see §5), and GJ(71T)CT3(71T),
we have G'tilT) =73(717).

Note. If 717 is an orientable closed manifold, dim T17^2, then Tt7 admits

a homeomorphism of degree —1; this is easily seen by direct construction,

using the classification of such manifolds into the 2-sphere and 2-sphere with

handles. However, there are orientable closed 3-manifolds which do not admit

a homeomorphism of degree —1 [39].
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