A CONSTRUCTION FOR THE NORMALIZER OF A RING
WITH LOCAL UNIT WITH APPLICATIONS TO THE
THEORY OF L-ALGEBRAS()

BY
BARRON BRAINERD

Introduction. The purpose of this paper is to extend some of the author’s
results [4; 5] about F-rings to a wider class of lattice ordered rings called
generalized F-rings. A gemeralized F-ring or GFR is a partially ordered real
algebra R which forms a g-complete vector lattice with respect to addition,
scalar multiplication, and order, and for which the following statements are
valid:

(G1) For a, bER witha =0, 520, ab=0=a Ab=0.

(G2) For each aER there exists an ideal I of R such that a€TI and I
possesses a unit element.

An arbitrary ring satisfying G2 is called a ring with local unit. Such rings
have been previously studied by Morrison [12].

It is possible that many of the results of [4;5] can be proved for GFR’s
by a direct attempt to reproduce the arguments of [4; 5] in the wider setting.
Instead, however, it is shown that every GFR can be embedded in an F-ring
and then this result is used to generalize the results of [4; 5]. We prove the
embedding theorem for the more general class of rings with local unit. In
particular, in §1, a construction is given-for the normalizer of a ring with
local unit which involves an inverse limit process. As a corollary we show
that the normalizer of a strongly regular ring is also strongly regular. The
normalizer N of a faithful ring R is the maximal subring of the ring C of endo-
morphisms of R (considered as a left R-module) relative to the condition
that N contain R as an ideal. This concept has been studied extensively by
Johnson. See for example [11]. The normalizer of a GFR is again a GFR,
and since it contains an identity, it is an F-ring.

In §2, a certain class of f-rings is shown to be embeddable in our F-rings.
Birkhoff and Pierce [3] define an f-ring to be a lattice-ordered ring in which
a/A\b=0 and ¢=0 imply ca Ab=acA\b=0.

§3 deals with the relationship between a GFR and its conditionally
ag-complete Boolean ring of idempotents. It should be remarked at this point
that no distinction is made here between a Boolean ring and a relatively com-
plemented distributive lattice with zero, since a homomorphism which pre-
serves one of these structures also preserves the other. A number of results of
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[5] are generalized to GFR’s. In particular, if R is a regular GFR and B(R)
its Boolean ring of idempotents, then R—B(R) is a biunique (up to isomor-
phism) mapping from the class of regular GFR’s onto the class of conditionally
a-complete Boolean rings.

§4 deals with the relationship between the maximal modular [10] ideals
of 2 GFR R and the maximal ideals of its normalizer R. The main results are
@) if R is identified with its isomorph in R, then M—MNR is a biunique
mapping of the maximal ideals of R which contain a maximal modular ideal
of R but do not contain R onto the maximal modular ideals of R, and (ii) a
maximal modular ideal of R is real if and only if it is o-closed. The definitions
of “real” and “o-closed” are given in §4.

The main result of §5 is that every GFR with the property that the inter-
section of its real maximal modular ideals is the zero-ideal is isomorphic to a
GFR of real valued functions. In §6 some examples of normalizers of well
known conditionally o-complete Boolean rings are discussed.

1. The normalizer of a ring with local unit. Let R be a ring with local
unit, that is, a ring which satisfies (G2). Morrison [12] has proved that in a
general ring 4, the set of central idempotents forms a Boolean ring under
the operations of “@®” and “-”, where a ®b= (¢ —b)?, and “-” is the multipli-
cation of 4. For a ring R with local unit, the class of central idempotents is
designated by B(R). Morrison has shown that the mapping ¢: I-INB(R) is
an isomorphism of the lattice of ideals with local unit of R onto the ideals of
B(R) considered as a Boolean ring, and that ¢~!(J) = RJ, the ideal of R gen-
erated by the subset J of R.

The Boolean ring B(R) is a relatively complemented distributive lattice
with respect to the order relation: a =b if and only if ab=a. It is clear that
any lattice homomorphism of the relatively complemented distributive lat-
tice (B(R), V, A) which preserves relative complements is a ring homomor-
phism of (B(R), @, -) and conversely. In the course of this paper, we shall
consider many times homomorphisms from one ring R; with local unit into
another R;; such homomorphisms when restricted to B(R;) preserve lattice
operations as well as relative complements, and therefore are homomorphisms
of the ring structure of (B(Ry), @, -).

For any xER, there is an element e€B(R) such that ex=xe=x. Such
an element is called a local unit for x.

For a b in B(R), let the mapping 7. be defined on Rb as follows: mapx
=aXx. Ta is @ homomorphism of the ideal Rb onto the ideal Ra. It is clear that
{(Ra, )| @, b)EB(R)} is an inverse limit system [8] and hence an inverse
limit R=lim.(Ra, Ta) exists. The elements of R are functions f from B(R)
into R such that for a £b, f(b)a=f(a). In the sequel, the ring constructed by
this method from a ring R with local unit will be referred to as R. In virtue
of the inverse limit construction one defines for f, g€ R, (f+g) (w) =f(u) +g(u)
and (f-g)(u) =f(u) -g(u) for all uEB(R).
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If R is a ring with local unit, then the mapping i of R into R is defined as
follows: 7(x) =g, where g.(#) =xu for each u€ B(R).

PROPOSITION 1.1. The mapping i is an injection of R into R.

Proof. The mapping 4 is clearly a homomorphism of R into R. To show
it is an injection let #(x) =4(y). Then xu =yu for all € B(R) and in particular
for uo=e,+e,—e.e, where e, and ¢, are local units for x and y respectively.
Thus x=xue=yus=4.

The mapping 1 is referred to as the canonical injection of R into R. The
symbol 7R is used to designate the image of R under ¢ when it is necessary
to distinguish this object from R.

If 4 is a subset of an arbitrary ring Q then A4* stands for the class of
elements x€Q such that xa=0 for all € 4. Let 1 be the element of R with
the form 1(u) =u for each ¥EB(R).

PROPOSITION 1.2. The ring R has 1 for its unit element; the ring iR is an
ideal of R; (iR)'=0 in R; and, if R contains a unit element, then R=R.

Proof. Consider the function 1(x)=u. If fER, then (f1)(x)= (1f)(x)
=1(u)f(u) =uf(u), and if a £b, then by the definition of inverse limit f(b)a
=f(a) =f(a)a. Therefore 1f=f1=F and hence 1 is the unit element of R.

It is clear that R is a subgroup of R. To show it is an ideal, let f€4R and
gER. The function f is of the form f(ux)=xu for some xER. Now (gf)(x)
=g(u)xu. If ¢ =e where e is a local unit for x, then since x =xe=xa =xae, it
follows that g(a)f(a) =g(a)xa=g(a)xea=g(a)exa= [gle)x]a. If ae, then
aVe=a+e—ae=e and hence g(a\Ve)f(a\Ve) =g(aVe)x(a\Ve) = [g(e)x](aVe).

Therefore
g(a)f(a) = [gla V &)f(a V )]a = [g(e)z](a V €)a
= [g(e)#]a.

Hence for all a€B(R), g(a)f(a)=[gle)x]a and thus gfEiR. In a similar
fashion it is possible to show fgE&iR as well.

To show (¢R)!=0, let g& (4R)*. Then for each a €EB(R), g(a)(xa) =0 for
all x€ER. In particular, g(a)ua=0 for € B(R) and each ¢EB(R). Thus
g(u)u=g(u) =0 for each € B(R). Therefore g=0, and (:R)!=0.

If R contains a unit element ¢, then B(R) contains ¢ as a maximal element,
and for all a€B(R), f(a) =f(q)a. Therefore every fE R is of the form f(x) =xu
and hence the canonical injection is an isomorphism of R onto R.

An arbitrary ring Q is fasthful if Q*=0 in Q. Clearly all rings with local
unit are faithful.

Johnson [11] has shown that the normalizer of a faithful ring Q is (up to
an isomorphism) the universal faithful ring Q containing Q as an ideal such
that Q*=0in Q. Thus R can be embedded in the normalizer of R.
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THEOREM 1.1. If R is a ring with local unit, then R is isomorphic to the
normalizer of R.

Proof. Let R designate the normalizer of R. If x€ R, then xaER for all
aCB (R). The function ¢, from B(R) to R where ¥,(u) =xu, is a member of
R. Indeed, if @ £b, then yY,(b)a=xba =xa=y.(a). In addition Y.y, =¥.+¢,,
and

¥n(a) = xye = (zya)a = x(ya)a = xaye = Y.(a)¥,(0).

Therefore x—y, is a homomorphism of R into R. Suppose ¥.=v,. Then
xa =1ya for all a€B(R), and hence (x—y)z=0 for all 2ER. Since R*=0 in R,
x =1 and x—Y, is an injection.

The mapping ¢ is clearly an extension of the mapping ¢ which embeds
Rin R. From [11, p. 527], there is an injection ¢ of R into R which is an
extension of the natural injection of R into the ring of endomorphisms of R
taken as an additive group. Thus the mapping ¢y embeds R in R, and the
isomorph of R in R is strongly invariant under this mapping. For each
xER, ¢Y(x) —xER, and if R is identified with its isomorph in R, then (be-
cause R is an ideal of R)

($¥(x) — x)r = gY(a)r — ar
= ¢Y(xr) — xr = ¢Y(xr) — Y(xr) = 0

for all rER. Since R*=0 in R, it follows that ¢y/(x) =x for each x&€R. Thus
@Y is the identity mapping on R, and so ¢ is an isomorphism of R onto R
because the domain of ¢ is the entire ring R.

It follows from the method of construction of R that if R is commutative
or without nilpotent elements, then so is R. However, it is still a matter of
conjecture as to whether R is regular or biregular if R is. We can, however,
establish that if R is strongly regular, then R is as well. See [1] for definitions
of the various forms of regularity.

LEMMA 1.1. Let A be a ring with unit element 1. A is strongly regular if and
only if it has property

(a) For each xE A there is a central idempotent a,EA such that xa,=0 and
x+a. has an inverse.

Proof. If one remembers that a ring 4 is strongly regular if for eachx€ 4,
there is an x°€ 4 such that x2x°=x and that [1] the element x%x=xx0 is a
central idempotent, then one can easily prove this lemma by rephrasing the
proof of [4, Theorem 1] with a,=1—xx°=1—x0.

CoRrOLLARY 1.1. There is at most one element a.E A which satisfies condition
(@) for x€A.

Proof. Suppose there are two such elements a. and b. There is a y&4 such
that y(x+a.)=1, and hence bya.,=b. However, ¢.=y(x+a.)a.=%a,;, so
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ba,=>b. Similarly ba,=a., and a,=b.
PROPOSITION 1.3. If R is strongly regular, then R is as well.

Proof. Let f belong to R. Then f(u) € Ru for each u€B(R). The ideal
Ru is a strongly regular ring with unit element %, and hence by Lemma 1.1,
for each u there is a unique element @, which satisfies condition (a) relative
tofin Ru. Let a, stand for the function on B(R) with a;(#) =a.. Now for each
% there is a unique element v, € Ru such that v,(f(%) +a.) = (f(#) +a.)y. = u.
Let y stand for the function on B(R) with () =1v,. The proposition is valid
if it can be shown that a; and y belong to R. To show this, let #<v and
u, v € B(R). Then f(v)a,u = f(u)(@,u) = 0, and ¥,(f(v) + a¢)u = vu = u
=y,u(f(u) + (a,u)). Therefore by Corollary 1.1, a,u=a,, and hence y,u=y..
Thus a; and y belong to R.

If R is a partially ordered ring with local unit, then with respect to the
order relation: f<g in R if f(u) £g(u) for all u€B(R), the ring R is a par-
tially ordered ring. This partial order on R is used throughout the sequel.

LeEMMA 1.2. If R is a partially ordered ring with local unit such that a2 0
for all aER, then for a, bEB(R), a b in the partially ordered ring R if and
only if ab=a.

Proof. Suppose a<b; then b—a =0, and ab=a. Since a(a—b)*=a+ab
—2ab=0, it follows that a =ab, and hence a =ab.

Conversely, if b, a€EB(R), then b —abE B(R), and from ab=a, it follows
that b—a€B(R). Thus b=a.

PrOPOSITION 1.4. If R is a partially ordered ring with local unit such that
a?20in R, then 4*20 in R, and the isomorphism i: R—iRC R preserves order.

Proof. The first statement of the conclusion is clear. Since ¢ € B(R) implies
a0, it follows that x=0 in R implies x¢ =0, and thus that x=0 implies
1(x) 20. Hence the canonical isomorphism preserves order.

A lattice-ordered ring R with local unit is called a function ring if for
0=xER and 0ZyER the statement, xy=0 if and only if xAy=0, is valid.
If in addition R is an l-algebra, then it is called a function algebra.

LeEMMA 1.3. If R is a function ring, then for a, b, cER
(i) a=0=a(db\/c)=ab\Vac and a(b/\c) =ab/\ac,

(ii) a®20, and

(ii)) |a||b] =]ab]|.

Proof. See [3, p. 57].

PROPOSITION 1.5. If R is a function ring, then so is R. The unit element
of R is a weak order unit.

Proof. This Proposition follows by direct verification.
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PROPOSITION 1.6. If R is a function ring, then for each fE R such that fZ0
the following equation is valid:

/= sup {i(f()}.
ueB(R)

Proof. For u, v€B(R), f(u\/v)Zf(x) and f(u\/v)v=f(u)v imply that
fZi(f(u)) for all uEB(R). If g =i(f(u)) for all uE B(R) then g(v) = [{(f®)) ](v)
=f(v) for all y©EB(R) and hence g=f. Thus f is the required supremum.

Let m be a cardinal number. A lattice L is conditionally m-complete if
every subset 4 of L of cardinality <m and bounded above (below) by an ele-
ment of L possesses a supremum (infimum). A lattice L is conditionally
complete if it is conditionally m-complete for each m.

LeMMA 1.4. If R is an m-complete function ring, then for g B(R) and
{f,|YET} SR+ with the cardinality of T <m, we have

( A f7)g = A (f~e)-
Y€l v€r

Proof. Clearly (A,erfy)g <A er(fyg). Then because i(g) <1, the unit ele-
ment of R, it follows that

o5 A= (An)e= A= (40)s)

- AL (ae)ie = A - (A)) -0

Hence the equality is valid.

CoOROLLARY 1.2. If R is a conditionally m-complete function ring, then so
is R. The canonical injection of R into R preserves m-operations.

Proof. If { f,l'yEI‘} CR* where the cardinality of I' <m, then for each
uE€EB(R), f(u) =A,er f,(4) belongs to R. Using Lemma 1.4, the reader can
verify that the function f belongs to R and is the infimum of the set | f.,l v€ETr}.
Thus R is conditionally m-complete. The remainder of the corollary follows
analogously.

REMARK 1.1. A conditionally Ny-complete function algebra is a general-
ized F-ring. This follows [3] because a conditionally o-complete lattice ring
is archimedean, and hence is commutative as well as an algebra over the real
field. In addition, if R is a GFR, it follows from Corollary 1.2 that R is an
F-ring.

THEOREM 1.2. The normalizer of a GFR is an F-ring, and the normalizer of
a regular GFR 1s a regular F-ring.
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Proof. This follows from Propositions 1.1, 1.3, and 1.5, Corollary 1.2,
Theorem 1.1, and Remark 1.1.

2. An embedding theorem for a class of function rings. Let R be an
archimedean /-algebra over the real field with local unit such that inf { a.,l y&erl }
=0 and ¢=0 imply inf{ca.,|7€I‘} =inf{a.,c|'y€I‘} =0. In this paper such
an algebra is called an a-l-algebra. The main result of §2 is that every a-I-
algebra can be embedded in a regular F-ring. This is a generalization of a
result in [5].

LEMMA 2.1. If A is a lattice-ordered ring with local unit, then among the
following four statements (i) (iii) and (ii) = (iv).

(i) W.VsW:[aAb=0and c=Z0=acA\b=0],

(i) W.¥sW.[aAb=0and c=0=ca A\b=0],

(iii) W.WeW.[a Ab=0 and c=0=acAbc=0],

(iv) V.We¥W.[aAb=0 and c=0=ca Acb=0].
Thus an a-l-algebra is an f-ring of Birkhoff and Pierce [3].

Proof. (i)=(iii) : From (i) we deduce that for a Ab=0 and c20, ac Ab=0.
However, acAb=b/\ac=0 and ¢=0, so bc Aac=0.

(iii)=(): Let e be a local unit for b. Suppose a A\b=0 and ¢=0. Then
0=<acAb. In addition acSa(cVe) and b<b(c\Ve). Hence 0=<acA\b=a(cVe)
NAb(cVe), but since c\Ve=0, it follows that acA\b=0.

By an analogous procedure it is possible to prove (ii)<(iv).

LEMMA 2.2. An archimedean f-ring R with local unit contains no nilpotent
elements.

Proof. First suppose ¢ =0 and a”=0. If ¢ is a local unit for a, then aERe
where Re is an archimedean f-ring with positive unit element e. By [3, Corol-
lary 3, p. 63], a=0.

Now if R contains a nonzero nilpotent element, it contains a positive
nilpotent element. Indeed, let 0 be a nilpotent element of order n. Then
a~1=b is nilpotent of order 2, and hence b?=|b|2=0. Thus |b| is a non-
negative nilpotent and the lemma follows.

COROLLARY 2.1. An a-l-algebra A is a function ring.

Proof. By Lemma 2.1, an a-l-algebra is an f-ring. From Lemma 2.2 and
[3, p. 57, (17) and p. 63, Corollary 2], it follows that 4 is a function ring.

REMARK 2.1. Lemma 2.1 and [3, Theorem 13] yield the result that every
a-l-algebra is commutative.

THEOREM 2.1. If R is an a-l-algebra, then R can be embedded in a regular
F-ring R*.

Proof. By Proposition 1.5, R is a function ring with positive unit element.
The proof consists of showing that R satisfies the conditions of [5, Theorem
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9], and hence, by the remarks preceding that theorem in [5], R can be em-
bedded in a regular F-ring. Thus we must show (i) that R is archimedean and
(ii) that in R, A, ¢,=0 and ¢=0 imply A, ca,=0.

To prove (i), note that if =0 in R and if 0 SbE R satisfies the relation
b=<a/nforall n=1, then b(x) <a(u)/n for all n=1 and each € B(R). There-
fore b(u) =0 for all uEB(R), whence b=0 and R is archimedean.

Property (ii) can be verified in a similar fashion.

The embedding in Theorem 2.1 is in some sense “dense” as is indicated
by the following corollary.

COROLLARY 2.2. For every a*& R* with a*20, there is a subset A of the
isomorph of R in R* with the property:

a* = sup 4.

Proof. This follows from the remarks of Nakano [13, Chapter 5] and
Proposition 1.6. Indeed, if 4 stands for the canonical injection of R into R
and j stands for Nakano's injections of R into its cut extension R*, then
Nakano shows a*=V,¢r j(d,) for some system {d,Eﬁl'yEI‘ }, and Proposi-
tion 1.6 implies that

dy = V  i(dy(w)).

u€B(R)
From [13, Theorem 30.1 and 2.5], it follows that if
4 = {ji(8,(w)) | y ET,u € B(R)}, then a* = sup 4.

3. GFR’s and their Boolean rings of idempotents. In this section let R
stand for a GFR and R* stand for the regular F-ring containing R such
that B(R) = B(R*). The existence of R* is proved in [5]. The main result of
this section is that the correspondence R—B(R) maps the class of GFR’s into
the class of conditionally o-complete Boolean rings in a manner which is bi-
unique up to isomorphism: that is, if two GFR’s are isomorphic, then the
corresponding Boolean rings are isomorphic and conversely.

To begin with, a few preliminary results are proved. For a ring L with
local unit, the set B(L) can be considered as a relatively complemented dis-
tributive lattice or as a Boolean ring. If B(L) is considered as a Boolean ring,
then [B(L)]" exists and is a Boolean ring.

LEMMA 3.1. If L is a ring with local unit, then B(L) is isomorphic to [B(L)]".

The term l-ideal is used here as in [3] to mean a ring ideal with the added
property: If a belongs to the l-ideal and || <|a|,"then b also belongs to the
l-ideal.

PROPOSITION 3.1. If R is a regular F-ring and B is an ideal of the Boolean
algebra B(R), then there is a unique regular GFR, R(B), such that B(R(B)) =B.
In addition, R(B) is an l-ideal of R.
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Proof. First it should be noted that B must be a conditionally o-complete
Boolean ring because ¢, € B and @, <a& B imply Va,EB(R) and Va,<a, and
hence Va.EB.

Consider the class R, = {fERl é;EB} where &=V,., n|f| A1l. The ring
R, is an l-ideal of R. Indeed, if f, gE Ry, then it can be shown by employing
the inequality If—g| =< 2|f| \/2| gI that &_, <é \V &, and hence f —g&E R,. Since
|g| <|f| implies that & =¢, it follows that fER, implies gERy. By [5,
Theorem 7], &,=<¢ for any f, gER; hence R, can be shown to be an l-ideal.

Since R, is an Il-ideal of R, it is easy to see that R; is a sub-GFR of R.
To show R, is regular, note that if ffof=f, then (fé)f°f=f(&f°)f=f, and
&f'ER if fER,.

To ensure R, is a candidate for the role of R(B), we must show B(R;) =B.
Certainly BCB(R). Suppose a =a*C€R;; then & =a&B by [4, Theorem 2].
Hence B(R)CB and B=B(R)).

It remains only to show that R, is unique with respect to the property:
B(Ry) =B. Suppose there is another regular GFR R, such that B(R,) =B. If
fER;, then there is a local unit e for f in Ry. If &=V, n|f| A1, then from
[4, Theorem 2], & =ff° where f°CR is an element with the property fff=f.
It is clear that eé,= &. Now the element eé; =V, nl ef l /\e belongs to B(Ry),
and hence & & B(R,) =B. Therefore R,CR;y.

Suppose fERy, f=0, and f<\-1 for some real A=0 where 1 is the unit
element of R. From the spectral theorem [2, p. 251], it follows that f is the
supremum of a sequence of finite linear combinations of elements of B. There-
fore fE R,. Thus the bounded part of R; belongs to R,. Suppose f=0 is not
bounded (that is, there is no A >0 such that f<\-1) and fER,; then &EB
CR,. The ideals &R; of R, and &R, of R, are both regular F-rings with unit
element &, and &R,Cé&R;. It is also clear that the bounded part of &R,
coincides with that of &Rs. The regularity of &R, and [4, Theorems 1 and 2]
imply the existence of y&Eé&R; such that y(f+é)=¢, 05y=<é, and
V2.1 ny A& =é&. Thus the regularity of &R, implies that the inverse of ¥ in
&R, belongs to & R,, but this inverse is just f+&. Hence fER,, and Ri=R..

COROLLARY 3.1. For every GFR R, there is a regular GFR, Ry, and an in-
jection k of R into Ry which preserves the ring and o-lattice operations such that
B(R))=B(kR).

Proof. From Remark 1.1 and from [5] it follows that the GFR R is an
F-ring and that there is a regular F-ring R* and an injection +* which maps
R into R*. In addition, B(:*R) = B(R*) and ¢* preserves the ring and g-lattice
operations. If i stands for the canonical injection of R into R, then i*iR is
a sub GFR of R* isomorphic to R. By the nature of 4, it is clear that :*;B(R)
is an ideal of i*B(R) =B(R*). From Proposition 3.1, R(:*iB(R)) is the re-
quired regular GFR, and 7*s is the required injection.

In order to prove that two regular GFR’s with isomorphic rings of idem-
potents are isomorphic, the following construction due to Olmsted [14] is
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useful. Let B be a g-complete Boolean algebra and let Q(B) stand for the
class of functions f from the real line to B which satisfy the following condi-
tions:

Lf! askt.

2a. Vef(§)=1.

2b. A f(¢)=0.

3. V<o f(@) =f(B) for every B.

Olmsted has shown that ring and lattice operations can be defined in
Q(B) which make it an F-ring and the author has shown [5] that Q(B) is a
regular F-ring.

Let j represent the injection of B into Q(B) defined as follows: j(a) =f.(\)
where

faA) =1 forA <0,
=g for0 =A<,
=0 for1 < A

PROPOSITION 3.2. If B is a conditionally g-complete Boolean ring, then
Q= {fEQB)|f+(0) and £(0) belong to iB} is an l-ideal of U(B), and B(Q) =3jiB.

Proof. If f, g€Q, then (f+g)*<f++g*, and hence from [14, p. 166],
it follows that (f+g)*(0)=(f*+g")(0)=Vef+(B) Agt(—B)=f+(0)Veg*(0)
where 8 ranges over a dense subset of the real numbers. Therefore (f+4g)+(0)
=f*(0)VVg*(0)EiB, and hence (f+g)*(0)EB. In an analogous fashion, it
follows that (f+g)—(0)&E:B. By similar arguments the reader, using the
definitions of [14], can verify that Q is an l-ideal of 2(B) and hence that Q
is a regular GFR.

To show B(Q) =jiB, first suppose f&€jiB. Then f~(0) =0 and f*+(0) =£(0)
€14B. Thus fEQ, but since f is idempotent, fEB(Q).

Conversely, suppose fEB(Q). Then fEB(Q(B)), and hence from [14]
it follows that f=j(a) for a€ B. By the definition of Q, f(0) =a&1B and hence
fE€jiB. Therefore B(Q) =jiB.

If Q is defined as in Proposition 3.2, then the following theorem can be
proved.

TrHEOREM 3.1. If R is @ GFR such that B=B(R), then R can be embedded
in Q.

Proof. Let 4 be the canonical injection of R into R. The restriction of 1
to B=B(R) is the canonical injection of B into B=B(R). If xEiR, then both
e+=Vp,y nl x+| Al and é~-=V,., n| x"[ A1l belong to iB. Similarly the
mapping k: x—e.(A\) where

e:(\) = ; n(x — ANt A1

n=1
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is an injection (see [14]) of R into Q(B) as well as an extension of the mapping
7 (discussed in Proposition 3.2) to R. Indeed, if a€B(R) = B, then e,(\) =0
ifA21,e,\)=01if A <0, and e,(\) =0 if 0 S\ <1, that s, k(a) =j(a). The map-
ping k preserves the ring and o-lattice operations by [14, Theorem 2.2;and 5,
Theorem 3].

Since xE€4R implies that &+ and &~ both belong to ¢B and since é.+
=¢,+(0) and &,—=e¢,~(0), it follows that k(x) EQ. Therefore k: is an injection
of R into Q.

COROLLARY 3.2. If R is a regular GFR, then R22(Q.

Proof. Since kiB is an ideal of kB, it follows from Proposition 3.1 that
kiR=(Q and hence R=2(.

THEOREM 3.2. Every GFR R is contained in a regular GFR R* such that
B(R)=B(R*), and R* is determined uniquely up to an isomorphism. The map-
ping R—B(R) from the class of regular GFR’s into the class of conditionally
a-complete Boolean rings is “onto” in the sense that every conditionally o-com-
plete Boolean ring can be embedded in a regular GFR and is biunique up to iso-
morphism in the sense that two regular GFR's map into isomorphic conditionally
a-complete Boolean rings if and only if they are isomorphic.

Proof. The proof of this theorem follows directly from Theorem 3.1,
Proposition 3.1, and Corollaries 3.1 and 3.2 .

4, The maximal modular ideals of rings with local unit. In this section a
number of results are proved which relate the maximal modular ideals of a
ring R with local unit to the maximal ideals of R. Again let i stand for the
canonical injection of R into R.

To begin we prove a result concerning general modular ideals of R. An
element &R is a left identity modulo an ideal I of R if jy—y&I for all yER.

PROPOSITION 4.1. For every modular left ideal I of R there is a central idem-
potent identity e modulo I.

Proof. Let j be a left identity of I. If ¢ stands for the natural homomor-
phism associated with I and if e=e? is a local unit for j, then je—j&I and
je—eEI. For yER, jey—ey&EI and jey—jy&I. Therefore ¢(jey) =¢(ey)
=¢(jy), but since ¢(jy) =¢(¥), it follows that ¢(ey—y)=0. Hence ey—yET
for all yER.

PROPOSITION 4.2. Every ideal I of iR is an ideal of R.

Proof. If x€R and yE€1, then xy and yx belong to 4R. In addition let e
be a local unit for y; then xe and ex belong to 7R, and hence xey=xy and
yex =7yx belong to I. Therefore, I is an ideal of R.

It should be noted at this point that in Propositions 4.3 and 4.4 as well as
Corollary 4.1 and Lemma 5.1, R is assumed to be biregular. This condition is
certainly satisfied if R is strongly regular by Proposition 1.3. :
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ProrosiTION 4.3. If R is a biregular ring, then every maximal modular ideal
M of iR is contained in @ unique maximal ideal M of R which coes not contain iR.

Proof. By Proposition 4.2, M is an ideal of R, and hence by [1, Corollary
3, p. 459] it follows that there is at least one maximal ideal M which contains
M but not <R.

To show the uniqueness of M suppose there are two different maximal
ideals M;, M, of R which contain M but which do not contain iR. There is
an element y,E4R such that y, €& M, for k=1, 2. Let ¢; be the local unit for
yi; then e, & M. Thus the idempotent e=e;\/ e, =e1+e:—e1e: belongs to iR
but does not belong to either M; or M,.

The ideal MiN\iR contains M and is modular for k=1, 2; hence My N\iR
= M. The element ¢ can be written in the form e=e{ +e/ where ¢, belongs to
MiN\B(R). Indeed, since for k=1, 2 the ideal M;N\B(R) is a maximal ideal
of the Boolean algebra B(R), ¢ can be written e= 4/ & where & M;\B(R).
Then e=ef +ef with ef =& and ef =é&— éé. It follows that ¢/ €EiR for
k=1, 2; hence e€ M which is contrary to the hypotheses that M, M,. There-
fore the uniqueness of M is established.

COROLLARY 4.1. If M is a maximal modular ideal of iR and M is the cor-
responding maximal ideal of R which contains M but not iR, then M= MNiR.

ProrposiTION 4.4. If R if biregular, if M is a maximal modular 1deal of R,
if M is the maximal ideal of R for whichiM = MR, and if T= {fER|f(w) EM
for each uEB(R)}, then T=M.

Proof. Clearly T is an ideal of R, iMCT, and 4R is not a subset of T. In
addition, if T is a maximal ideal of R, then T'= M.

To show T is maximal, suppose fER and f@&T. Since R is biregular,
there is a central idempotent ¢ which generates the principal ideal generated
by f, and hence e T. Therefore there is an element #&B(R) such that
e(u) € M. Let g=1i(e(n)). Then g(v) =e(u)v for all v€B(R) and gGEzM Since
gEzR g& M and hence 1— —gE M where 1 is the unit element of R. Thus
g is an identity modulo M, whence e(«) is an identity modulo M. Therefore
for each v€B(R), v—e(u)vE M and 1 —g& Q. Since both ¢ and 1—g belong
to the ideal I generated by T and { f} and since ge=g, it follows that 1E€1.
Therefore =R, and T is indeed maximal.

Anideal I of a GFR Ris said to be o-closed provided {a,ER|a.20,n21}
CI and V,>, a, exists in R imply that V., a.E1.

CoRroLLARY 4.2. If Ris a GFR, then M is a o-closed maximal modular ideal
of R if and only if M is a o-closed maximal ideal of R.

Proof. Suppose M is o-closed, fo&E M and f, =0 for each =1, and V>, fa
€ R. Then V., fa(u) exists in R for each u € B(R) and [Vyu1fa](®) = Vi, fa(w).
Thus by Proposition 4.4, if M is o-closed, then so is M.



1960] A CONSTRUCTION FOR THE NORMALIZER OF A RING 249

Conversely, from Corollary 4.1, it follows that if M is o-closed, then
iM=MMNiR is also o-closed. Hence so is M because ¢ preserves o-lattice
operations.

LeEMMA 4.1. Let R be a ring with local unit. The ring A+1iR generated by
A and iR is equal to R if A is a maximal ideal of R which does not contain iR.

Proof. The ring generated by 4 and 4R is a subset of the ideal generated
by A and iR by definition. However, 4 and <R are ideals, so every element
of the ring generated by 4 and 4R is a sum of elements in A\U7R. Hence this
ring is the ideal I generated by 4 and iR. The ideal I =R by the maximality
of 4.

A maximal modular ideal M of a GFR R is real if R/M is isomorphic to
the GFR of real numbers.

The following theorem is a direct generalization of a result of [6].

TueOREM 4.1. If R is a regular GFR and M is a maximal modular ideal,
then M is real if and only if it is a-closed.

Proof. From Lemma 4.1, Corollary 4.1, and the second homomorphism
theorem for rings, it follows that

R/M =~ iR/iM =~ R/M

where M is the maximal ideal of R with the property MMNiR=4iM. Thus M
is real if and only if M is real. By [6, Corollary, p. 83] and Corollary 4.2
above, M is real if and only if it is o-closed.

5. Generalized F-rings of functions. In this section we discuss GFR'’s of
functions and their normalizers. In particular, we show that every regular
GFR with the property that the intersection of all its real maximal modular
ideals is the zero-ideal is isomorphic to the GFR of all real functions defined
on a certain space Q and measurable with respect to a certain g-clan of sub-
sets of Q. A a-clan % of subsets of a space Q is a collection with the following
properties:

1. o€

2. A, BEA=A —BEN and A JBE.

3. A.€¥ for n=1=N,.;, 4.€.

It is easy to show that a ¢-clan is a conditionally g-complete Boolean
ring with respect to the natural order relation of sets. If ¥ is a o-clan of sub-
sets of £, then a function f from @ into the real field is said to be (2, %)-
measurable if the set E;(\) = {wEQ|f(w) <\ and f(w) =0} is a member of A
for — o SAS o, Let M(Q, A) stand for the class of (R, A)-measurable func-
tions.

Note that the concept of o-clan is an essential generalization of the con-
cept of g-ring. A necessary and sufficient condition on 9M(Q, A) is given in
order that % be a o-ring. In addition we show that if ¥ is a o-clan, then in
essence 9] is a o-algebra of sets.
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Lg‘t R be a ring with local unit and let ¢ be the canonical injection of R
into R. In §4 it is shown thgt for each maximal modular ideal M of R there
is a unique maximal ideal M of R such that MMNiR=1M.

LEMMA 5.1. Let R be biregular. If { M .,l aEAd } 1s a class of maximal modular

ideals of R, then
N M. = {0} ifand onlyif N M. = {0}.
a€A a€A

Proof. Since (Nuca Ma)NiR=Nueca (M.NiR), the “if” part follows be-
cause M.NiR= M,.

Conversely, suppose Naea Mo={0}. Then Nacs M, meets R in {0} . Sup-
pose f#0 belongs to Ngea M. Then there is an idempotent ¢50 in the center
of R such that e€N,es M, because R is biregular. By the definition of R,
there is a central idempotent ¢y&4R such that e,e=e, and eo0. Therefore
€€ (Naca M.)NiR. Thus the assumption that Nes M. {0} leads to a con-
tradiction.

A GFR with the property that the intersection of its ¢-closed maximal
modular ideals is the zero-ideal is called a generalized M-ring or GMR.

THEOREM 5.1. A generalized M-ring R is isomorphic to a generalized M-ring
R(Q, A) of (R, A)-measurable function where N is a a-clan of subsets of a space .

Proof. If Ris a GMR, then R is an M-ring (see [4, p. 674]) by Lemma 5.1.
By [4, Theorem 7], R is isomorphic to an F-ring 4 (2, B) of (2, B)-measura-
ble functions where Q is the set of all o-closed maximal ideals of R and e—a(e)
= {H Gﬂle(ﬂ )=1} is an isomorphism of the idempotent algebra B(R) of
R onto 8. The symbol e(M) stands for the image of e under the natural
homomorphism associated with ¥ €.

In R, an element fE4R if and only if &€iR. Thus if ¢ stands for the iso-
morphism of R onto 4(Q, B), then ¢(f) E¢iR if and only if $(&) = X(wealsw =0}
belongs to ¢iR. Let U be the collection of all support sets of idempotents in
¢iR. Since R is a GFR, ¥ is a g-clan. In addition, each function ¢(f) E¢iR is
(2, A)-measurable because A is an ideal of B and {w(—:QI flw) EN, flw) =0}
< {wEQ|f(w)#0}. ¢iR is then the GMR, R(€, %), mentioned in the state-
ment of the theorem.

REMARK 5.1. Since in the above proof R(, %) is an ideal of 4(2, B), it
follows that R(Q, %) is an order-convex subset of 4(Q, B): that is, f<g=<h
where f, FER(Q, %) and g€ A(Q, B) imply gER(Q, A).

COROLLARY 5.1. If R is regular, then R(Q, %) is the generalized M-ring of
all N-measurable functions on Q.

Proof. From Proposition 1.3 and [4, Corollary, p. 682], it follows that
A(Q, B) is the M-ring of all (2, B)-measurable functions. R(Q, ¥A) is a regular
ideal of 4(Q, 8B), and hence B(R(, %)) is an ideal of B(4(Q, 8B)). Therefore
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since A —4 is an isomorphism between % and B(R(, A)) and since M(Q, A)
(the set of all (22) A)-measurable functions) is a regular GFR, it follows from
Proposition 3.1 that R(Q, %) =m (2, A).

A o-clan U of subsets of Q is said to be full with respect to Q if every wEQ
is contained in at least one member of %. If ¥ is not full with respect to Q
then let Q* be the set union of all elements of A. It is clear that U is a ¢-clan
of subsets of @*; and if f is an (Q, A)-measurable function, then f vanishes
outside 2*, and the restriction f* of f to @* is an (2*, %A)-measurable function.
Thus in Theorem 5.1 and Corollary 5.1, it may be assumed that % is full
with respect to Q.

In the remainder of the section we study full o-clans and classes of func-
tions measurable with respect to these o-clans. The following propositions
could be stated in terms of general o-clans, but it is clear from the remarks
of the previous paragraph that no greater generality is achieved by so doing.

PRroPOSITION 5.1. Let A be a full o-clan of subsets of Q. Then there exists a
o-algebra B of subsets of Q with the property that for every fEH there is a set
AED such that f(U)=ANU for each UEN, and the mapping ¢: f—A is an
isomorphism between N and B such that if 1 is the canonical injection of A into
91, then the composition ¢i is the identity map on ¥.

Proof. Consider for each fEJ, the set E;=Uyeu f(U). Then f(U)=E,NU.
Indeed,

ENU= U fV)NU.

ve¥

If V2U, then f(V)YNU=f(U), and if VDU, then f(V)NUCSF(VUU)NU
=f(U). Therefore E,NU=f(U).

It is clear that the mapping f—E, preserves order and is onto the class
B={E;|f€9}. It is biunique because E;=E, implies that for each UCH,
()= ENU=E,NU=g(0).

Since 9 is a g-complete Boolean algebra, it follows that B is also. It re-
mains only to show that 8B is o-complete with respect to the set theoretic
operations. If E;, €8 for each n=1, then Ey;,=Uyea(Vp-yf»)(U). Since
1—A (= f) =Veifa in 9, it follows that (Ve fa)(U) =U
—Ni=y [U—£(U)]. Therefore

Ev2y, = U E,
ne=l
and B is a g-algebra. It is clear that the composition ¢7 is the identity on U.
Let %, B, and Q be defined as in Proposition 5.1 and let 9M(Q, A) stand
for the class of all (?, ¥)-measurable functions. From Corollary 5.1, it follows
that M (Q, A) is a regular GMR.
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ProrosiTION 5.2. U is.a o-ring if and only if WM(Q, A) has the following
property: (*) If fo€M(Q, A) and fu/\fn=0 for all m and n=1, m#=n, then
Va1 faEM(Q, ).

Proof. If o =91(Q, A) satisfies the property (*), then since AeX 4 is an
isomorphism between % and B(91), it follows that ¥ is a o-ring because dis-
joint countable unions (and hence arbitrary countable unions) exist in B(91).

Conversely, from Proposition 3.2 it follows that fEM(Q, B) belongs to
I if and only if {WEQ|f(w)=0}EN. If A is a o-ring and foEM, f» 20, and
fn/A\fa=0 for m#=n, then since &2, ;,=Vu, &, and since by [7] the regular
M-ring M(Q, B) has property (*), it follows that V-, f. exists and belongs to
m(Q, A).

6. Examples. In §1 we established that for a ring R with local unit, the
ring R constructed by the inverse limit process is indeed the normalizer of
R. We are therefore able to construct normalizers for rings with local unit.

ExAMPLE 1. Let L be the Boolean ring of Lebesgue measurable subsets of
the real line of finite diameter. It follows from Proposition 5.1 that there is a
o-algebra L* of subsets of the real line which contains L as an ideal and
L*==[. If 1is the canonichl injection of L into L and ¢ is the isomorphism of L
onto L* which was defined in Proposition 5.1, then the restriction of ¢ to L
is the identity mapping. L is an ideal of the Boolean ring of all subsets of the
real line if and only if there exist no nonmeasurable sets. Therefore, if we
assume the axiom of choice, then L* must be a proper g-subalgebra of the
algebra of all subsets of the real line. By Proposition 5.1, the elements of L*
are of the form E;=Uyey f(U) for fEL. For each fEL, E; is Lebesgue measura-
ble. Indeed, L contains a cofinal increasing subsequence, namely
{[=N, N]}§... Therefore for each U there is an N such that f(U)
Cf([—N, NJ), and hence

E; = NGIf([-N, N).

Thus E; is Lebesgue measurable. However, L is an ideal of £, the o-algebra
of all Lebesgue measurable subsets of the real line; hence L*= £.

ExXAMPLE 2. In contrast with Example 1, consider ¥, an ideal of £ com-
posed entirely of sets of measure zero, which as a g-clan is full with respect to
the real line. If A &Y, then any subset of 4 belongs to ¥, and hence ¥ is an
ideal of 2(==:=), the o-algebra of all subsets of the real line. From Proposition
5.1 it follows that 2= is the normalizer of ¥.

In particular, if A is the o-clan of null sets of finite diameter, then ¥ is an
ideal of L, while L can be embedded as a proper subring of 9.

ExaMPLE 3. Let B be the c-algebra of Borel subsets of the real line, and
let By be the o-clan of Borel sets of Lebesgue measure zero. If B does not
coincide with £, then B, the isomorph of the normalizer of B, guaranteed
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by Proposition 5.1, is properly contained in 2¢=:), In addition $g contains
B as a g-subalgebra which is possibly not proper.

It is also possible to show that ByN\L=PB. Indeed, if ACBFNL and
A&GED, then there is a BE® and a Lebesgue null set M & B, such that
A=BUM and MNB=¢. Thus MEB;. Since M is Lebesgue measurable,
there is an element M,& B, such that M C M, and hence M & B because By
is an ideal of B;. This contradiction yields the result that BN\ £=B.

Finally, B5=9 if and only if every set A, for which ME B, implies
ANME By, ts Lebesgue measurable. Assume the latter condition holds. Then
since A € By implies that ANUE B, for each UEB,, it follows that AC £
which by the previous paragraph implies that AE®. Thus B =B. Con-
versely, if 8=35 and ANUE B, for each UE By, then AEB; = BC &£.
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