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Introduction. The purpose of this paper is to extend some of the author's

results [4; 5] about F-rings to a wider class of lattice ordered rings called

generalized F-rings. A generalized F-ring or GFR is a partially ordered real

algebra R which forms a <r-complete vector lattice with respect to addition,

scalar multiplication, and order, and for which the following statements are

valid :

(Gl) Fora.&GFwithd^O, b^0,ab = 0<^a/\b = 0.
(G2) For each a ET? there exists an ideal 7 of R such that aEI and 7

possesses a unit element.

An arbitrary ring satisfying G2 is called a ring with local unit. Such rings

have been previously studied by Morrison [12].

It is possible that many of the results of [4; 5] can be proved for GFR's

by a direct attempt to reproduce the arguments of [4; 5] in the wider setting.

Instead, however, it is shown that every GFR can be embedded in an F-ring

and then this result is used to generalize the results of [4; 5]. We prove the

embedding theorem for the more general class of rings with local unit. In

particular, in §1, a construction is given for the normalizer of a ring with

local unit which involves an inverse limit process. As a corollary we show

that the normalizer of a strongly regular ring is also strongly regular. The

normalizer N oí a faithful ring R is the maximal subring of the ring C of endo-

morphisms of R (considered as a left F-module) relative to the condition

that TV contain R as an ideal. This concept has been studied extensively by

Johnson. See for example [ll]. The normalizer of a GFR is again a GFR,

and since it contains an identity, it is an F-ring.

In §2, a certain class of/-rings is shown to be embeddable in our F-rings.

Birkhoff and Pierce [3] define an/-ring to be a lattice-ordered ring in which

a/\b = 0 and c = 0 imply ca/\b = ac/\b = 0.

§3 deals with the relationship between a GFR and its conditionally

c-complete Boolean ring of idempotents. It should be remarked at this point

that no distinction is made here between a Boolean ring and a relatively com-

plemented distributive lattice with zero, since a homomorphism which pre-

serves one of these structures also preserves the other. A number of results of
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[5] are generalized to GFR's. In particular, if 2? is a regular GFR and B(R)

its Boolean ring of idempotents, then R-^B(R) is a biunique (up to isomor-

phism) mapping from the class of regular GFR's onto the class of conditionally

o-complete Boolean rings.

§4 deals with the relationship between the maximal modular [lO] ideals

of a GFR 2? and the maximal ideals of its normalizer R. The main results are

(i) if R is identified with its isomorph in R, then M-^MC^R is a biunique

mapping of the maximal ideals of R which contain a maximal modular ideal

of 22 but do not contain R onto the maximal modular ideals of 2?, and (ii) a

maximal modular ideal of R is real if and only if it is o-closed. The definitions

of "real" and "o-closed" are given in §4.

The main result of §5 is that every GFR with the property that the inter-

section of its real maximal modular ideals is the zero-ideal is isomorphic to a

GFR of real valued functions. In §6 some examples of normalizers of well

known conditionally o-complete Boolean rings are discussed.

1. The normalizer of a ring with local unit. Let £ be a ring with local

unit, that is, a ring which satisfies (G2). Morrison [12] has proved that in a

general ring A, the set of central idempotents forms a Boolean ring under

the operations of " © " and " • ", where o ©6 = (o- 6)2, and " • " is the multipli-

cation of A. For a ring R with local unit, the class of central idempotents is

designated by B(R). Morrison has shown that the mapping <¡>: I-+It~\B(R) is

an isomorphism of the lattice of ideals with local unit of R onto the ideals of

B(R) considered as a Boolean ring, and that <f>~1(J) = RJ, the ideal of R gen-

erated by the subset J of R.

The Boolean ring 23(£) is a relatively complemented distributive lattice

with respect to the order relation: ogi> if and only if ab = a. It is clear that

any lattice homomorphism of the relatively complemented distributive lat-

tice (B(R), V, A) which preserves relative complements is a ring homomor-

phism of (B(R), ©, •) and conversely. In the course of this paper, we shall

consider many times homomorphisms from one ring £i with local unit into

another £2; such homomorphisms when restricted to B(Ri) preserve lattice

operations as well as relative complements, and therefore are homomorphisms

of the ring structure of (B(Ri), ffi, •).

For any xQR, there is an element eQB(R) such that ex = xe = x. Such

an element is called a local unit for x.

For o^6 in B(R), let the mapping 7rO0 be defined on £6 as follows: ic¿&

= ax. Toi, is a homomorphism of the ideal £6 onto the ideal Ra. It is clear that

{(Ra, 7To0)|o, bQB(R)} is an inverse limit system [8] and hence an inverse

limit 2c = lim_(£o, 7r0¡,) exists. The elements of R are functions/ from 23(£)

into £ such that for o^6,/(6)o=/(o). In the sequel, the ring constructed by

this method from a ring £ with local unit will be referred to as Ê. In virtue

of the inverse limit construction one defines for/, gQÊ, (f+g) (u) =f(u) +g(u)

and (f-g)(u)=f(u)-g(u) for all uQB(R).
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If F is a ring with local unit, then the mapping i of R into R is defined as

follows: i(x) =gx where gx(u) = xu for each uEB(R).

Proposition 1.1. FAe mapping i is an injection of R into R.

Proof. The mapping i is clearly a homomorphism of R into R. To show

it is an injection let i(x) =i(y). Then xu = yu for all uEB(R) and in particular

for Uo = ex+ey — exey where ex and ey are local units for x and y respectively.

Thus x = xuo = y wo = y.

The mapping i is referred to as the canonical injection of R into Ê. The

symbol iR is used to designate the image of R under i when it is necessary

to distinguish this object from R.

If A is a subset of an arbitrary ring Q then A1 stands for the class of

elements xEQ such that xa = 0 for all aEA. Let 1 be the element of R with

the form l(u)=u for each uEB(R).

Proposition 1.2. FAe ring R has 1 for its unit element; the ring iR is an

ideal of R; (iR)' = 0 in R; and, if R contains a unit element, then T?=F.

Proof. Consider the function l(u) = u. If fER, then (fl)(u) = (lf)(u)

= l(u)f(u)=uf(u), and if a = b, then by the definition of inverse limit f(b)a

=f(a) =f(a)a. Therefore l/=/l =/ and hence 1 is the unit element of Te.

It is clear that iR is a subgroup of R. To show it is an ideal, letfEiR and

gER- The function / is of the form f(u)=xu for some xER- Now (gf)(u)

= g(u)xu. If a¡íe where e is a local unit for x, then since x = xe = xa = xae, it

follows that g(a)f(a) =g(a)xa = g(a)xea = g(a)exa= [g(e)x]a. If dsfee, then

a\Je = a+e—ae = e and hence g(a\Je)f(a\/e) = g(a\Je)x(a\Je) = [g(e)x\(a\Je).

Therefore

g(a)f(a) = [g(a V e)f(a V e)]a = [g(e)x](a V e)a

= [g(e)x]a.

Hence for all aEB(R), g(a)f(a) = [g(e)x]a and thus gfEiR- In a similar

fashion it is possible to show fgEiR as well.

To show (iR)l = 0, let gE(iR)1. Then for each aEB(R), g(a)(xa) = 0 for

all xER. In particular, g(a)ua = 0 for uEB(R) and each aEB(R). Thus

g(u)u = g(u) =0 for each uEB(R). Therefore g = 0, and (iR)' = 0.

If R contains a unit element q, then 73(F) contains g as a maximal element,

and for all aEB(R),f(a) =f(q)a. Therefore every fE& is of the form f(u) =xu

and hence the canonical injection is an isomorphism of R onto R.

An arbitrary ring Q is faithful if Ql = 0 in Q. Clearly all rings with local

unit are faithful.

Johnson [ll] has shown that the normalizer of a faithful ring Q is (up to

an isomorphism) the universal faithful ring Q containing Q as an ideal such

that Ql = 0 in Q. Thus« R can be embedded in the normalizer of R.
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Theorem 1.1. If R is a ring with local unit, then R is isomorphic to the

normalizer of R.

Proof. Let 2Í designate the normalizer of £. If xQR, then xaQR for all

aQB(R). The function \[/x from B(R) to £ where ipx(u) =xu, is a member of

R. Indeed, if 0^6, then \px(b)a = xba = xa=\px(a). In addition \px+y=-px+yl/v,

and
^xv(a) = xya = (xya)a = x(ya)a = xaya = $x(a)ipv(a).

Therefore x—>\¡/* is a homomorphism of R into R. Suppose \px=\py. Then

xa = ya for all aQB(R), and hence (x — y)z = 0 for all zQR. Since £! = 0 in R,

x = y and x-^\¡/x is an injection.

The mapping if/ is clearly an extension of the mapping i which embeds

£ in R. From [ll, p. 527], there is an injection <p of R into R which is an

extension of the natural injection of £ into the ring of endomorphisms of £

taken as an additive group. Thus the mapping cpif/ embeds R in R, and the

isomorph of £ in if is strongly invariant under this mapping. For each

xQR, <fnp(x)—xQR, and if £ is identified with its isomorph in R, then (be-

cause £ is an ideal of R)

(<t>p(x) — x)r = 4*P(x)r — xr

= 4*¡>(xr) — xr = <pp(xr) — 44>(xr) = 0

for all rQR. Since £! = 0 in R, it follows that <fnb(x) =x for each xQR. Thus

<p\p is the identity mapping on R, and so 41 is an isomorphism of R onto R

because the domain of <f> is the entire ring É.

It follows from the method of construction of R that if £ is commutative

or without nilpotent elements, then so is Ê. However, it is still a matter of

conjecture as to whether £ is regular or biregular if £ is. We can, however,

establish that if £ is strongly regular, then R is as well. See [l] for definitions

of the various forms of regularity.

Lemma 1.1. Let A be a ring with unit element 1. A is strongly regular if and

only if it has property

(a) For each xQA there is a central idempotent axQA such that xax = 0 and

x+ax has an inverse.

Proof. If one remembers that a ring^l is strongly regular if for each xQA,

there is an x°QA such that x2x° = x and that [l] the element x°x = xx° is a

centred idempotent, then one can easily prove this lemma by rephrasing the

proof of [4, Theorem l] with ax=l— xx°=l— x°x.

Corollary 1.1. There is at most one element axQA which satisfies condition

(a) for xQA.

Proof. Suppose there are two such elements ax and 6. There is a yQA such

that y(x+ax) = l,  and  hence byax = b.  However, ax = y(x+ax)ax = yax, so
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bax = b. Similarly bax = ax, and ax = b.

Proposition 1.3. If R is strongly regular, then R is as well.

Proof. Let / belong to R. Then f(u)ERu for each uEB(R). The ideal
Ru is a strongly regular ring with unit element u, and hence by Lemma 1.1,

for each u there is a unique element au which satisfies condition (a) relative

to/ in Ru. Let a¡ stand for the function on B(R) with as(u) =du. Now for each

u there is a unique element yuERu such that yu(f(u)+au) = (f(u)+au)yu = u.

Let y stand for the function on B(R) with y(u) =y„. The proposition is valid

if it can be shown that a¡ and y belong to R. To show this, let u = v and

u, v E B(R). Then f(v)avu = f(u)(avu) = 0, and yv(f(v) + av)u = vu = u

= yvu(f(u) + (avu)). Therefore by Corollary 1.1, avu = av, and hence y»« = yu.

Thus a¡ and y belong to R.

If F is a partially ordered ring with local unit, then with respect to the

order relation:/^ g in R if f(u) èg(u) for all uEB(R), the ring F is a par-

tially ordered ring. This partial order on R is used throughout the sequel.

Lemma 1.2. If R is a partially ordered ring with local unit such that a2 — 0

for all aER, then for a, bEB(R), a^b in the partially ordered ring R if and

only if ab = a.

Proof. Suppose a = b; then b—a^0, and ab=a. Since a(a — b)2 = a+ab

— 2ab = 0, it follows that a=ab, and hence a = ab.

Conversely, if b, aEB(R), then b — abEB(R), and from ab = a, it follows

that b-aEB(R). Thus b = a.

Proposition 1.4. If R is a partially ordered ring with local unit such that

a2 = 0 in R, then â2 = 0 in R, and the isomorphism i: R-^iRQR preserves order.

Proof. The first statement of the conclusion is clear. Since aEB(R) implies

a^O, it follows that x — 0 in R implies xa = 0, and thus that x^Q implies

i(x) ^0. Hence the canonical isomorphism preserves order.

A lattice-ordered ring R with local unit is called a function ring if for

O^xGF and O^yEF the statement, xy = 0 if and only if xAy = 0, is valid.

If in addition F is an /-algebra, then it is called a function algebra.

Lemma 1.3. If Ris a function ring, then for a, b, cER

(i) a ^ 0=>a(b\/c)=ab\/ac and a(b f\c) = ab f\ac,

(ii) d2^0, and

(iii)  |d| | b| = \ab\.

Proof. See [3, p. 57].

Proposition 1.5. If R is a function ring, then so is R. The unit element

of R is a weak order unit.

Proof. This Proposition follows by direct verification.
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Proposition 1.6. If R is a function ring, then for each fQR such thatf^O

the following equation is valid :

/=   sup   {»(/(«))}•

Proof. For u, vQB(R), f(u\Jv)^f(u) and f(u\/v)v^f(u)v imply that
/£*(/(«)) ioralluQB(R). If g^i(f(u)) for all uQB(R) then g(v) ̂  [i(f(v))](v)
=f(v) for all vQB(R) and hence g^/. Thus/ is the required supremum.

Let m he a cardinal number. A lattice L is conditionally »î-complete if

every subset A of L of cardinality ^m and bounded above (below) by an ele-

ment of L possesses a supremum (infimum). A lattice L is conditionally

complete if it is conditionally raz-complete for each m.

Lemma 1.4. If R is an m-complete function ring, then for gQB(R) and

{fy\yQT} QR+ with the cardinality of Y^m, we have

(A/Y)g= A (fyg).
\T€r    / ?er

Proof. Clearly (i\yerfy)g^hy€r(fyg). Then because ¿(g) ^L the unit ele-

ment of R, it follows that

0 á   A   (fyg)  - (   A fy)g  =    A    {fyg - (   h f.)g\
76T \ y£T     ' 7€T   v \<rer     /    /

%iIM.*/-)}<k*>-G/-)H-
Hence the equality is valid.

Corollary 1.2. If R is a conditionally m-complete function ring, then so

is R. The canonical injection of R into Ê preserves m-operations.

Proof. If {fy\yQT}QR+ where the cardinality of T^m, then for each

uQB(R), f(u) = l\ySrfy(u) belongs to £. Using Lemma 1.4, the reader can

verify that the function/belongs to R and is the infimum of the set {fy\ yQT}.

Thus £ is conditionally raî-complete. The remainder of the corollary follows

analogously.

Remark 1.1. A conditionally t^o-complete function algebra is a general-

ized £-ring. This follows [3] because a conditionally o-complete lattice ring

is archimedean, and hence is commutative as well as an algebra over the real

field. In addition, if £ is a GFR, it follows from Corollary 1.2 that R is an

£-ring.

Theorem 1.2. The normalizer of a GFR is an F-ring, and the normalizer of

a regular GFR is a regular F-ring.
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Proof. This follows from Propositions 1.1, 1.3, and 1.5, Corollary 1.2,

Theorem 1.1, and Remark 1.1.

2. An embedding theorem for a class of function rings. Let F be an

archimedean /-algebra over the real field with local unit such that inf {ay \ y ET}

= 0 and e^O imply inf {cdT|7Er} =inf {aTc|7Er} =0. In this paper such

an algebra is called an d-/-algebra. The main result of §2 is that every a-l-

algebra can be embedded in a regular F-ring. This is a generalization of a

result in [5].

Lemma 2.1. If A is a lattice-ordered ring with local unit, then among the

following four statements (i)«=>(iii) and (ii)<=>(iv).

(i)    VaV¡,Vc[dAo = 0 and c^0=>acAb = 0],

(ü)   VaV&Ve[dA6 = 0 and c = 0=>caAb = 0],

(iii) VoV¡,VjdA& = 0 and c^0=>acA&c = 0],

(iv) V.VtVc[aA& = 0 and c = 0=*ca/\cb = 0\.

Thus an a-l-algebra is an f-ring of Birkhoff and Pierce [3].

Proof. (i)=>(iii): From (i) we deduce that for «A6 = 0 and c^O, ac/\b = 0.

However, ac/\b = b/\ac = 0 and c = 0, so bcf\ac = 0.

(iii)=>(i): Let e be a local unit for b. Suppose a/\b = 0 and c^O. Then

OgdcAtf- In addition ac^a(c\/e) and bt%b(c\/e). Hence 0 =acf\bûa(c\/e)

f\b(c\Je), but since cVe^O, it follows that ac/\b = 0.
By an analogous procedure it is possible to prove (ii)<=>(iv).

Lemma 2.2. An archimedean f-ring R with local unit contains no nilpotent

elements.

Proof. First suppose d^O and an = 0. If e is a local unit for a, then aERe

where Re is an archimedean/-ring with positive unit element e. By [3, Corol-

lary 3, p. 63], d = 0.
Now if R contains a nonzero nilpotent element, it contains a positive

nilpotent element. Indeed, let aj^O be a nilpotent element of order «. Then

an~1 = b is nil potent of order 2, and hence &2 = |£>|2 = 0. Thus \b\ is a non-

negative nilpotent and the lemma follows.

Corollary 2.1. .4» a-l-algebra A is a function ring.

Proof. By Lemma 2.1, an d-Z-algebra is art/-ring. From Lemma 2.2 and

[3, p. 57, (17) and p. 63, Corollary 2], it follows that A is a function ring.

Remark 2.1. Lemma 2.1 and [3, Theorem 13] yield the result that every

a-Z-algebra is commutative.

Theorem 2.1. If R is an a-l-algebra, then R can be embedded in a regular

F-ring R*.

Proof. By Proposition 1.5, F is a function ring with positive unit element.

The proof consists of showing that R satisfies the conditions of [5, Theorem
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9], and hence, by the remarks preceding that theorem in [5], £ can be em-

bedded in a regular £-ring. Thus we must show (i) that £ is archimedean and

(ii) that in £, AToY = 0 and c^O imply ATco7 = 0.

To prove (i), note that if a^0 in £ and if O^bQR satisfies the relation

6^0/ra for all ra^l, then 6(ra) úa(u)/n for all ra^l and each uQB(R). There-

fore b(u) =0 for all uQB(R), whence 6 = 0 and Ê is archimedean.

Property (ii) can be verified in a similar fashion.

The embedding in Theorem 2.1 is in some sense "dense" as is indicated

by the following corollary.

Corollary 2.2. For every a*QR* with o*^0, there is a subset A of the

isomorph of R in R* with the property:

a* = sup A.

Proof. This follows from the remarks of Nakano [13, Chapter 5] and

Proposition 1.6. Indeed, if ¿ stands for the canonical injection of £ into £

and j stands for Nakano's injections of £ into its cut extension £*, then

Nakano shows o* = VTer/(á>) for some system {áTG£|7Gr}, and Proposi-

tion 1.6 implies that

ay    = V Í(ay(u)).
u€B(Ä)

From [13, Theorem 30.1 and 2.5], it follows that if

A = {ji(ây(u)) I y Q T, u Q B(R)},    then    a* = sup A.

3. GFR's and their Boolean rings of idempotents. In this section let £

stand for a GFR and £* stand for the regular £-ring containing £ such

that B(R) =£(£*). The existence of £* is proved in [5]. The main result of

this section is that the correspondence R—*B(R) maps the class of GFR's into

the class of conditionally <r-complete Boolean rings in a manner which is bi-

unique up to isomorphism: that is, if two GFR's are isomorphic, then the

corresponding Boolean rings are isomorphic and conversely.

To begin with, a few preliminary results are proved. For a ring L with

local unit, the set B(L) can be considered as a relatively complemented dis-

tributive lattice or as a Boolean ring. If B(L) is considered as a Boolean ring,

then [23(£)]" exists and is a Boolean ring.

Lemma 3.1. If L is a ring with local unit, then B (L) is isomorphic to [23 (L) ] ".

The term l-ideal is used here as in [3 ] to mean a ring ideal with the added

property: If a belongs to the ¿-ideal and | 6| ú\a\ ,'then 6 also belongs to the

/-ideal.

Proposition 3.1. If Ris a regular F-ring and B is an ideal of the Boolean

algebra B(R), then there is a unique regular GFR, R(B), such that B(R(B)) =B.

In addition, R(B) is an l-ideal of R.
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Proof. First it should be noted that B must be a conditionally cr-complete

Boolean ring because anEB and d„ <aEB imply Vd„GT3(F) and Vd„ <a, and

hence Vd„GT3.

Consider the class Ri= {/GF| êfEB} where e/ = V^_! «|/| AL The ring

Fi is an /-ideal of F. Indeed, if/, gERi, then it can be shown by employing

the inequality |/ —g| Û2\f\ V2|g| that ë/_„iïê> \Zëa, and hence/—gGFi. Since

\g\ = |/| implies that ë„^ë/, it follows that fERi implies gGFi. By [5,
Theorem 7], ê/si£ë/ for any/, gGF; hence Fi can be shown to be an /-ideal.

Since Fi is an /-ideal of F, it is easy to see that Ri is a sub-GFR of F.

To show Ri is regular, note that if //°/=/, then (/ê/)/0/=/(ê"//°)/=/, and

¿//"GF! if/GFX.
To ensure Fi is a candidate for the role of R(B), we must show T3(Fi) =T3.

Certainly BQB(R). Suppose a = d2GFi; then êa = aEB by [4, Theorem 2].

Hence B(Ri)QB and B = B(Ri).
It remains only to show that Ri is unique with respect to the property:

73(Fi) =73. Suppose there is another regular GFR F2 such that B(R2) =B. If

fER2, then there is a local unit e for/ in R2. Ii e> = V,j°=.i «|/| AL then from

[4, Theorem 2], ef=ff° where f°ER is an element with the property//°/=/.

It is clear that el¡ = e¡. Now the element eê> = V^°_i «| e/| Ae belongs to B(R2),

and hence e>GT3(F2) =T3. Therefore F2CFi.

Suppose fERi, /^0, and /^X-l for some real X^O where 1 is the unit

element of R. From the spectral theorem [2, p. 251 ], it follows that/ is the

supremum of a sequence of finite linear combinations of elements of B. There-

fore fER2- Thus the bounded part of Ri belongs to F2. Suppose f=0 is not

bounded (that is, there is no X>0 such that/^X-1) and fERi', then ë/G73

ÇF2. The ideals efRi of Ri and e>F2 of F2 are both regular F-rings with unit

element ef, and efR2QefRi. It is also clear that the bounded part of ë/Ri

coincides with that of ê/F2. The regularity of ë/Ri and [4, Theorems 1 and 2]

imply the existence of yEë/Ri such that y(f+êf) = ëf, O^ygë/, and

Vr=i ny f\l¡= l¡. Thus the regularity of e>F2 implies that the inverse of y in

ëfRi belongs to ê>F2, but this inverse is just/+e>. Hence/GF2, and RX = R2.

Corollary 3.1. For every GFR R, there is a regular GFR, Ri, and an in-

jection k of R into Ri which preserves the ring and a-lattice operations such that

B(Ri)=B(kR).

Proof. From Remark 1.1 and from [5] it follows that the GFR R is an

F-ring and that there is a regular F-ring F* and an injection i* which maps

F into F*. In addition, B(i*R) =B(R*) and t* preserves the ring and tr-lattice

operations. If i stands for the canonical injection of R into R, then i*iR is

a sub GFR of F* isomorphic to F. By the nature of i, it is clear that i*iB(R)

is an ideal of i*B(R)=B(R*). From Proposition 3.1, R(i*iB(R)) is the re-

quired regular GFR, and i*i is the required injection.

In order to prove that two regular GFR's with isomorphic rings of idem-

potents are isomorpnic, the following construction due to Olmsted [14] is
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useful. Let 23 be a ir-complete Boolean algebra and let ti(B) stand for the

class of functions/ from the real line to B which satisfy the following condi-

tions:

l./(Öi asfî.
2a. Vt/(Ö = 1.
2b. At/(Ö = 0.
3. V„<a/(a) =f(ß) for every ß.

Olmsted has shown that ring and lattice operations can be defined in

Q(B) which make it an £-ring and the author has shown [5] that Sl(B) is a

regular £-ring.

Let/ represent the injection of B into £2(23) defined as follows:j(a) =/0(X)

where

fa(\) = 1       for X < 0,

= o       for 0 ^ X < 1,

= 0       for 1 g X.

Proposition 3.2. If B is a conditionally a-complete Boolean ring,  then

Q= {fQQ(B) |/+(0) and f(0) belong to iB) is an l-ideal of U(Ê), and B(Q)=jiB.

Proof. If/, gQQ, then (f+g)+úf++g+, and hence from [14, p. 166],

it follows that (/+g)+(0)g(/++g+)(0) = Vfl/+(ÄAg+(-Ö)^/+(0)Vg+(0)
where ß ranges over a dense subset of the real numbers. Therefore (/+g)+(0)

^/+(0)Vg+(0)E¿23, and hence (/+g)+(0)G¿£. In an analogous fashion, it

follows that (/+g)~(0)£¿£. By similar arguments the reader, using the

definitions of [14], can verify that Q is an /-ideal of Sl(B) and hence that Q

is a regular GFR.

To show B(Q) =jiB, first suppose fQjiB. Then f~(0) = 0 and /+(0) =/(0)
QiB. Thus fQQ, but since/ is idempotent, fQB(Q).

Conversely, suppose fQB(Q). Then fQB(Q(B)), and hence from [14]

it follows that/=/(o) for aQ B. By the definition of Q,f(0) = aQiB and hence

fQjiB. Therefore B(Q) =jiB.
If Q is defined as in Proposition 3.2, then the following theorem can be

proved.

Theorem 3.1. If R is a GFR suck that B=B(R), then R can be embedded

in Q.

Proof. Let i be the canonical injection of £ into £. The restriction of i

to 23 =B(R) is the canonical injection of B into B = B(R). If xQiR, then both

êx+= V,r_i n\x+\ Al and ëx-= Vñ-i n\x~\ Al belong to ¿£. Similarly the
mapping A: x—>exÇK) where

00

ex(\) = V n(x - X)+ A 1
n-l
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is an injection (see [14]) of £ into 0(23) as well as an extension of the mapping

j (discussed in Proposition 3.2) to R. Indeed, if aQB(R) = B, then e„(X)=0

if Xfc 1, ea(X) = 0 if X <0, and ea(X) =o if 0 gX < 1, that is, A(o) =/(o). The map-
ping k preserves the ring and cr-lattice operations by [14, Theorem 2.2 ; and 5,

Theorem 3].

Since xQiR implies that cV and lx- both belong to ¿£ and since ex+

= ex+(0) and ex- = ex-(0), it follows that k(x)QQ. Therefore A¿ is an injection

of £ into Q.

Corollary 3.2. If R is a regular GFR, then £é=Ç.

Proof. Since kiB is an ideal of kB, it follows from Proposition 3.1 that

A¿£ = Q and hence R^Q.

Theorem 3.2. Every GFR R is contained in a regular GFR R* such that

B(R) =£(£*), and R* is determined uniquely up to an isomorphism. The map-

ping £—►£(£) from the class of regular GFR's into the class of conditionally

c-complete Boolean rings is "onto" in the sense that every conditionally o-com-

plete Boolean ring can be embedded in a regular GFR and is biunique up to iso-

morphism in the sense that two regular GFR's map into isomorphic conditionally

a-complete Boolean rings if and only if they are isomorphic.

Proof. The proof of this theorem follows directly from Theorem 3.1,

Proposition 3.1, and Corollaries 3.1 and 3.2 .

4. The maximal modular ideals of rings with local unit. In this section a

number of results are proved which relate the maximal modular ideals of a

ring £ with local unit to the maximal ideals of £. Again let i stand for the

canonical injection of £ into £.

To begin we prove a result concerning general modular ideals of £. An

element/££ is a left identity modulo an ideal 2 of £ iijy — yQI for all yQR.

Proposition 4.1. For every modular left ideal I of R there is a central idem-

potent identity e modulo I.

Proof. Let / be a left identity of I. If <j> stands for the natural homomor-

phism associated with I and if e = e2 is a local unit for/, then je— jQI and

je — eQI.  For yQR, jey — eyQI and jey—jyQI.  Therefore <f>(jey)=<j>(ey)

— <j>(jy), but since <t>(jy)—4>(y), it follows that <p(ey — y)=0. Hence ey — yQI

for all yQR.

Proposition 4.2. Every ideal I of ¿£ is an ideal of R.

Proof. If xQR and yQI, then xy and yx belong to ¿£. In addition let e

be a local unit for y; then xe and ex belong to ¿£, and hence xey = xy and

yex = yx belong to /. Therefore, I is an ideal of £.

It should be noted at this point that in Propositions 4.3 and 4.4 as well as

Corollary 4.1 and Lemma 5.1, £ is assumed to be biregular. This condition is

certainly satisfied if £ is strongly regular by Proposition 1.3.
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Proposition 4.3. If Ris a birégular ring, then every maximal modular ideal

717 ofiR is contained in a unique maximal ideal M of R which coes not contain iR.

Proof. By Proposition 4.2, 717 is an ideal of R, and hence by [l, Corollary

3, p. 459] it follows that there is at least one maximal ideal M which contains

717 but not iR.

To show the uniqueness of M suppose there are two different maximal

ideals Mi, Mi of F which contain 717 but which do not contain iR. There is

an element ykEiR such that ynEMk for k = 1, 2. Let ek be the local unit for

yk; then ekEMk. Thus the idempotent e = eiVe2 = ei+e2 —eie2 belongs to iR

but does not belong to either 717i or Mi.

The ideal Mkf~\iR contains 717 and is modular for k = 1, 2; hence MkC\iR

= M. The element e can be written in the form e = e{ +e2 where e ' belongs to

MkC\B(R). Indeed, since for A = l, 2 the ideal MkC\B(R) is a maximal ideal

of the Boolean algebra B (R), e can be written e= ëi\Jî2 where <:*£ 717*^73 (F).

Then e = e{+e¿ with e{=îi and e2=ê2—êiê2. It follows that ek EiR for

A = 1, 2 ; hence e G 717 which is contrary to the hypotheses that Mi ?¿ 7172. There-

fore the uniqueness of M is established.

Corollary 4.1. If M is a maximal modular ideal of iR and M is the cor-

responding maximal ideal of R which contains M but not iR, then 717= MC\iR.

Proposition 4.4. If R is biregular, if M is a maximal modular ideal of R,

if Mis the maximal ideal ofR for which iM= MT\iR, and if T= {/GF|/(m)G717
for each uEB(R)}, then T=M.

Proof. Clearly T is an ideal of R, iMQ T, and iR is not a subset of T. In

addition, if F is a maximal ideal of F, then T=M.

To show T is maximal, suppose fER and fET. Since R is biregular,

there is a central idempotent e which generates the principal ideal generated

by /, and hence eET. Therefore there is an element uEB(R) such that

e(u) EM. Let g = i(e(u)). Then g(v) =e(u)v for all vEB(R) and gEiM. Since

gEiR, gÉM and hence 1— gGü7 where 1 is the unit element of R. Thus

g is an identity modulo ¿717, whence e(u) is an identity modulo 717. Therefore

for each vEB(R), v — e(u)vEM and 1—gEQ- Since both e and 1—g belong

to the ideal 7 generated by T and {/} and since ge = g, it follows that IGT.

Therefore I=R, and F is indeed maximal.

An ideal 7 of a GFR F is said to be a-closed provided {anER\an — 0, n = 1}

Ç7 and V"„j a„ exists in F imply that V"_! a» G 7.

Corollary 4.2. 7/ F is a GFR, then M is a a-closed maximal modular ideal

of R if and only if M is a a-closed maximal ideal of R.

Proof. Suppose 717 is a-closed, f„EM and/„^0 for each n — 1, and ^lñ-ifn

ER. Then V;mlf»(u) exists in Ffor each uEB(R) and [V,T-i/.](m) = V?-Jn(u).

Thus by Proposition 4.4, if 717 is cr-closed, then so is M.
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Conversely, from Corollary 4.1, it follows that if M is <r-closed, then

iM=MC\iR is also o-closed. Hence so is M because i preserves o-lattice

operations.

Lemma 4.1. Let R be a ring with local unit. The ring .4+¿£ generated by

A and iR is equal to R if A is a maximal ideal of R which does not contain ¿£.

Proof. The ring generated by A and ¿£ is a subset of the ideal generated

by A and ¿£ by definition. However, A and ¿£ are ideals, so every element

of the ring generated by A and ¿£ is a sum of elements in A OiR. Hence this

ring is the ideal 2" generated by A and ¿£. The ideal I—R by the maximality

of A.
A maximal modular ideal M of a GFR £ is real if R/M is isomorphic to

the GFR of real numbers.

The following theorem is a direct generalization of a result of [6].

Theorem 4.1. If R is a regular GFR and M is a maximal modular ideal,

then M is real if and only if it is v-closed.

Proof. From Lemma 4.1, Corollary 4.1, and the second homomorphism

theorem for rings, it follows that

k/M at iR/iM 9È R/M

where M is the maximal ideal of £ with the property MC\iR = iM. Thus M

is real if and only if M is real. By [6, Corollary, p. 83] and Corollary 4.2

above, M is real if and only if it is o-closed.

5. Generalized £-rings of functions. In this section we discuss GFR's of

functions and their normalizers. In particular, we show that every regular

GFR with the property that the intersection of all its real maximal modular

ideals is the zero-ideal is isomorphic to the GFR of all real functions defined

on a certain space £2 and measurable with respect to a certain cr-clan of sub-

sets of £2. A a-clan 21 of subsets of a space £2 is a collection with the following

properties :

i. 4>e%.
2. A, BQK=*A -BQ% and AOBQK.
3. AnQ'niorne:l=>r\n°.iAnQ'ä.
It is easy to show that a cr-clan is a conditionally o-complete Boolean

ring with respect to the natural order relation of sets. If 21 is a o-clan of sub-

sets of £2, then a function / from £2 into the real field is said to be (£2, 21)-

measurable if the set £/(X) = {co££2|/(co) ^X and f(w) 9±0) is a member of 21

for — oo g\^ oo. Let 91T(£2, 21) stand for the class of (£2, 21)-measurablefunc-

tions.

Note that the concept of o-clan is an essential generalization of the con-

cept of o-ring. A necessary and sufficient condition on 9Il(£2, 21) is given in

order that 21 be a cr-ring. In addition we show that if 21 is a cr-clan, then in

essence 21 is a <r-algebra of sets.
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Let F be a ring with local unit and let i he the canonical injection of F

into R. In §4 it is shown that for each maximal modular ideal M oí R there

is a unique maximal ideal M of F such that MC\iR = iM.

Lemma 5.1. Let R be biregular. If {Ma\ aEA } is a class of maximal modular

ideals of R, then

D Ma = {0} ifandonlyif  C\ Ma = {o}.
«ei aeA

Proof. Since (f\aSA Ma)r\iR = (]aeA (MaC\iR), the "if part follows be-

cause MaC\iR = M a.

Conversely, suppose f\a£A 717« = {0}. Then 0aeA Ma meets F in {0}. Sup-

pose /t^O belongs to f\a,A Ma. Then there is an idempotent e^O in the center

of F such that eGfiae^ Ma because F is biregular. By the definition of F,

there is a central idempotent eoEiR such that e0e = e0 and eo^O. Therefore

eoE(f\aeA Ma)C\iR. Thus the assumption that V\asA Ma^ {o} leads to a con-

tradiction.

A GFR with the property that the intersection of its tr-closed maximal

modular ideals is the zero-ideal is called a generalized M-ring or GMR.

Theorem 5.1. A generalized M-ring R is isomorphic to a generalized M-ring

F(ß, 21) of (fl, 21) -measurable function where 21 is a a-clan of subsets of a space fl.

Proof. If F is a GMR, then F is an 717-ring (see [4, p. 674]) by Lemma 5.1.

By [4, Theorem 7], F is isomorphic to an F-ring A (2, 93) of (Q, 93)-measura-

ble functions where ß is the set of all cr-closed maximal ideals of F and e—>%(e)

= {MEQ\e(M) = l} is an isomorphism of the idempotent algebra 73(F) of

F onto 93. The symbol e(M) stands for the image of e under the natural

homomorphism associated with M£ñ.

In R, an element fEiR if and only if ëfEiR- Thus if 4> stands for the iso-

morphism of F onto A (ÇI, 93), then<£(/)G<AiFif and only if <b(e¡) =X(u>eai/(üO¡*o]

belongs to faR. Let 21 be the collection of all support sets of idempotents in

faR. Since F is a GFR, 21 is a cr-clan. In addition, each function <¡>(f)E4>iR is

(fl, 21)-measurable because 21 is an ideal of 93 and {coGß|/(w) =\, /(co)^0}

Û {coGß|/(w)^0}. faR is then the GMR, F(ß, 21), mentioned in the state-

ment of the theorem.

Remark 5.1. Since in the above proof F(H, 21) is an ideal of A(Q, 93), it

follows that F(ß, 21) is an order-convex subset of A(Sl, 93): that is, /^g^A

where/, AGF(ß, 21) and gEA(Q, 93) imply gGF(Q, 21).

Corollary 5.1. If Ris regular, then F(ß, 21) is the generalized M-ring of

all ^.-measurable functions on fi.

Proof. From Proposition 1.3 and [4, Corollary, p. 682], it follows that

A(Q, 93) is the Tkf-ring of all (Q, 93)-measurable functions. F(Q, 21) is a regular

ideal of A(Ü, 93), and hence 73(F(0, 21)) is an ideal of B(A(tt, 93)). Therefore
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since A —>xa is an isomorphism between 21 and 23 (£(£2, 21)) and since 3TC(£2, 21)

(the set of all (£2) 21)-measurable functions) is a regular GFR, it follows from

Proposition 3.1 that £(£2, 2l) = 9H(£2, 21).

A o-clan 21 of subsets of £2 is said to he full with respect to £2 if every co££2

is contained in at least one member of 21. If 21 is not full with respect to £2

then let £2* be the set union of all elements of 21. It is clear that 21 is a o-clan

of subsets of £2*; and if/ is an (£2, 21)-measurable function, then / vanishes

outside £2*, and the restriction/* of / to £2* is an (£2*,21)-measurable function.

Thus in Theorem 5.1 and Corollary 5.1, it may be assumed that 21 is full

with respect to £2.

In the remainder of the section we study full o-clans and classes of func-

tions measurable with respect to these o-clans. The following propositions

could be stated in terms of general o-clans, but it is clear from the remarks

of the previous paragraph that no greater generality is achieved by so doing.

Proposition 5.1. Let 21 be a full a-clan of subsets of £2. Then there exists a

a-algebra S3 of subsets of £2 with the property that for every fQÛ there is a set

AQ$8 such that f(U)—AC\Ufor each ¿7£2l, and the mapping <f>:f—>A is an
isomorphism between 21 and S3 smcâ that if i is the canonical injection of 21 into

21, then the composition <f>i is the identity map on 21.

Proof. Consider for each/£2I, the set Ef = \JUsnf(U). Then/(U) = £/H U.
Indeed,

EjCW =   U f(V)r\U.

If V^U, then f(V)C\U=f(U), and if V£U, then f(V)r\UQf(VOU)r\U
=f(U). Therefore E,r\U=f(U).

It is clear that the mapping /—»£/ preserves order and is onto the class

93= {£/|/£2í}. It is biunique because £/ = £„ implies that for each 17 £21,

f(U)=Esr\u=Egr\u=g(U).
Since 21 is a cr-complete Boolean algebra, it follows that S3 is also. It re-

mains only to show that S3 is o-complete with respect to the set theoretic

operations. If £/„£S3 for each »2.1, then £v/n = Ut7ea(V".1/n)(i7). Since

1 - A;., (1 -/„) = V„W„ in t it follows that 0C, /„)([/) = U
- n„". i [ U -/„ ( U) ]. Therefore

oo

£vA/„ = U £,„,
n=l

and S3 is a o-algebra. It is clear that the composition <bi is the identity on 21.

Let 21, 93, and £2 be defined as in Proposition 5.1 and let 9Tl(£2, 21) stand

for the class of all (£2, 2D-measurable functions. From Corollary 5.1, it follows

that 2TC(£2, 21) is a regular GMR.
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Proposition 5.2. 21 is. a a-ring if and only if 3Tl(ß, 21) has the following

property: (*) 7//„G3TC(ß, 21) and fm/\fn = 0 for all m and «^1, m^n, then

V.-.1/.G3n;(0,21).

Proof. If 3Tl = 3TC(ß, 21) satisfies the property (*), then since A*-*Xa is an

isomorphism between 21 and 73(311), it follows that 21 is a <r-ring because dis-

joint countable unions (and hence arbitrary countable unions) exist in 73(911).

Conversely, from Proposition 3.2 it follows that/G3TC(ß, 93) belongs to

3TC if and only if {uE^\f(a)^0} G2I. If 21 is a cr-ring and/„G3TC,/„^0, and
fmAfn = 0 for m?*n, then since ëv";_1/n = V^°_i ëfn and since by [7] the regular

717-ring 3TC(ß, 93) has property (*), it follows that V"=1/n exists and belongs to

311(0, 21).
6. Examples. In §1 we established that for a ring F with local unit, the

ring R constructed by the inverse limit process is indeed the normalizer of

F. We are therefore able to construct normalizers for rings with local unit.

Example 1. Let L be the Boolean ring of Lebesgue measurable subsets of

the real line of finite diameter. It follows from Proposition 5.1 that there is a

cr-algebra L* of subsets of the real line which contains L as an ideal and

L*^L. If i is the canonical injection of L into L and <b is the isomorphism of L

onto L* which was defined in Proposition 5.1, then the restriction of fa to L

is the identity mapping. L is an ideal of the Boolean ring of all subsets of the

real line if and only if there exist no nonmeasurable sets. Therefore, if we

assume the axiom of choice, then L* must be a proper cr-subalgebra of the

algebra of all subsets of the real line. By Proposition 5.1, the elements of L*

are of the form Ef = \}rjei,f(U) iorfEÎ- For eachfEÍ, E¡ is Lebesgue measura-

ble. Indeed, L contains a cofinal increasing subsequence, namely

{[-TV, TV] }#_,.. Therefore for each U there is an TV such that f(U)

C/([-TV, TV]), and hence

Ef=   U /([-TV, TV]),
«■-i

Thus Ef is Lebesgue measurable. However, L is an ideal of £, the cr-algebra

of all Lebesgue measurable subsets of the real line; hence L* = £.

Example 2. In contrast with Example 1, consider 21, an ideal of £ com-

posed entirely of sets of measure zero, which as a cr-clan is full with respect to

the real line. If ^4G2i, then any subset of A belongs to 21, and hence 21 is an

ideal of 2(_0O'°o), the cr-algebra of all subsets of the real line. From Proposition

5.1 it follows that 2<-°°-°°> is the normalizer of 21.

In particular, if 21 is the cr-clan of null sets of finite diameter, then 21 is an

ideal of L, while L can be embedded as a proper subring of 2Í.

Example 3. Let 93 be the cr-algebra of Borel subsets of the real line, and

let 93o be the cr-clan of Borel sets of Lebesgue measure zero. If 93 does not

coincide with £, then 93*, the isomorph of the normalizer of 93o guaranteed
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by Proposition 5.1, is properly contained in 2(_c0'°°). In addition S3* contains

93 as a cr-subalgebra which is possibly not proper.

2/ is also possible to showjhat 93*/^£ = 93. Indeed, if AQ$8*r\£ and

-4 £93, then there is a 23 £93 and a Lebesgue null set Af£S3o such that

A =BOM and MC\B=<p. Thus M£S3*. Since M is Lebesgue measurable,

there is an element M0£93o such that MQM0, and hence M£S3o because 93o

is an ideal of S3*. This contradiction yields the result that S3*/^ £ = S3.

Finally, S3* = 93 if and only if every set A, for which M£S3o implies
AC\MQ93o, is Lebesgue measurable. Assume the latter condition holds. Then

since A£93* implies that Ai^UQSdo for each t/£S30, it follows that ^££

which by the previous paragraph implies that A £93. Thus 93* = 93. Con-

versely, if 93 = 93* and A i\ UQ 93„ for each UQ 930, then A Q 93* = 93 £ £.

References

1. R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math.

Soc. vol. 63 (1948) pp. 457-481.
2. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, New

York, 1948.
3. G. Birkhoff and R. S. Pierce, Lattice ordered rings, An. Acad. Brasil. Ci. vol. 28 (1956)

pp. 41-69.
4. B. Brainerd, On a class of lattice ordered rings, Proc. Amer. Math. Soc. vol. 8 (1957) pp.

673-683.
5. -, On a class of lattice ordered rings. II, Koninkl. Nederl. Akad. van Wet., Proc.

Ser. A vol. 60 (1957) pp. 541-547.
6. -, F-rings of continuous functions. I, Canad. J. Math. vol. 11 (1959) pp. 80-86.

7. -, On the embedding of vector lattices in F-rings, Trans. Amer. Math. Soc. vol. 93

(1959) pp. 132-144.
8. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, New Jersey,

Princeton University Press, 1952.

9. C. Goffman, A class of lattice ordered algebras, Bull. Amer. Math. Soc. vol. 64 (1958) pp.

170-173.
10. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37,

New York, 1956.

11. R. E. Johnson, Structure theory of faithful rings. II, Trans. Amer. Math. Soc. vol. 84

(1957) pp. 523-544.
12. D. R. Morrison, Bi-regular rin¿s and the ideal lattice isomorphisms, Proc. Amer. Math.

Soc. vol. 6 (1955) pp. 46-49.
13. H. Nakano, Modern spectral theory, Tokyo, Maruzen, 1950.

14. J. M. H. Olmsted, Lebesgue theory on a Boolean algebra, Trans. Amer. Math. Soc. vol.

51 (1942) pp. 164-193.

University of Toronto,

Toronto, Ontario, Canada


