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Introduction. In this first paper, we are going to consider the properties

of pairs of functions {uix, y), vix, y)} of two real variables (x, y), which for

some fixed k satisfy the system of differential equations

(0.1)

du dv

dx dy

du dv

dy dx

d8      du
(» + D- + T--0,

dx     dy

dd      âù>
* + 1)- - 0.

dy     dx

k is any real number such that ¿+1^0.

We set z = x+iy and /(z) =«+«'» and call/(z) a bi-analytic function of z

of type k. The main purpose of the paper is to show that all the elementary

properties of analytic functions can be extended to bi-analytic functions. The

fundamental reason for this is that the first two equations of (0.1) are merely

an inhomogeneous form of the Cauchy-Riemann equations for u+iv while

the last two imply that {(£ + 1)0—ico} is analytic. <piz) = (¿ + 1)9 —ico will be

called the associated analytic function of/(z) =u+iv.

If an elastic body is in a state of plane strain in a plane parallel to the

(x, y) plane, then its elastic properties are determined by two functions

uix, y) and vix, y), the x and y components of the displacement of a particle.

The known equations of classical elasticity theory show that u — iv is a bi-

analytic functions of type k. There is, then, a geometric interpretation of 8

and w; 6 is the "dilatation" and co the "rotation." What happens in elasticity,

therefore, is analogous to the situation in the theory of the two-dimensional

flow of a perfect fluid where the velocity components u and v are such that

u—iv is analytic. /

In problems of plane strain k—\/p+l, where X and p are the usual

Lamé's constants. Therefore k>\/3. Problems of generalized plane stress

give rise to the same equations, only now
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2(X/M)
k =-hl   and so   3 > * > 0.

2 + (A/„)

Thus bi-analytic functions of type k with ife>0 are of interest in mathe-

matical physics. However, up to now it is only functions of type —2 that

have attracted mathematical interest. In fact, when k= — 2, equations (0.1)

have the form that, as Haskell has shown, characterize areolar-monogenic

functions [l]. The theory of these functions has been fairly well developed,

notably by Kriszten [2 ]. It turns out, however, as a consequence of the theory

developed in this paper, that the case k = — 2 is very special and the extension

from k= — 2 to any k is nontrivial. This is what one might expect, of course,

from the fact that it is the cases k j¿ — 2 that occur in physical theories.

We shall also introduce bi-analytic functions of type — 1. These are func-

tions f(z) = u+iv such that u and v satisfy the equations

(0.2)

UX — Vy = 6,

Uy + VX= 0,

Bx   -   Uy   =   0,

By + ax = 0.

Again (ô+itt) is called the associated analytic function of f(z).

These equations are not a special case of (0.1). However, the formulae we

derive for functions of type k (k?* — 1) will turn out to be valid for functions

of type — 1 provided k is set equal to — 1, w to zero and w/(fe +1) is replaced

by — a.

Equations of the form (0.2) have been introduced by Lauricella in the

study of elastic plates [3]. Under the usual assumptions the fundamental

problem of the theory of plates reduces to the Dirichlet problem for the bi-

harmonic equation, namely, finding a function <p(x, y) such that A(A<p)

= A2<p = 0 in a domain D with <px and <pv given on the boundary of C of

D[A=d2/dx2-\-d2/dy2]. By setting u=<bx and v= —<pv, Lauricella reduces this

problem to the problem of determining what we have called a bi-analytic

function of type — 1 with prescribed values on the boundary. Although

Lauricella introduced equations (0.2) he did not notice that they could be

made the basis for a generalization of the classical theory of functions of a

complex variable. This was done by the present author [4]. However, that

paper was mainly concerned with generalizations of (0.2) obtained by put-

ting some nonconstant coefficients into the equations. Consequently, it did not

obtain many of the results we shall derive here for bi-analytic functions.

Functions of type infinity can also be defined. These are functions f(z)

= u-\-iv such that
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(0.3)

UX  -   Vy   =   0,

«» + »,  =  CO,

8X - w» = 0,

6V + co, = 0.

Once more 0+ico is called the associated function of /(z).

However, we shall not concern ourselves with such functions since, if

/(z) =u+iv is of type infinity with associated function 0(z) then ifiz) = —v+iu

is of type — 1 with associated function i<t>iz). In this way the theory of these

functions is immediately reduced to the theory of functions of type — 1.

Bi-analytic functions of type — 1 occur not only in the theory of elastic

plates but also in the theory of viscous fluids. The equations governing the

incompressible two dimensional flow of a viscous fluid with no "body forces"

are

pAu = px,

pAv = pv,(0.4)

[UX +  Vy   =   0

where u and v are the components of the velocity in the x and y directions

respectively, p is the coefficient of viscosity and so is >0 and p is the pressure.

Here we have assumed that the velocities are so small that the nonlinear terms

in the equations can be neglected. This is the approximation first introduced

by Stokes.
We shall show later that equations (0.4) are equivalent to the equations

UX+ Vy = 0,

(0.5)

«v - v, = f,

1
— #.-r» = o,
M

1

Pv + ix = 0
u

and so {u—iv) is bi-analytic of type « with associated function iil/ß)p+iC)

where f is the vorticity. By our previous result this fact can also be expressed

by saying that (v+iu) is bi-analytic of type —1 with associated function

( — Ç+ip/p). However, calling (« — iv) bi-analytic has the advantage of pre-

serving the analogy with the theory of perfect fluids.

We now sketch the lines of development of the paper.

Chapter I first considers various forms of the equations defining bi-

analytic functions and shows their equivalence. These considerations lead to

the theorem that every biharmonic function is the real or imaginary part of

a bi-analytic function with k^0. (The case k = 0 is obviously very special
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since the real and imaginary parts of a bi-analytic function of type 0 are

harmonic.) This has been proved by Kriszten for the case k = — 2 but only

when the domain is rectangular [2]. By using contour integrals we have re-

moved this restriction on the domain.

Next, the problem of constructing a bi-analytic function with a given asso-

ciated function is solved.

Then, some simple formulae are obtained for converting bi-analytic func-

tions of type K into functions of a different type, k. The first kind of formula

does this by taking a linear combination of two functions of type k. The result

obtained shows that functions of type —1 arise as the residue at k= — 1, of

families of bi-analytic functions of type k where k?¿ — \. The second kind of

formula converts a function of type K into one of type k by adding a har-

monic function to the real or imaginary part of the function of type k.

Finally the integral and derivative of a bi-analytic function are defined

and shown to have the properties connoted by those words. "Cauchy's"

theorem, that the integral of a bi-analytic function around a simple closed

curve is zero provided the function is bi-analytic inside the curve, is an im-

mediate consequence of the definition of the integral. The analogues of

Morera's theorem and Weierstrass' double-series theorem easily follow. This

section is clearly motivated by the paper of Bers and Gelbart on a generaliza-

tion of the Cauchy-Riemann equations [5].

Chapter II discusses the algebra of bi-analytic functions.

It is first shown that the only transformations of the independent vari-

ables x and y that transform bi-analytic functions into bi-analytic functions

are linear. It is also shown that linear transformations of the dependent vari-

ables u and v are the only such transformations permitted.

However, in addition to these purely negative results, we have made a

fundamental discovery showing how to "multiply" a bi-analytic function

with an analytic function so as to obtain a bi-analytic function. The product

function has as associated function the product of the original associated

function and the multiplying analytic function. This "multiplying" is not

strictly algebraic since it involves two integrals. However, these integrals are

only integrals of analytic functions. The special nature of functions of type

— 2 becomes apparent here.

The product is not unique; it depends on the lower limits of the integrals

and on two real-valued parameters. By choosing these parameters in certain

ways we obtain four particular products which are called the left and right

cross products and the left and right dot products. Finally the associative law

and the usual rule for differentiating products are shown to hold provided

the above mentioned lower limits are chosen in a suitable manner.

Chapter III constructs bi-analytic functions denoted by ZM, E(z), L(z),

C(z) and S(z) that have properties similar to those of the analytic functions

z", e', log z, cos z and sin z respectively. These functions are obtained by
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multiplying the corresponding analytic function with a simple bi-analytic

function whose associated function is 1.

Some of these "elementary" functions give examples of the fact that the

zeros of bi-analytic functions are not isolated. This is what is to be expected,

of course, from the behaviour of elastic bodies.

We next give, in Chapter IV, very simple derivations of results, for bi-

analytic functions, similar to Taylor's and Laurent's theorems for analytic

functions. These results are obtained without using anything corresponding

to Cauchy's Integral Formula.

However, we then go on to give a form of "Cauchy's" formula, which

determines the values of a bi-analytic function inside a simple closed curve

in terms of the boundary values of both the function and the associated

function.

This formula is then applied to various problems. First, the existence of

all the derivatives of a bi-analytic function is proved. Then a uniformly

convergent series of bi-analytic functions is shown to be differentiable term-

by-term. This result is then used to obtain simple formulae for the coefficients

in "Taylor's" series. We thus obtain the Taylor's series of the elementary

functions.

Finally we attempt to classify the isolated singularities of the functions.

We are left with some unsolved problems on essential singularities.

Chapter V views some of the classical results of elasticity theory from

the stand-point of the theory developed in the previous chapters. In particu-

lar our "Cauchy's" formula is shown to be obtainable from Betti's reciprocal

theorem by integrating by parts.

In Chapter VI we first show that the equations of viscous fluid flow can

be put into the form already indicated in this introduction.

It is planned to discuss some more general systems of equations, with

nonconstant coefficients, in Part II.

Chapter I. Preliminaries: Derivative and integral

1. Fundamental relations. We first give exact definitions of bi-analytic

functions:

Definition I. A complex-valued function /(z) = uix, y)+ivix, y) of the

variable z = x+iy will be said to be bi-analytic of type &(?■* — 1) in a domain D

of the z-plane provided u and v have continuous derivatives of the first order in D

satisfying

uy + vx — CO

where ik+l)6 — ico is an analytic function of z in D, that is, 8 and u are continu-

ous and have first derivatives in D satisfying the Cauchy-Riemann equations
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(* + 1)9, + cov = 0,

(k + í)By - ax = 0.

Definition II. A complex-valued function f(z)=u(x, y)+iv(x, y) of

z = x+iy will be called bi-analytic of type —1 in a domain D of the z-plane

provided u and v have continuous derivatives of the first order in D satisfying

(1.2) *-*-•,
My   +   VX   =    0

and provided that there exists a definite function u such that

By + «,  =   0.

In Definition II, we might have proceeded differently and used the con-

dition A# = 0. However then w would only be determined up to a constant.

From the present viewpoint all functions with different w's are considered as

different functions even if the w's differ only by a constant.

For convenience, a bi-analytic function of type k will be denoted by

B.A.F. (k). (k + \.)B—iw or, when k is — 1, 6+ia, is called the associated func-

tion of f(z) and will be denoted by A.F. The real and imaginary parts u and v

of f(z) will be said to be biharmonic conjugates, or sometimes, ¿-conjugates.

The main arguments of the paper will be conducted with functions of type

k with k¿¿ — 1 and the results for functions of type — 1 will, for the most part,

obtain only passing notice. We have adopted this procedure since most of the

proofs when k is — 1 follow on the same lines as when k^ — 1 ; whenever this

is not so we shall note the differences.

It will be assumed from the start that u and v have continuous derivatives

of all orders. This will be proved in the chapter on "Cauchy's" integral;

this is a valid procedure since that chapter does not depend on preceding

work.

From (1.1) u or v can be eliminated by differentiating. In this manner we

get the following set of equations:

(1.3)

\Au = - kBx,

AV     =     +    kdy,

6   =   «x  —   »v.

These are the more usual equations of elasticity in the cases of plane

strain and generalized plane stress.

One immediate consequence of (1.3) is that u and v are harmonic when

k = 0. Otherwise, since 6 and so 6X and 6V are harmonic, we conclude that u

and v are biharmonic, that is
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A(Aw) = A2« - 0,
(1.4)

A2i» = 0.

When equations (1.3) are differentiated and subtracted we find

AiUX   -   Vy)    =     -    k(8„   +   6yy)

or

ik + \)A8 = 0.

Thus, if k + i^0, equations (1.3) alone show that 8 is harmonic. When

k= —\, the equation A0 = O should be added to (1.3).

We now show that not only does (1.3) follow from (1.1) but that the con-

verse statement is also true.

Theorem 1. // (1.3) holds, then there exists a function co such that (1.1) is

true.

Proof. Since, as has already been shown, (1.3) implies that A0 = O, there

exists an co, determined to within a constant, such that (k+\)8—uo is analytic.

We shall show that uy+vx=o). Now,

«* = (k + 1)0,

= (k   +    i)iUzy   -    Vyy)

= iUxy  +  Vxx)   +   kiUxy  —   »„)   -   (Vxx +   t>,v)

' = («If  +   Vx)x  +   kdy   —   AV

= (Uy  +   Vx)x.

Similarly,

(Uy +  Vx)y   =   COy.

Therefore,

w = (uy + vx) + constant.

Since co is only determined to within a constant, this constant can be adjusted

so that

Uy + vx = co Q.E.D.

Another way of proceeding is to define co immediately as b) = uy+vx. Then

from this and ux—Vy = 8 we have

Am = 8X + oiy   and so   8X + cov = — k8x   or   (k + l)6x + co, = 0.

Similarly (k + l)8y— coi = 0.

This last proof is due to Love [6]. When ft= — 1, and so the equation

A0 = O is added to the set (1.3), we can not proceed in Love's manner. How-

ever, the proof given above does show that uv+vx = sl constant = a, and so we
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can conclude that (u — ay) +iv is B.A. ( — 1). Also if u and v in addition to

satisfying this modification of (1.3) inside D satisfy tfeudx—vdy = 0 where c

is the boundary of D then we can conclude that a = 0. For,

a I   I   dxdy =  I  f   («„ + vx)dxdy

= <p  — udx + vdy = 0

and so

a = 0.

The condition #cudx — vdy = Q is not artificial; it occurs in Lauricella's

formulation of the elastic plate problem.

We now show that any biharmonic function is the real part of a B.A.F.

with kj^O, or —1. In the proof we freely use both equations (1.1) and their

equivalent, (1.3).

Theorem 2. // u is any function satisfying A2« = 0 inside D then there exists

a biharmonic function v such that u+iv is B.A. (k) with Jfes^O or — 1.

Proof. Given u, set <b=Au. (1) Therefore, A<b = 0. Therefore, there exists

a function \p such that (<b-\-vp) is analytic.

Let

k C '
-kB + i-co =  I    (<t> + i$)dz

k + 1        J *0

(2) =1    <t>dx - iMy

+ i j   V^tf + 4>dy

so that {(¿ + 1)0 — iw} is analytic. This definition is suggested by equations

(1.3).
The function v is now defined by

(3) v =  I    ( — «v + co)<fo: + (ux — B)dy.I    (-«„
J »i

We show that this is a proper definition by showing that this integral is

independent of the path of integration, that is, that

(-«„+ a)y = (ux - B)x

or
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— Uyy +  CO,   =   «ii  —   8X

or

Au = 6X + co,

or

<f>   =    6X+   Uy.

Now, by our definition of 0 and co,

1
0i = —- <P,

k

k+ 1
co, = -d>.

k

Therefore 0x+co, = c6.

It is now easily verified that u+iv is B.A. For from (3),

VX  =    —  Uy + U      Or      Uy +  vx  =   u

and

Vy =  Ux —•  0      Or      Mi —  Vy =  8,

while we have already seen that {(k + l)0 — ico} is analytic. Q.E.D.

A similar proof shows that starting with a biharmonic function v, a func-

tion u can be found such that iu+iv) is B.A.

If the domain D is multiply-connected then, in general, the conjugate

function is multi-valued, as in the case of harmonic functions. This gives a

method of constructing multi-valued biharmonic functions; for if m is a func-

tion with an isolated singularity, the function v will usually turn out to be

non-singlevalued. Some types of multi-valued functions are important in elas-

ticity theory where they are realized as dislocations.

As an example let u = x log r where r2 = x2+y2. Then the method of Theo-

rem 2 shows that

2+k                 2(* + 1)                 y       2+ k
v =-y log r H-x arctan —-y.

R R X Ri

If k = 0, the conclusion of Theorem 2 cannot be true since the real and

imaginary parts of a B.A.F. (0) are merely harmonic. If k is —1 the result

is still true but the above proof breaks down; for this case a proof on entirely

different lines has been given in [4].

The conjugate v of a biharmonic function u is not uniquely determined

by u. This is shown up in the proof of Theorem 2. There, yp is determined

only to within an additive constant. Since z0 is arbitrary this means that a

term — ß + iA/ik + l))y can be added to 0 and a term a+Ax to co where
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a, A, ß are arbitrary constants. Again, since Zi is arbitrary, », as defined by

(3), can have a term

1      A             1
7 + ax + ßy-y2 H-Ax*

7    2 k + r     2

added to it, where A, a, ß, y are arbitrary constants.

We now show that this is the most general form possible for v, that is,

if t»i and v2 are any two conjugates of u then

1 A 1
vi = v2 + 7 + ax + ßy - — y2 + — Ax1,

2 k + 1 2

for some real constants a, ß, y, A. The converse statement, that if v2 is con-

jugate to u the function vi defined as in the above equation is also conjugate,

is fairly obvious.

To prove our assertion, set v = vi—vt. Then, v is the conjugate of 0, that

is,

— Vy = B, vx = CO

where

0   =    (*   +    1)0,  +   C0„   =    (k   +    1)(-«V»)   +VXy=    -   kVyx

and

0   =    (k   +    l)By   -   CO»   =     -    (k   +    i)Vyy   ~   VXX-

From the first equation, since we have assumed k^O, v=f(x)+g(y).

Therefore (¿ + l)g"(y) = —f"(x) = — A where A is a constant. Therefore

1
f(x) = — Ax2 + ax + 7i

2

and

and so

1 yl
g(y) - - — ¡——r y2 + #y + 7«

2 « -+- 1

1 4 1
» = 7 + «* + |8y-y2H—Ax2, Q.E.D.

2 Ä + 1 2

The result for k= — 1 is that t» = a+/3y+7y2. This has been shown in [4].

By the same method it can be shown that if Ui and u2 are two real parts

of B.A.F.'s with the same imaginary part then
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1 A 1
Mi = M2 + y + ax + ßy-x2 H-Ay2

2 k + 1 2

provided k¥- — 1. When fc is — 1, the result is that

Mi = Ut + a + ßx + yx2.

We next consider a natural question. Given an analytic function (£ + 1)0

— ico, can a B.A.F. (fe) be constructed with this function as its A.F.? Clearly

if the problem has a solution the solution is not unique since if any analytic

function is added to a B.A.F. the sum is a B.A.F. with the same A.F. In the

next theorem we give one solution of the problem.

Theorem 3. // {(£ + 1)0—ico} is any analytic function then iu+iv) is a

B.A.F. ik) with {(¿+l)0-«o} as its A.F., where

k
M =-xd,

2
(1.5)

r/i \       (k k + 2 \
v = I    \ — x6y + u\dx — [ — x6x -\-6 I dy,

provided k^ — 1.

Proof. We first verify that v is well-defined, that is, that the above integral

is independent of the path of integration. The condition for this is that

rk i      rk k + 2 "I
L7rf-H,+hr*+—"1 = °

or

k
— xA8 + (k+ l)0i + co, = 0

and this is obviously true. Next,

Mi  =-8-X8X, Uy =   — — Xdy,
2 2 2

k k k+2
VX    =    -'   Xdy   +   CO, Vy    =-X8X-0,

2 2 2

Mi —  Vy =  8,

Uy + vx = u. Q.E.D.

Again, if the domain is multiply connected the v defined in (1.5) is, gen-

erally, multi-valued even when 0 and co are single-valued.

and so



96 JAMES SANDERS [January

When ¿is — 1, (1.5) is still valid, provided it is modified by setting

k= — 1 and co = 0; that is (u+iv) isa B.A.F. ( — 1) with 0+ico as its A.F. where

1
u = -xB,

>-f^-\^)dx+(T**'-le)d7'

When k = 0, (1.5) still holds and shows that

u = 0,        v =  I    adx — Bdy = Im J    (6 — iu)dz
J ZQ J Zq

are the real and imaginary parts of a B.A.F. (0) with A.F. O — ùo. This shows

that every B.A.F. (0) is of the form

« + iv = (an analytic function)

+ i (a harmonic function).

This emphasizes the relatively trivial nature of functions of type 0.

2. Conversion. A natural question to ask is the following: In what way

does a B.A.F. (k) depend upon the parameter ¿? No very precise answer can

be given to this question but we have found some simple formulae that give

some information on the subject. First, we have the following result:

Theorem 4. Suppose f(z) is a B.A.F. (K) whose A.F. is (K + l) 0 —wo and

suppose also that g(z) is a B.A.F.(K) whose A.F. is i[(K-j-l)d—ico]. Then

Kk + K + k
(1.6) F(z) =-— f(z) + ig(z)

K — k

is a B.A.F. of type k whose A.F. is

K(K + 2)(k+ l)r
(k + 1)0 - in = —^——- [(K + 1)0 - ia]

(K-k)(K+l) L

provided XV — 1 or k, and ¿^ — 1.

Proof. This result is easily checked by a direct computation.   Q.E.D.

For K = Q and —2 the function F(z) in (1.6) is analytic.

If ¿is —1, (1.6) can be modified to

F(z) = - —-/(*) + ig(z)
A + 1

whose A.F. is
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KiK + 2) .
0 + iÜ =-   iK + 1)0 - ico   •iK+1)2  l '

A result similar to Theorem 4 is the following:

Theorem 5. ///(z) and giz) Aai/e ifee same meanings as in Theorem 4, then

Kk + K + k
(1 • 7) F(z) = - i/(z) + —-— g(z)

K — k

is a B.A.F. (k) whose A.F. is

K(K + 2)(k+i)   .

(6 + 1)9-{i,-(g-t)(g+1)ii(g+1"-"»

provided Kt^ — 1 or k, and ife == — 1.

If k is — 1 the formula can be modified to

F(z) = - ifiz) - —— giz)
K + 1

whose A.F. is

KiK + 2)   .
0 + iíí =-i iK + 1)0 - ico .

iK + 1)2    {K '

We shall also omit the proof here and go on to the case K= — 1.

Theorem 6. Suppose/(z) Í5 a B.A.F. ( — 1) w/tose ¿4./". is 0+ico awd ¿Aa/

g(z) is a B.A.F. ( — 1) wAose .4.F. is i(0+ico). ZAew

(1.8) F(z) = —— fit) + igiz)
k + 1

is a B.A.F. ik) whose A.F. is 0+ico. ^4Zso

(1.9) Giz) = - ifiz) + —— giz)
k + 1

is a B.A.F. ik) whose A.F. is i(0+ico).

/fere, jfe is not equal to — 1.

The proof again is direct and simple.

Formula (1.8) shows the following: If/(z) is a B.A.F. ( — 1) which is an

integral function of a parameter k then/(z, k= — 1) is the residue, at fc= — 1,

of a B.A.F. ik). Conversely, if /"(z) is a B.A.F. ik) whose A.F. does not de-

pend on k, then F(z) has, modulo an analytic function of z, a simple pole at

k= -1 with residue a B.A.F. (-1).
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The above results are very interesting but are not examples of what we

shall call "conversion." This term will be used for the process of changing a

B.A.F. (K) into a B.A.F. (¿) by adding a harmonic function to the function

of type K, this harmonic function being related to the integral of the A.F.

Our result in this direction is the following:

Theorem 7. If f(z) is a B.A.F. (K), Kf*-l, whose A.F. is (K+\)0-io,
then

(1.10) F(z) = f(z) + 0

where

K - k   C'r
(K + 1)0 - iíl =- I    [(K + 1)0 - ia]dz,

k     J ,„

is a B.A.F. (k), provided k is not —1, whose A.F. is

K(k + 1)

¿(Ä-+1)
[(K + 1)0 - ico].

Again the proof is trivial and will not be given.

The formula for the A.F. of F(z) shows that (1.10) can not be used to con-

vert a B.A.F. (K) into a function of type 0. It is easily seen that the only case

in which a harmonic function can be added to a B.A.F. (K) to give a B.A.F.

(0) is when K = 0 and then the harmonic function can be quite arbitrary.

If K is -1, then (1.10) still holds provided

¿ + 1 r'
0 + in =-I    (0 + ia)dz

k    J.0

where (0+ico) is the A.F. of f(z). The associated function of F(z) is now

¿ + 1
-(0 + ico).  •

k

In the case k= — \,Kj¿ — 1, (1.10) is again valid provided 0 is defined by

the equation

(K + 1)0 - in = - (K + 1) f   [(K + 1)0 - ia]dz.

The A.F. of F(z) is now [-K/(K+i)][(K+l)d-iu].
In the future we shall say we are converting/(z), a B.A.F. (K), not only

when we form the function F(z) defined in (1.10) but also when we add a

function of the form

(constant)   I    [(K + 1)0 - ia]dz   to this F(z).
J in
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The resulting function is, of course, still a B.A.F. (k) with the A.F. we have

indicated.

As an example of conversion, consider/(z)= {(log r+x2/r2)+i(—xy/r2)},

where r2 = x2+y2. This is a B.A.F. ( — 1) ; in fact, it is one of the "fundamental"

functions used by Lauricella. Its A.F. is 2/z. Thus ©+ifi= — 2((k + \)/k) logz

when zo= 1. Therefore F(z) = {(- ((k+2)/k) log r+x2/r2) +i(-xy/r2)} is a

B.A.F. (k) whose A.F. is [-2(fe+l)/fe](l/z), provided k*0, -1. The F(z)
we have found here is known from elasticity theory ; it gives the displacements

due to a finite force acting at the origin, in the ^-direction. Similarly, starting

with Lauricella's other function {(xy/r2) — i(log r+y2/r2)} we find the B.A.F.

(k),

This gives the elastic displacements due to a finite force acting at the origin,

in the y-direction.

3. Derivatives and integrals.

Definition III. If f(z) = u+iv is B.A. (k), then the derivative of f(z) is

df
(1.11) - =  M» + ÍVx.

dz

Theorem 8. If f(z) is B.A. (k) then df/dz is also a B.A.F. (k) whose A.F.

is the derivative of the A.F. o//(z).

Proof. This is easily shown by a direct calculation provided it is assumed

that m and v have continuous derivatives of the second order. This last as-

sumption will be made throughout this chapter and will be proved independ-

ently in Chapter IV.   Q.E.D.
Theorem 8 still holds when k= — 1 provided ux and not (cox+a constant)

is called the A.F. of df/dz. This convention will be followed in future.

Definition III and Theorem 8 are valid even in the special cases k = 0 and

Í--1.

Theorem 9. // k?¿ — 1, the only B.A.F. ik) whose derivative is identically

zero in a domain is

(1.12) m + iv = (a + ib) + (c + id)y.

When k = — 1, the corresponding result is

(1.13) m + iv = (a + ib) + iicy + dy2)

where a, b, c and d are real constants.

Proof. This is fairly obvious, the calculations being very similar to those

giving our results on the nonuniqueness of a conjugate function.        Q.E.D.
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The lack of symmetry with respect to x and y in (1.11), (1.12) and (1.13)

is very striking. The fundamental reason for this is that the equations defin-

ing B.A.F.'s are themselves nonsymmetrical.

Formally (1.11) is the same as when/(z) is analytic. If we try using the

expression (vv — iuv) as the derivative of f(z) we find that the derivative is bi-

analytic of type — ¿/(¿ + 1) when/(z) isB.A. (¿). Thus only in the case ¿= — 2

is this "derivative" of the same type as the original function,/(z), and even in

this case the two derivatives, (ux-\-ivx) and (vy — iuv), are not equal as they are

for analytic functions.

We now define the integral.

Definition I V.Letf(z) = u+ivbea B.A. F. (k) whose A.F. is {(¿ + 1)0—iw}.

Let {(¿ + 1)0—iß} be the analytic function defined by

{(¿ + 1)0 -in} = f  [(k + 1)0 - ico]dz.
J*o

Then the integral of f(z) from zo to z along some continuous rectifiable path is

F(z) = U + iV = f udx + (-V + n)dy + i f vdx + (« - ®)dy

(1.14)

= I    (« + iv)dz - i(© + in)dy.
J*o

We denote the integral by

/* *
(z)-dz.f(z) = r 'f(z

J 10

The dot here does not denote multiplication. In Chapter II a dot product

and other types of products will be defined; however, none of the products

defined there enable us to define the integrand in our integral as the product

of/(z) and dz.

When ¿= — 1, (1.14) must be modified by setting 0 = 0. 0 is then defined

by 0+iQ=JX(0+ico)¿z.

Theorem 10 ("Cauchy's Theorem"). If C is a simple closed continuous,

rectifiable curve inside which f(z) =u-\-iv is B.A. (k) and such that u, v, 0, ß are

continuous inside and on C, then

£
f(z)-dz = 0.

c

Proof. We first show that inside C the integrability conditions
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M, =   i-V +  0)i,

Vy    =     (M    -    ®)X

hold.
These conditions reduce to the forms

M, + vx = Qx = co,

»,  —   Mi  =   —  ©i  =   —  0,

which are obviously true.

Since we have assumed that u and v have continuous first derivatives in-

side C, the theorem now follows in the form

<f>   fiz)-dz = 0

where C is a curve inside C and homologous to C.

By letting C'—*C the theorem now follows in the usual way. The case

k= — 1 is treated similarly. Q.E.D.

Next we show that the indefinite integral is bi-analytic.

Theorem 11. ///(z) is a B.A.F. ik) then

Fiz) = f'fiz)-dz
J «0

is also a B.A.F. ik) whose A.F. is

{ik+ 1)0-ifi} = f  {ik+ 1)0- iu\dz
J '0

where {ik +1)0—ico} is the A.F. of fiz).

Proof. Setting F(z) = U+iV, we have, from (1.14)

Ux = m, Fi = »,

¿7, - v + Q,       Vy = m - 0,

and so

U. -   Vy =  0,

Í/, + F* = fi. Q.E.D.

Again, the theorem is true for k = — 1 and is proved in a similar manner.

Finally we show that differentiation and integration are inverse processes.

Theorem 12.

(a) Let fiz) be a B.A.F. ik) whose A.F. is {(fe + l)0 —ico}. Then the deriva-

tive of Fiz) =JlJiz) -dz is fiz).
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(1.15) (b) f " —fl-z = f(z) - f(zo) + i(y - yo)(0o + ia0)
J«o dz

when kys — 1. When k= —1, (1.15) ímmíí be modified by setting co0 = 0.

(0o+itoo) is the value of (0+ico) at z = z<>.

Proof. Part (a) has already been proved, essentially, in Theorem 11 since

it was shown there that if F(z) = ¿7+i V then U and V have derivatives and

Ux = u and Vx = v.

To prove part (b) we could use our results (1.12) and (1.13) on functions

with zero-derivatives. However, it is simpler to proceed directly. Thus,

df/dz = Ux+ivx has [(¿+1)0X—ico*] as its A.F. and so the integral of its A.F. is

f   [(k + 1)0* - icox]tfz = (¿ + 1)(0 - 0o) - i(co - coo).
J»o

Therefore,

— dz = I   Uxdx + [—vx + (co — co0)]ay + i I   vxdx + [«, — (0 — 0o)]fly
•o   az J zq J io

= (u + iv) - («o + m) — ao(y — yo) + i0o(y — yo).

The case ¿= — 1 is handled similarly, remembering that the derivative of

f(z) is a function whose A.F. is 6x+iwx not 0x+i(cox+a constant). For this

reason the term —f(z0) +i(y — yo)0o is not the most general type of term with

a zero derivative. Q.E.D.

Having shown that the derivative and integral have all the above simple

properties, we now give some results which will be used later. First we have

Theorem 13 ("Morera's Theorem"). Suppose D is a domain of the z-

plane inside which [(¿ + 1)0 —ico] iî analytic. Also,

(k + 1)0 - in = f  [(¿ + 1)0 - ia]dz
J m

jz
»o

where z0 is any point in D.

Suppose also that u and v are two continuous functions such that

f.

udx + (-v + Í2)fly = 0,
c

vdx + (u - @)dy = 0

for every simple, closed, continuous rectifiable curve C in D. Then (u-\-iv) is a

B.A.F. (k) in D having [(¿+l)0-ico] for its A.F.

Proof. Define functions U and V by the equations
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U = £ udx+ i-v + Q)dy,

r vdx + (m — ®)dy.

It follows from the hypotheses that U and V are functions of z. Also,

tVl    =    M, Uy    =     -    V   +    Ü,

Vx=V, Vy    =    M   -    0,

and so

Ux~Vy=   0, Vy+V,=   a,

and so

(í7 + iF) is B.A.(*) with A.F.[(* + 1)0 - iü].

Therefore iU+iV) has a derivative which is itself B.A. ik); in fact

¿7i+iFi = M+iz>andso(M+it0isB.A. ik) whose A.F. is (d/d«){ (Jfe + l)0-»fl}
= (jfe + l)0-ico. Q.E.D.

This result will now be used to prove the following analogue of Weier-

strass' double-series theorem.

Theorem 14. Suppose iun+ivn), n = l, 2, • • • , is a uniformly convergent

sequence of B.A.F.'s ik) in D, whose sequence of A.F.'s [(ife + l)0n —ico„] also

converges uniformly in D. Then u+iv = lim(w„+ii>„) is a B.A.F. ik) whose A.F.

is [(ife+l)0-ico] = lim[(fe + l)0„-ico„].

Proof. [(k + í)6n—ico»] is a sequence of analytic functions converging uni-

formly in D. Therefore

(k + 1)0 - ico = lim[(* + 1)0. - ico„]

is an analytic function in D. Also setting

(ik + l)0n - OU = I    [(* + 1)0» - ico„]dz

where z0 is some point in D, we easily see that [(fe + l)0„ — ifi„] converges

uniformly to {(fc + l)0-iQ} =/f2o[(ife+l)0-ico]¿z.

Now, by Theorem 10,

d> («„ + ivn)-dz = <p undx + ( — vn+ ti„)dy + i(b vndx + (m„ — @„)dy
Jc Jc Jc

= 0,

when C is any simple, closed, continuous rectifiable curve in D.
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Since the sequences {ux}, {vn}, {0n} and {fl„} are uniformly convergent

we can take the limit of the above equation by taking limits inside the integral

sign.

Therefore

<p udx + (—V + n)dy + i CD vdx + (« — <è)dy = 0.

The hypotheses of Theorem 13 are now seen to be satisfied and so the

result follows. Q.E.D.

Theorems 13 and 14 are obviously true for all k including the singular

case k= — 1.

Chapter II. Algebra

1. Changes of the independent variables. The problem we shall now state

and answer is the following:

Suppose   (<¡> + i\p)   is   any   B.A.F.   (¿i)   of  z = x + iy   and   suppose

{u=f(x,  y),  v = g(x,  y)}   is  a  reversible  transformation  and  such  that

[(¿2+l)/—ig] is an analytic function of z. Under what conditions on ¿i, ¿2, ¿3,

f(x, y) and g(x, y) is <¡>+ñf/ a B.A.F. (¿3) of u+iv?
First suppose ¿i^0, —1 or —2. Then the only transformations satisfying

all the above conditions are

(a) x + iy = a(« + iv) + (c + id)

where a, b and c are real constants. In this case ¿3 = ¿i.

(b) x + iy = ib(u + iv) + (c + id)

where b, c and d are real constants and now ¿3= —¿i/(¿i + l). This last condi-

tion can be expressed by saying that i(<f>-\-ii¡/) — —\[/-\-i<l> is a B.A.F. (¿1).

The fact that the above transformations have the results stated is easily

checked. It is much more difficult to prove that they are the only transforma-

tions that work. We shall not prove this here; the proof we have is so long

that its presence would make this paper appreciably longer and the result is

not of great importance.

When ¿1 is —2, the only admissible transformations are

z = (a + ib) (u + iv) + (c + id)

where a, b, c and d are real. In this case ¿3 = ¿i.

The results for ¿1 = — 1 are the same as those that have been stated for

¿i^O, —1, —2 except that in case (b), ¿3 is °°.

When ¿i = 0, then (f+ig) can be an arbitrary analytic function of either

z = x-\-iy or z = x — iy and ¿3 is, in all cases, equal to 0. This result is to be ex-

pected, of course, since we have already seen that all functions of type 0 are

of the form (an analytic function) +i (a harmonic function).
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The result of all this is that, generally speaking, the technique of con-

formal mapping or anything similar is not available for the study of bi-

analytic functions.

There are, however, different ways of applying conformai mapping to

B.A.F.'s. Theorem 3, for instance, shows that any B.A.F. (k) is of the form

u + iv= U-xdj + i I    i—x8y+u\dx- f — x8x-\-8Jdy>

+ (u' + iv')

where (u'+iv') is an analytic function and {(£ + 1)0—ico} is the A.F. of

(w+if).

Thus, we can make a conformai mapping of the (x, y) plane into the

(£, rj) plane and so send [(£ + 1)0 — ico] and (u'+iv1) into other analytic func-

tions of (£+«?). We can then apply (2.1) in the (£, v) plane where 0, co, u'

and v' are the functions of (£+irç) obtained in the above manner. This will

give us a bi-analytic function of (£+irç).

Unfortunately the dissection of a B.A.F. (k) given by (2.1) is not unique;

there are other ways of breaking up a B.A.F., u+iv, into a sum of an analytic

function and a B.A.F. determined in terms of the A.F. of u+iv.

In fact we shall find another method of doing this in Chapter III. This

technique of conformai mapping, therefore, will probably not be very useful;

certainly no use has been found for it in the present paper.

2. Changes of the dependent variables. The possibilities in making trans-

formations of the dependent variables are also very limited.

Suppose (b+iip is any B.A.F. (ki) and suppose {u=f(<p, \p), v = g(4>, \p)\

where {(k2 + l)f— ig] is an analytic function of <p+iip. The problem we are

concerned with now is the following: Under what conditions on k\, k2, k3,

f and g is (u+iv) a B.A.F. (k3)?

First, suppose fci^O, —1, or —2. Then, the only possibilities are

(a) m + iv = a((j> + iip) + (c + id),

where a, c and d are real and k3 = k\.

(b) u + iv = ib(<i> + if) + (c + id)

where b, c and d are real and k3 = —ki/ih + l).

This condition again means that í(m+íd) = —v+iu is B.A. (¿i).

Again, by admitting functions of type », the case ki= — 1 comes under

this general case.

When k is — 2 the possibilities are again greater, we can set

m + iv = (a + ib) i<p + i\J/) + (c + id)

and now k3 = — 2.
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Functions of type 0 only admit the same transformations

u + iv = (a + ib)(<t> + v¡i) + (c + id)

and ¿3 = 0.

Again, it is easily seen that the transformations given above have the

desired properties while the statement that they are the only such trans-

formations is more difficult to prove. It can be proved on the same lines as

the corresponding result in §2 but the proof will be omitted for the reasons

given there.

3. Multiplication. If (ui+ivi) and (u2+iv2) are both B.A.F.(¿) then it is

clear that (ui+u2)+i(vi+v2) is a B.A.F. (¿). It is quite easy to see, also, that

if (Mi+ifli) is a B.A.F. (¿i) with A.F. {(¿i+l)0i—icoi} and (wj+it>s) is a

B.A.F. (¿2) with A.F. {(¿2+l)02 = ia)2} then (ui+u2)+i(vi+v2) is not a B.A.F.

at all unless either {(¿i+l)0i —icoi} and {(¿2+l)02 — iw2} are both constant

or ¿i = ¿2.

The other simple algebraic property of bi-analytic functions is that if

(u+iv) is a B.A.F. (¿) with A.F. {(¿ + 1)0—ico} then a(u+iv) =au+iav is a

B.A.F. with A.F. a[(¿ + l)0-Ko] when a is real.

Consider now, though, the effect of multiplying by i. Let (u-\-iv) be a

B.A.F. (¿) with A.F. {(¿+1)0—ico}. Under what conditions on k and ¿i is

i(u+iv) = —v+iu a B.A.F. (¿0? We have

(-v)x - «v = 0' = - CO,

( — v)v + «x = to' = 0.

Thus, our question reduces to finding when {(¿i+l)0'—ua'} = — (ki+i)u

—iß is analytic or when

-(¿1+    1)C0X=     -By,

-(¿1+   1)C0„=   +0x.

But

1

Thus the condition is that

VX-Uly,

¿+1

1
0«   =   - COx.

¿ +  1

-  =   ¿1+1.

¿+1

or
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fc + 1

To summarize then: if iu+iv) is a B.A.F. ik) then í(m+íi>) = —r+ico is a

B.A.F. (-k/(k + l)) whose A.F. is [-i/(fc + l)][(£+l)0-icoj.
The only cases in which — k/(k + l) = k are k = 0, and —2.

This means, according to our remark about adding functions of different

type, that only when k = 0 and —2 can u+iv, a B.A.F. (k), be multiplied by

ia+ib) where a and b are real nonzero constants.

Consider now the possibility of multiplying two functions (<p+vj/) and

(u+iv). Let U+iV — (tp+iip)(u+iv) = (<pu—wp) +i(^/u+v4>). Suppose (u+iv)

is a B.A.F. (k) with A.F. {(£ + l)0-ico}, and that (0+i^) is analytic.

Then only when fc = 0 or —2 can (U+iV) possibly be bi-analytic.

It is easily seen that k = 0 will not work but k = — 2 does. That is, we have

Theorem 15. If u+iv is a B.A.F. ( — 2) whose A.F. is {(£ + 1)0—ico} then

U+iV=(<p+i\p)(u+iv) = ((j)u—\l/v)+i(\l/u+v4>) is a B.A.F. ( — 2) provided

(Ç+iip) is analytic. The A.F. of U+iVis (<f>+ip)[(k + \)8-iw\ [withk=-2].
In fact, if (<b+i\p) is analytic and u+iv is B.A. (k), then only when k= — 2 is

(<p+i\p)(u+iv) bi-analytic.

With this result it is possible to define a "product" of an analytic function

and a B.A.F. of any type k. This can be done by first converting the B.A.F.

to a function of type —2, then multiplying with the analytic function and

finally converting this product back into a function of type k. Since the con-

version process is not unique this gives a great variety of products. The most

general form obtained by this method is shown in the following definition:

Definition V. Suppose (u+iv) isaB.A.F. (k) whose A.F.is [(£ + 1)0—ico],

where k^ — 1. Suppose also that (<p+i^) is an analytic function. Then, a prod-

uct of (u+iv) and ((p+iip) is any expression of the form

U + iV = (<¡> + i$)(u + iv) - ——'-— {(<*> + if) \ai Re  f [(k + 1)0 - iu]dz
2(£ + 1) 1 L JI0

- ibi Im  C  [(k + 1)0 - ico]¿zl

(2.2) J'\ J
- a2 Re  j    (<b + ty) [(k + 1)0 - ico]dz

+ iMm J    (<P + ty)[ik + 1)0 - ico]dzi

where Ci, h, a2, b2 are real numbers such that ai+Z>i = 1 and Ot+b2 = 1. z0 and Zi

are any two points in the domain of definition of (u+iv) and (<p+vp) ; the ordered

pair (zo, Zi) is called the lower limit of the product.
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In (2.2), the expression (<b+i\¡/)(u+iv) is the ordinary product of these

functions, that is, (<j>u—inp)+i(wf>+\¡/u).

It is easily checked that (U + iV) is a B.A.F. (¿) whose A.F. is

(<¿+if)[(¿+l)0-ico],thatis, 17.-7,-1/(4+1) [(¿ + 1)0^+0^] = 0. Uv+V,
=0co-(¿ + l)¿0 = Qso that

(¿ + 1)0 - iß = (<f> + ii)[(k + 1)0 - ico].

This last statement is true for all k except ¿= — 1, even ¿ = 0. This is

interesting since our conversion process does not work for ¿ = 0.

If ¿= — 1, Equation (2.2) can be modified as follows:

17 +»7= (<t> + ii)(u + iv)

-\ (<t> + if) Ui Re  |    (0 + ico)¿z - iii Im  f  (0 + ico)áz

- fl2 Re   f  (<p + iip)(B + ico)¿z + ib2 Im  f  (<j> + hp)(8 + ia)dz\ •

(2.3)

The products defined in (2.2) and (2.3) obviously have some of the simple

properties that are desirable in products. Thus,

(a) they are 0 when <p+vj/ = Q and when u+iv = 0 (assuming that the

conjugate of 0 = 0 is co = 0 when ¿= — 1);

(b) when u+iv = l, they reduce to (j)+i\¡/ (provided we make the same

assumption as in (a) when ¿= — 1);

(c) in fact when (u+iv) is analytic, they all reduce to the ordinary prod-

uct of analytic functions;

(d) when k is —2, they all reduce to the ordinary product of (<j>+i\f/) and

(u+iv) (provided ai, bi, a2 and b2 are chosen so as to have a definite value for

¿=-2).
One apparent disadvantage of Definition V is that it gives us an infinite

number of products depending on the lower limits and the parameters ai, a2,

bi and b2. However, these parameters will later be made definite while the

freedom in choosing the lower limits will turn out to be an advantage.

The expressions in (2.2) and (2.3) will be denoted by P{<j)+i\{/,u+iv,za,Zi}.

It will now be shown that the usual rule for differentiating products holds

provided the limits can be chosen properly.

(2.4)

Theorem 16

d

dz
P\4> + i\p, u + iv; zo, zi} = P^-r (* + &)> u + v> Za> ZH

+ P<4> + vii, — (u + iv), z3, z2>
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provided either k= — 2 or if k^— 2 or —1,

ai8(z3) = ¿ico(z3) = as Re [({¿ + l}0 - ico)(tf> + if)],-,,

= 62Im [({* + l}0 - ia)(4> + m\~t - 0.

Proof. From (2.3) we have

d    < »
— P{4> + it, u + iv;zo, zi{
dz

=   Ux + iVx

=  (<i> + if)(w« + iVx) + (<t>x + ifr)(« + iv)

k + 2

{
fli(¿ + í)8(<t> + if) + ibia(<t> + if)

2(¿ + 1)

- a2[(¿ + í)8<¡> + to] + ibi[(k + l)0f - <pa]

+ ai(4>x + if x) Re   f  [(¿ + 1)0 - ico]az

- ibi(<t>x + itx) Im   f   [(¿ + 1)0 - ico]¿zi

k + 2  ( r        f
- (m + iv)(<t>x + itx) - -TJ7—-7\(f. + if.) Ui Re        [{k + 1)0 - ico]¿z

2(¿ + 1) 1. L J H

- i&i Im  f   [(k + 1)0 - ico]áz

- a2 Re   f   | — (<b + it)\ [(* + 1)0 - ia]dz

+ ib2 Im  f   | — (<t> + if)\ [(k + 1)0 - ico]fl"z>

k + 2    (
+ (4> + i^) (ux + ivx) - ——— < (<p + it) [fli(¿ + 1)0 + ibia]

2(k + l) \

- fl2 ["({k + 1} 8<p + ta) - Re   f   F— (0 + ¿*)~| [(k + 1)0 - ico]ázl

+ ios|({¿ + l}0f - <M - Im  f   j— (<t> + if) 1 [(k + 1)0 - ico]dz||
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= p\—(4> + if), u + iv; Zo, Z2> + (0 + if)(ux + ivx)
(dz

k + 2
í(<t> + if) Ui Re   f    — [(k + 1)0 - ico]¿z

2(k + 1)

- ibi f   — [(k + 1)0 - iu]dz\
J t, dz J

- a2 Re   j    (<j> + if) — [ik + 1)0 - iu]dz
J Zi dz

+ ib2 Im  f  (<b + if) — [ik + 1)0 - ico]¿z>
J ,t dz )

- „, , A& + Wla¿k + lMz¿ + **i»(*i)]
2(£ + 1) 1

- a2[(£ + 1)0<> + ^co]l2 + ib2[(k + 1)# - *co]„|

by integrating by parts.

The assertion now follows. Q.E.D.

When £ is —1, (2.4) still holds under the conditions

ai8(z3) = biu(z3) = a2 Re [(0 + iu)(<p + #)]«,

= ¿2 Im [(0 + iu)(4> + #-)]_, = 0.

In general the product in Definition V is not associative and commutative

with respect to multiplication by analytic functions. In order to get products

with these properties we shall specify the values of the parameters suitably.

If, in (2.2), we set ai = a2= 1 and ¿»1 = 62 = 0 we get a product that will be

called the left cross-product. If Oi = a2 = 0 and ¿>i = Z>i = l the product will be

called the right cross-product. These quantities have most of the properties

desired in a product and so will be often used hereafter. For convenience,

formal definitions are now given.

DefinitionVI. Suppose (u+iv) is a B .A. F. (k) whose A. F. is {(£ + 1)0 —ico}

where £5** —1, and suppose (<f>+if) is analytic. Then, the left cross-product of

(u+iv) and (<b+if) is

((p + if) X (u + iv) = (4> + if)(u + iv)

k + 2

(2.5)
2(£ + 1)

<(<!> + if) Re  f  [(£ + 1)0 - ico]dz

- Re   f  (4, + if)[(k + 1)0 - iu]dz\
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When k is — 1, the left cross-product is

((p + it) X (u + iv) = (<b + it)(u + iv)

1 C
(2.5) -(<*> + #) Re   I    (0 + ico)dz

2 J it,

2 J »!
+ y I    (<*> + it)(0 + io)dz.

Definition VII. Suppose (u+iv) is a B.A.F. (k) with A.F. {(¿+1)0—iu}

where ¿ p* — 1. Suppose also that (<f>+it) is analytic. Then, the right cross-product

of (u+iv) and (c6+if) ii

(u + iv) X (<t> + it) = (<P + it)(u + iv)

k + 2
+-i

(2.6) 2(¿+l)
i <(<!> + it) Im  f  [(k + 1)0 - ico]dz

- Im   f   (<j> + it)[(k + 1)0 - ico]áz|

When k is — 1, the definition is

(u + iv) X(<t> + it) = (f + it)(u + iv)

(2.6) +— i\((p + it) Im  f  (0 + ico)¿z
2     1 J t0

- Im   j    (</> + i^)(0 + ico)<fzi •

We now show that these cross-products are commutative and associative

with respect to multiplication by analytic functions.

Theorem 17. Suppose (u+iv) is B.A. (k) and that (<j>+iti) and (t2+iti)

are analytic. Then

(<bi + iti) X [(<Pi + ifi) X(u + iv)] = [(<pi + iti)(<t>2 + if2)] X (u + iv)

provided that

(a) the lower limit of (<bi+iti)X(u+iv) is (z2, z0),

(b) the lower limit of (c62+if2)X [((¡>i+iti)X(u+iv)] is (z0, Zi),

(c) the lower limit of [(<¿>i+ifi)(4>2+if2)]X(w+tt>) ii (Z2, Zi).

Proof. We give the proof for the case ¿^ — 1. The proof is exactly similar

when ¿= — 1.
Let the A.F. of (u+iv) be [(¿ + l)0-ico]. Then the A.F. of (4>i+iti)

X(u+iv) is (cii+ifi)[(¿ + l)0-ico]. Therefore,
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(02 + ift) X [(c6i + iypi) X (m + iv)]

- (02 + #i){ (*i + ¿*i) X (m + íd) }

£ + 2    ( r '
- „/i ,  ,x 1 (*2 + ^2) Re  I    K* + W - *"](*i + **0<fa

2(£ + 1) 1 J,0

- Re   f   [ik + 1)0 - ico](0t + i,tV,)(02 + «fc)<fol

=   (02 +  Vp2)(<Pl  +  ¿0l)(« + iv)

k + 2    ( c '
- o/^. ,A(+* + »^i*1 + w Re I (I* + w- ^dz

2(£ + 1) 1 J zj

- (02 + fft) Re  f  (0i + i^i)[(£ + 1)0 - iu]dz\

k+2  ( r\
- ...   ,   ., i(02 + #t)  I     [(£ + 1)0 - mo](01 + i*i)dz

2(£ + 1) 1 Ji0

- Re J   [(£ + 1)0 - ico](0! + i^O(02 + tyt)dz\

(02 + iit)(<t>i + i^i)(u + iv)

k + 2
{(02 + Pl>t)ifi + iiAi) Re  f  [(£ + 1)0 - ico]rfz

2(k + 1)

- Re J  [(£ + 1)0 - ico] (0i + i^O(02 + ty,)dz\

= [(0i + i\AO(02 + i(M] X (m + iv). Q.E.D.

A similar result holds for the right cross-product.

Theorem 18. // (u+iv), (4>i+ifi) and (<p2+if2) have the same meanings

as in Theorem 17, then

[(« + iv) X (0i + iiAi)] X (02 + ift) = (m + iv) X [(0i + iiAi)(02 + if*)]

provided

(a) the lower limit of iu+iv) Xi<pi+ifi) is (z2, z0),

(b) the lower limit of [(u+iv)X(<pi+vpi)]X(<p2+i4'2) is (zo, Zi),

(c) the lower limit of iu+iv) X [(01+^0(02+^2)] is (z2, zx).

The proof is exactly similar to that of Theorem 17 and so will be omitted.

We could also consider a mixed product

(02 + ¿&) X [(« + m) X (01 + Í0l)].

It turns out that this is not anything very much simpler.



1961] VISCOUS FLUIDS, ELASTICITY AND FUNCTION-THEORY 113

Another property of cross products is that if in (2.5) and (2.6), (<p+it) is a

real constant, c, and zo = Zi these products both reduce to c(u+iv). However

this choice of the lower limit will sometimes be inconvenient.

Other types of products, dot products, will now be defined. If, in Defini-

tion V, fli = Z>2 = l and flj = ¿>i = 0, the resultant product will be called a left

dot product while if fli = ¿>2 = 0 and a2 = Oi= 1, the result is the right dot prod-

uct. Again, formal definitions will be given.

Definition VIII. If (<f>+it) and (u+iv) have the same meanings as in

Definitions VI and VII, then, when k^ — l,

(<t> + it) • (u + iv) = (<p + it)(u + iv)

- ^+,\A^+*>Re f '{<*+i)ö - ^dz
(2.7) 2(*+l)l J,o

+ i Im f (<t> + it)[(k + 1)0 - ia]dz\ .

When k = — 1, the definition is

i r"
(<t> + it) ■ (u + iv) = (<t> + it)(u + iv)-(<p + it) Re   I    (0 + iu)dz

** **   «ft

1 c
-(<t> + it)i Im   I    (<p + it)(6 + ia)dz.

2 J„

Definition IX. When k^ — l,

(u + iv) • (</> + it) = (<t> + it) (« + *")

(2.8)

(2.8)

+       *2«x((* + **)* Im  f   [(* + 1)0 - ia]dz
2(k + 1) { J ,„

+ Re  f  (<t> + it)[(k + 1)0 - ¿co]dzl .

When k = — 1,

1 C
(u + iv) ■ (4 + it) = (4> + it)(u + iv) -\-(<t> + it)i Im   I    (0 + ictf)¿z

2 J f0

1 c'
H-Re  j    (4> + it) (9 + ia)dz.

Dot products are not associative. Thus if Zo = 8i,

k+ 2k + 2 c '
i- [*• (« + iv)] = - (u + iv) +- I    [(¿ + 1)0 - ia]dz

k + 1J «.
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while

-1-(m + it-) = - (m + iv) +       + 2    f '[(k + 1)0 - icojcfz
2(£ + 1) J,,

and so

i-i-(u + iv) 7e (i-i)-(u + iv)    since   i-i = — 1.

A similar result holds for right dot-products.

However there are some simple results on repeated products which we

give in the following theorems.

Theorem 19. Suppose (tpi+ifi) and (<f>2+if2) are two analytic functions

and suppose f(z) = u+iv is a B.A.F. (£). Then

(2.9) [(0i + Í0O •/(*)]• (02 + if2) = [(0i + i*i)(0a + ift)] X fit)

and

(2.10) (02 + tyt) • [/(«) ■ (0i + ifù] = /(«) X [(0i + iiAi)(0s + ift)]

provided that, in (2.9), the lower limit of

(a) [(<pi+ifi)-f(z)]-((f>2+if2) is (to, Zi);

(b) (4>i+ifi)-f(z) is (z2, So)';
(c) (01+^0(02+i^2)X/(z) is (z2, Zi);

and that, in (2.10), the lower limit

(a) of (<pt+i^t) ■ [f(z) • (<pi+ifi)] is (z0, zi);
(b) off(z)-(4>i+ifi) is (z2, to);
(c) off(z)X(<bi+ifi)(<j>2+iip2) is (z2, Zi).

Theorem 20.

(2 11)   ^ + Í4,l) '/(Z)^ X (*2 + ^ = (*' + "^ ' ^2 + l4>2) X/(Z)^

- [(0i + i*i)(02 + iiM]-/(z)

provided that the lower limit of

(a) (<p2+if2)Xf(z) and (fa+ifi) -/(z) is (z2, z0);
(b) ifi+ifi)- [(02+iWX/(z)] ana [(0i+i^i)-/(z)]X(02+i^) is (zo, zx);
(c) [(0i+i<A)(02+^2)]-/(z) is (z2, Zl).

^4/so,

(0i + ift) X [f(z) ■ (0i + if)] = [/(z) X (02 + ifa)] ■ (01 + ifi)

= /(z)-[(0i + ^O(02 + i02)]

provided that the lower limit of

(a) /(z)X(02+iiM andf(z)-(fi+vpi) is (z2, to),

(b) (02+iiW X Lf(z) • (<pi+ifi) and \f(z) X(02+i&) ] • (0i+iW is (zo, Zi),
(c) /(z)- [(0i+i^i)(02+i^2)] is (z2, Zi).
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The proofs of Theorems 19 and 20 will not be given since they are similar

to that of Theorem 17.
A mnemonic can be given for all these results, Theorems 17, 18, 19 and 20;

namely, two cross-products and two dot are equivalent to a cross-product,

while a dot and cross-product is equivalent to a dot-product. The methods of

choosing the lower limits in all these results are very similar.

Chapter III. The Elementary Functions

1, Preliminary considerations. By means of the multiplication formulae

it is possible to generate a great variety of bi-analytic functions. Some such

functions will be constructed by this method in this chapter and a number of

their properties will be demonstrated.

First, a B.A.F. whose A.F. is 1 is easily found. There are an infinite num-

ber of such functions, of course, all differing from each other by analytic func-

tions. The one that will be continually used in the following work is

¿ + 2 k
(3.1) Z<°>(*;«) = --x + i

2(k + 1) 2(k + 1)

We shall also use the following function, whose A.F. is i:

k k + 2
(3.2) ¿•Z(°'(M) =-y-i-x.

2(k + 1) 2(¿ + 1)

In constructing (3.2) from (3.1) the lower limit (0, 0) has been used.

If (u+iv) is a B.A.F. (¿), we shall use the notation a(u+iv) for the B.A.F.

(au) +i(av) where a is a real number. Also, if a and b are real, the notation

(a+ib)-(u+iv) will be used for the function a(u+iv)+b{i- (u+iv)}. It

should be noted that if (u+iv) has f(z) as its A.F., then the A.F. of (a+ib)

•(u+iv) is (a+ib)f(z).
Thus,

(a + ib)-Z^(k, z) = flZ(°)(¿, z) + bi-Z^(k, z)

is a B.A.F. (¿) whose A.F. is (a+ib).

Now,

dZ™ k + 2

dz 2(k + 1)

and

di-Z™ _ k + 2

dz l 2(k + 1)

and so
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(3.3) £((.+ »).*»,) _J±L{._a).

When ¿is — 1, the functions used will be

Z«»(-l;z) =      x-±iy
2 2

and

1 1
(3.4) t-Z<°>(-l;z) = + —y-ix.

Suppose, now, that/(z) is any analytic function. Then,/(z) XZ(0)(¿, z) is a

B.A.F. with A.F. f(z). Also, i-Z<°>(¿, z)X/(z)=i-{/(z)XZ<°>} is a B.A.F.
with A.F. if(z) and so (a+ib) • {/(z) XZ<°> j is a B.A.F., with A.F. (a+ib)f(z).

By setting f(z) equal to zn, log z, e', sin z and cos z the above formulae

gives us B.A.F.'s which will be denoted by (a + ib)-ZM(k; z), (a + ib)

•L(k; z)(a+ib)-E(k\ z), (a+ib)-S(k; z) and (a+ib)-C(k; z) respectively.
It turns out that many of the properties of these functions are formally

very similar to the properties of their A.F.'s, provided the formalism de-

veloped in this paper is used.

In all the above and in the rest of the chapter, the variable z could be

replaced by z—zo, where Zo is any complex number. In this way the special

role of z = 0 can be transferred to an arbitrary point z = Zo. We have preferred

to write the results with z instead of z—z0 merely for conciseness.

2. The generalized powers Z(n)(¿; z). Suppose, first, that k^ — l. Then,

k k + 2
(3.5) Z<">(¿; z) = z- X Z<°> =-iyzn +-Re (Z-+1)

2(4 + 1)' 2(¿ + 1)(m+1)

provided nj¿ — 1. When »= — 1, we have

k k + 2
(3.6) Z<-1'(¿;z) = z-1 X Z<°> =-iyz-1 H-log    z   .
K     J V 2(¿ + 1)   y 2(k + 1)    8 '    '

Also,

k k + 2
(3.7) i-Z<»>(¿; z) =-yzn - i-Re (zn+x)
K 2(k+í)7 2(¿ + 1)(m+1)

= i-Z^Xz", n¿¿-l

while

(3.8) i-Z<-D(¿;z) = - yz-i - i log | z\   = i-Z™ X r'.
2(¿ + 1) 2(k + 1)
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When Re(«)> — 1, the lower limit used in the cross product was (0, 0),

when Re(«) < — 1 and also when Re(») = — 1, Im(w) j¿0, the lower limit was

(0, oo) while when n= — 1, the lower limit was (0, 1). This choice of limits

makes the results somewhat simpler than any other choice.

In the above, n is any complex number. If n is not a positive or negative

integer the functions are, of course, multi-valued. Also, when m is a positive

integer, Z(n) and i-ZM are homogeneous polynomials of degree (m+1) in x

and y.

We now can easily see that

Z<"+*>(*; z) = z<m+*> X Z<°>

= zm X Z(p)

and

i.Zö»+»>(£;z)  = i-Z<°> X Zm+"

(3.91
= i-Z™ X zm

provided the lower limits are chosen so that the contribution from the lower

limits in the integrals is always 0.

Suppose, now, Re(«)>0. Then,

Z<»> = z- X Z<°> = z«»-1' X (z X Z<°>)

and so

dZ<"> /dz"-1 \      / ¿Z»>\

= brxz<")+r'x^r)

since

Therefore

dz

= ((n - 1) X Z<»-») + Z<»~»

dZ">
= Z<°>.

dz

dz™
(3.10) -:»X2M.

dz

Similarly

di-ZM
(3.10) -= i-Z<"-" X ».

dz

We had to proceed in the above manner since dZ^/dz^O. Also, it can

be seen that the restriction Re(») >0 is not essential and the formulae (3.10)

really hold for all wj^O. If £ is — 1, the definitions of the generalized powers

are
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(3.10) Z<»>(-1; *) - - - iyz* + ——— Re (z«+l),
2 2(m + 1)

provided nj¿ — 1, while

1 i,l
(3.11) Z<--»(-l;z) = — log I z\-iyz~\

Also,

(3.12) i-ZW(-l;z) = —yz» -       * Re («»+')
2 2(m + 1)

for m?* — 1, and

1 1
(3.13) i-Z<--»(-l;z) = — yz'1-i log \ z\ .

Equations (3.9) and (3.10) hold even when ¿= — 1.

It should be noted that if ¿^ — 1,

ZW(i¡i) =-Z<»>(-l;z) + i{i-Z<»>(-l;z)}
k + 1

and

1
(3.14) i-Z™{k;z) = -»{ZW(-l¡í)| +-i-Z<»>(-l; z).

k + 1

These formulae are an illustration of Theorem 6. We obtain the "polar form"

of Z(n) by setting z = reie. Thus, when ¿^ — 1,

Z<">(¿; z) =-rn+1{ [(* + 2) cos 0 cos M0
2(m+ 1)(¿ + 1)

- (m¿ + 2¿ + 2) sin 0 sin m0] + í(m + 1)¿ sin 6 cos m0} ,

for n-A — 1, and

k k+2 ) k
-sin2 0 H-log r > + i-

t2(¿ + 1) 2(¿ + 1) / 2(¿ + 1)
Z("1)(¿;z)= \n/i "   ^ sin20+ n"fi \ "v logr> + i „,, ",  <v cos0sin0.

The results for ¿ = — 1 are obvious from these formulae.

Similarly,

1
i-ZM(k; z) =-rn+1 (m + 1)¿ sin 0 cos m0

2(m+1)(¿+1)       ,V

+ í[(m¿ — 2) sin 0 sin m0 + (k + 2) cos 0 cos m0] },
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and

i-Z<-»ik; z) = -
Ik k+2 )

sin 0 cos 0 + i <-sin2 0-log r >
l2(£ + 1) 2(£ + 1)        /2(£ + 1)

If n is real, these formulae show that for «?¿ — 1,

rn+l

iz(B)(-l;z)i *,, . tin»i + hi + i«+i|}
2 | m + 11

rn+l

|*.ZW(-1;«)|  g^-—T{l + |»+l|  +|» + 2|}
2 | M + 11

lZ(n)(¿;^l   =ol    ^i|"u^i|{^ + 2l + |«¿ + 2£ + 2|2 I w + 11 | £ + 11

+ |»+l||*|}
rn+l

li,Z<")(*;z)l   =o\      .il |t.i|il*+2l + lW*~2l2| M+ 11 I £+ 11

+ |«+l| |*| }.

Even cruder estimates, easily obtainable from the above, will serve our

purpose later, namely,

|Z<»>(-l;z)|   =2rn+1,

| i-Z<">(-l;s)| = 4rB+1,

(3.15) |ZW(*.f)|   S |3 + j—j|fH-»,

|i-Z-(£;z)U{l + F^}

all valid for \n\ =2.
It is interesting to consider the zeros of Z(n)(£; z) since in this respect,

the properties of the bi-analytic functions are quite different from those of the

corresponding analytic functions z".

Suppose, first that £ is — 1. Then, Z(-1)( —1; z)=0 for z= ±1 and z= ±ie.

Also, if n = (2£ + l)/(2ff) where p and q are integers then Z(n)( — 1, z)=0 for

z = reiT iq odd) and z = re2i* iq even). Thus, in this case, Z(n)( —1, z) has a

whole line of zeros going through the origin. The only other cases in which

Z(n)( — 1, z) is zero are when Re(w)> — 1, in which cases z = 0 is a zero.

Consider now, the situation when £ is —2. First, Z<-1)( —2; z)=0 when-

ever y is 0. For all other n, Z(n)( —2; z) =0 for z = reip* where p is an integer.

Thus, in every case, Z(n)( —2; z) has a line of zeros. Now, suppose £ is not

0. -1 or -2. Then, Z<-»(£; z)=0 for z=±l and z= ±ier*'»+». If « =

-2(£+l)/£, Z(n)(£, z)=0 for z = re«t2p+i]/2«)T where p and q are integers.

n+l
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Again, if n = (2p+i)/2q, ZM(k;z) =0 for z = re'T or re2iT, as in the case ¿ = — 1.

If Mis not -1, -2(¿ + l)/¿or (2p+l)/2q then the only time the Z(n>(¿; z) = 0

is when Rc(m) > — 1 and z = 0.

All the above statements are easily proved using the "polar form" of

z<»>(¿; z).
3. The logarithmic function, L(k; z). Again, we shall first consider the

case of ¿f* — 1.

Using the lower limit (0, 0) we find

L(k; z) = (log z) X Z<°>(¿; z) - |g    +2   x (log | z |  - 1) - y Im(log z)|

(3.16) k

We easily see that

dL(k; z)
(3.17) —y-i = z<-»(*;«).

az

L(k; z), like the corresponding analytic function, is an infinite-valued

function, with z = 0 as the branch-point. However, unlike log z, L(k; z)—>0

for z—»0. Also, L(k; z) has other zeros, namely z= ±e, and the points on

|z| =1 where argz=±M7r+e„ (e»>0) the numbers 0= ±Mir+e» being the

roots of tan 0 = 0/2.

Next,

k
i-L(k;z) = i-Z™X (log z) = - y log | z|

2(¿ + 1)
(3.18)

Í    1 ¿ + 2 .   .  \+ i|—, Im(log z) + ^7^*0 - log I >| )}

and

di-L(k; z)
(3.19) -^-í-í- = i'Z<-»{h\ s).

dz

Again, i-L(k; z) is infinite valued and has z = 0 as its branch-point. The

zeros of i-L(k; z) are the same as those of L(k; z).

Coming now to the case k = — 1, we have

Z(-l;z) = (logz)XZ«»(-l;z)

1 . 1 .
= — (x log I z I   - *) - — iy log | z I ,
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dLi-Uz)
\ =Z<-»(-l;g)

at

and

Z(—1; z) = 0 for z = 0, z = ± e,   and   z = ± i.

It is remarkable that Z(—1; z) is single-valued, although, of course, z = 0

is still a singularity of the function in the sense that the function is not bi-

analytic at this point.

Finally,

i-Z(-l;z) = i-Z<°>(-l;z)X(logz)

= — ylog|z|  +—i{-zlog | z\  + x + 2yIm(logz)}

and

di-Z(-l;z)

dz
= i.Z<-»(-l;s).

This function is, again, infinite valued. Its zeros are z = 0, z= +e, and,

once more, the points on \z\ =1 where arg z= +nir+en.

The relations between the functions of type £, £?* — 1, and the functions

of type — 1 is the same as for the generalized powers, namely

Lik;z) =——Z(-l;z) + i{i-Z(-l;'2)}
k + 1

i-Lik;z) = -iZ(-l;z)+—-i-Z(-l;z).
£ + 1

The author has not been able to find any simple analogue of the func-

tional equation log ziz2 = log zi + log z2.

4. The exponential function, £(£; z). Using (0, — =o+i(0)) as the lower

limit we find, when £ is not —1,

£(£;z) = e'X Z<°>(£; z)

(3 •20)     = (w+T)ex cos y - w+~T)eXy sin y)+ 'ijirnrcos y-

This function is clearly single-valued and bi-analytic for all z. Also it is

never 0, except when £ is —2, when y = 0 is a line of zeros.

We easily see that

dEik; z) ,     N
(3.21) = Z(£;z).

dz
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Also,

k
i-E(k;z) = i-Z<0)(k;z) X e' =-ye*cosy

2(¿ + 1) ' 7
(3.22) V

r   -k       . ¿ + 2        i
+ ie*   -— y sin y-cos y

L2(¿ + 1) 7       7      2(k+ 1)        7\

and

di-E(k;z)
(3.23) --^ = i-E(k;z).

dz

This function also is a single-valued bi-analytic function for all z which,

when k is not — 2, is never equal to 0. Again y = 0 is a line of zeros in the case

¿=-2.
When ¿is — 1, we have

£(-l;z) = e'XZ<°>(-l;z)

1 . 1
= — eI(cos y + y sin y)-iye1 cos y,

¿â ù

dE(-\;z)
\ =£(-l;z),
az

i-£(-l;z) = i-Z<°>(-l;z) X e'

1 1
= — ye* cos y-îV(cos y — y sin y).

E(—l; z) and i-E( — 1; z) are never zero. Once again,

E(k; z) = —— E(-\; z) + i{i-E(-l; z)},
k + 1

i-E(k;z)= -iE(-l;z) + ——i-E(-i;z).
k + 1

The functional equation of the ordinary exponential e' has an analogue.

Thus

ef<2> X £(z) = er X (e' X Z<«) = ef+" X Z<°>

and so

£(zi + 8») - ef('i> X £(z,)

where f (zi) =z2. The same result holds for i-E(k; z).

In the case ¿ = 0,
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E(z + 2niri) = E(z),

i-E(z + 2mri) — i-E(z),

where m is an integer. When k^O, E(k; z) has no periodic properties.

5. The trigonometric functions, S(k; z) and C(¿; z). Once again we con-

sider the case ¿f* — 1 first. We define

S(k; z) = (sin z) X Z<°>(¿; z)

(3.24)

/  ¿ + 2 k \
= — cos x (- cosh y -|-y sinh y )

\2(¿ +1) •"      2(¿ + 1) '        V

k
+ i-y sin x cosh y,

2(¿ + 1) '

C(k;z) = coszX Z(0)(¿;z)

/       ¿ ¿ + 2 \
=  sin x {-y sinh y -)-cosh y )

(3.25) \2(¿+l) 2(¿ + l) /

k
+ i-y eos x cosh y.

2(¿ + ir
Most of the familiar properties of sin z and cos z hold for these functions.

Thus,

dC(k;z) c,,    s dS(k;z)
-= - S(k; z), ■—-= + C(k; z),

az az

C(z + 2x) = C(z), S(z + 2x) = S(z),

C(z + x) = - C(z), S(z + x) = - S(z),

S(z + x/2) = C(z), C(z + x/2) = - S(Z).

However, S(z) is even while C(z) is odd:

S(-z) - 5(s),       C(-z) = - C(z),

and so

5(r/2 - z) = - C(a),        C(x/2 - z) = - S(z),

5(x - z) = - 5(z), C(x - z) = + C(z).

There also exist forms of Euler's formulae. If we define E(i-z) =e"XZ<0),

we have C(z) + [iXS(z)]=E(i-z) and

C(z) =-{E(i-z) + E(-i-z)},

1
S{z) = —X {£(i-z) - E(-i-z)}.

2\
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Also,

where

and

Cin-z) + [i X S(n-z)] - E(ni-z)

C(n-z) = cosmz X Z(0)

S(n-z) = sinwzX Z(0).

Next,

i-S(k; t) = »-Z(0)(£; z) X sin z

£

(3.26, 2<í + 1)

y sin a; cosh y

/   £ + 2 £ \
+ i cos x [-cosh y-y sinh y ],

\2(£+l) '      2(£ + l)'        V'

i-C(£;z) = i-Z(0)(£;z) X cos z

£

(3.27) 2(£ + l)
y cos a; cosh y

/  £ + 2 £ \
— i sin x (-cosh y-y sinh y ).

\2(£ +1) '      2(£ + 1) '        V

Again we have the results

di-C(k; z)

dz

di-S(k;z)

- i-S(k; z),

+ i-C(k; z),
dz

i-C(z+2ir)   =      i-C(z), i-S(z+2r) =      i-S(z),

i-C(z + it)     = — i-C(z), i-S(z + 7r) = — i-S(z),

i-S(z + ir/2) =      i-C(z), i-C(z + tt/2) = - i-S(z),

i-S(-z) =      i-S(z), i-C(-z) = - i-C(z),

i-5(x/2 - z) = - i-C(z), i-C(r/2 - z) = - i-5(«),

*-5(ir - z)      = - *-5(z), i-C(ir - z) = + i-C(z).

Consider now, the zeros of these functions.

When £ = 0, C(z) and i-C(z) have lines of zeros, x = pT while S(z) and

i-Siz) have lines of zeros, X— ip + \/2)ir, where p is an integer.

When £ is —2, y = 0 is a line of zeros of C(z), i-Ciz), Siz) and i-S(z).
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Suppose, now, that k is not 0, —1 or —2. Then, y = 0, x = pir are zeros of

C(z) and i -C(z). If, in addition, — 2<¿<0, then C(z) has zeros at x = (p + l/2)r,

y=±Y, where Y is the positive root of tanh y= -((¿ + 2)/¿)(l/y). If ¿>0

or ¿<—2 then the only zeros of C(z) are y = 0, x = pr. However, if ¿>0 or

< —2, then i-C(z) has zeros at x = (p+l/2)ir and y= ± Y' where Y' is the

positive root of tanh y= +((¿ + 2)/¿)(l/y) while if -2<¿<0, y = 0, x = pir

are the only zeros.

If -2<¿<0, (¿?¿-l) then the zeros of 5(z) arey = 0, x = (p + l/2)ir and

x = pir, y— ± F while y = 0, x = (p+l/2)ir are the only zeros if ¿>0 or ¿< — 2.

Finally, if —2<¿<0, the only zeros of i>S(z) are y = 0, x = (p+l/2)ir while

if ¿>0 or < — 2, it has additional zeros,

x = pT,      y = ± r.

In the case ¿= — 1,

1 1
S( — 1 ; z) =-cos #(cosh y — y sinh y)-ïy sin x cosh y,

1    . . 1   .
C(— 1 ; z) = — sin a;(cosh y — y sinh y)-iy eos x cosh y,

1 1
i-S(— 1; z) = — y sin z cosh y -|-i eos x(y sinh y + cosh y),

1 1
i- C( — 1 ; z) = — y eos a; cosh y-i sin a;(y sinh y + cosh y).

All the properties of these functions in the cases k ;= — 1 carry over to this

case, ¿= — 1. Even the discussion of the zeros is valid provided Y is taken to

be the positive root of tanh y= +(l/y) (while Y', of course, does not exist).

Chapter IV: Taylor's and Laurent's Theorems;
Cauchy's Integral Formula

1. Taylor's and Laurent's Theorems. We shall now show that if f(z) is

B.A. (¿) in a circle of radius R and centre Zo, then

CO CO

/(*) = Z a„-Z<»>(¿;z - z„) + X *»(» - zo)"
0 0

where the series converge absolutely for | z — z0| <R and uniformly for | z — zo|

^Ro, Ro being any positive number less than R. an and bn are, of course, con-

stants.

The proof given here does not rely on any analogue of Cauchy's integral

formula but proceeds by reducing the result to Taylor's Theorem for analytic

functions. (Of course, the fact that the derivative of a B.A.F. exists and is

B.A. is used and this depends on Cauchy's integral.) The idea behind the



126 JAMES SANDERS [January

proof has already been indicated in [4] where the result for B.A.F.'s of type

— 1 was obtained with, however, the restriction that the expansions were valid

only in a circle of radius R' where R'/R was sufficiently small. We are now

able to remove this restriction.

Suppose, then, that/(z) is a B.A.F. (£) in | z—z0| <i?, with k^ — i, whose

A.F. is [(£+l)0-ico].

Then

00

(£ + 1)0 - ico = £ aniz - z0)n
0

for \z — Zo| <R and where, by Cauchy's inequality, \a„\ £M/Rn.

Now, o„-Z(n)(£; z—zo) is a B.A.F. whose A.F. is anit—Zo)n. Also, if

an = an+ißn, we have by equations (3.15)

| an-ZMik, z - zo) |   =| anZ^ik; z - zo) + ßJ-Z^ik, z - z0) |

43/ i 1      ) . . M'\
= -H + -.-¡4     2-2,»+'-'

Rn\ * + 1  /

-zo B+1

R»

for w = 2 and all (z—Zo).

Therefore, X)o° an-ZM(k; z—Zo) is a series of B.A.F.'s which converges

uniformly for all i?o such that | z—zo| =%Ro<R and absolutely for | z — z0| <R.

Thus the hypotheses of our version of Weierstrass' double-series theorem

(Theorem 14) are all satisfied and so ^0 an-Z(n)ik; z—z0) is a B.A.F. (£) in

|z-zo| <i?with A.F. [(£ + 1)0-*»].

Therefore, {/(«)- So" a-»-Z<">(£; z-z0)} is a B.A.F. (£) whose A.F. is 0,

that is, it is an analytic function in \z — z0| <R. Therefore

oo oo

Si') - £a»-Zt»>(A;a - z0) = ¿ ô„(z - *„)".
0 0

We note, finally that the argument is still valid, with unessential changes

in the case £ = — 1 ; the major difference is that M' must be replaced by 6M.

We have thus proved

Theorem 21 ("Taylor's Theorem"). Suppose/(z) is B.A.for \ z—z0| <R.

Then, for all z such that |z—z0| <R,

00 00

(4.1) fiz) = Y,an-Z^ik;z- z0) + £ ô„(z - «„)"
0 0

where the series converge absolutely for |z—zo| <R and uniformly for \z — Zo\

^i?o where Ro is any positive number less than R. a„ is determined uniquely by

the A.F. of fiz) and bn uniquely by the an's and fiz).

Suppose next, that/(z) is B.A. (£) for i?i<|z —z0| <R2. Then, its A.F.
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(¿ + 1)0—ico= ^¿° a„(z—Zo)n+2^° fl-„(z—z0)-n where the first series con-

verges absolutely for \z—z0\ <R2 and the second for \z—z0| >Ri. Therefore,

i     i       M i. „
MM = — ' <*-»    = MRt-

R* '       '

Therefore, by the type of argument used in proving Taylor's Theorem,

Xo° an-Z(n)(¿; z —Zo) and Xo" a-n-Z(~n)(¿; z — z0) are B.A.F. (¿), in \z — z0\

<Ri and ¡z —zo| >R2 respectively, and have respective A.F.'s 2o" an(z —Zo)"

and 2¿° a_„ (z — Zo)~".
Carrying through the argument as in Taylor's Theorem we get the follow-

ing result:

Theorem 22 ("Laurent's Theorem"). Suppose f(z) is B.A. for Ri

< | z—zo| <R2. Then, for all z in this domain

00 CO

(4.2) f(z) = 2>„-Z<»>(¿;z - zo) + Z bn(z - zo)*.
—CO —CO

The series of positive powers converge absolutely for | z — z0| <Ri and uniformly

for | s — So j úRio<R2 while the series of negative powers converge absolutely for

\z—Zo\ >Ri and uniformly for co >i?loo^ \z — z0| ^Rio>Ri- an is determined

uniquely by the A.F. of f(z) and bn uniquely by the an's andf(z).

2. Cauchy's integral formula. When any of the products, defined in Chap-

ter II, of a B.A.F. and the analytic function l/(z —f) are formed it is found

that the resulting functions are multi-valued. Therefore the analogue of

Cauchy's integral formula can not be obtained in this way.

To circumvent this difficulty, we shall form an expression involving two

B.A.F.'s of type ¿, one of which has [l/(z—f)]2 as its A.F.

Suppose, then, that Fi(z) = <pi + iti is a B.A.F. (¿) whose A.F. is

[(¿ + l)0i-icoi] and that F2(z) =c*>2+if 2 is another B.A.F. (¿) with A.F.

[(¿ + l)02-io>2].

Let

[(k + 1)0/  - ico'] =  f   [(k + l)0i - icoijáz,

[(k + 1)02' - ico2'] =   f   [(k + 1)02 - ia2]dz.

Consider the expression

{(¿i + ifi) X [(¿ + 1)02' - ico2']} + \(<Pi + if2) X [(¿ + 1)02' - iai]},

where the first product has (zi, z2) as its lower limit and the second product

(z2, Z2) as lower limit.

This is a B.A.F. (¿) and a little algebra shows that it is equal to
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[(£ + 1)0/ - *co2'](0i + ffc) + [(£ + 1)0/ - ico/](02 + ifo) - -^co/co/,
£ + 1

that is, the integrals disappear.

If, now, we form the dot product of — i and this expression, we obtain

the following:

Lemma.

-*• {(0i + iii) X [(£ + 1)0/ - ico/] + (02 + *V<2) X [(£ + 1)0/ - ico/]}

(4.3) = -*{[(* + 1)0/ - ico/](0i + i0i) + [(£ + 1)0/ - iuí](02 + Ht)

- (£+l)(£ +2)0/0/}

is a B.A.F. (£) whose A.F. is

-*{ [(£ + 1)0/ - ico/][(£ + 1)0! - ico,] + [(£ + 1)0/ - ico/ ][(£ + 1)02 - ico2]}

= — { -i[(£ + 1)0/ - ico/][(£ + 1)0/ -*»/]}.
dz

The lower limit of the first cross-product is (zu z2) and of the second is (z2, z2)

while that of the dot product is either (t\, Zi) or (z2, z2).

An analogue of Cauchy's integral can now be obtained by setting <f>2+if2

= — Z<-2>(£; z —f) in (4.3) and applying "Cauchy's Theorem" (Theorem 10)

to the resulting B.A.F. The formula is given in the following theorem.

Theorem 23 ("Cauchy's integral formula"). Suppose f(z) =u+iv is

B.A.F. (£), kj¿ — 1, in a domain D bounded by a simple, closed continuous

rectifiablecontour, C. LettheA.F. off(z) be [(£ + 1)0 — üo]andlet [(£ + 1)0'—i»']
= S¡1[(k + l)d — io}]dz where Zi is any point in D.

Suppose also thatf(z) and [(£ + 1)0' —iw'] are continuous in the closure of D.

Then, if f is any point in D,

/(f) = ^$ {-{- [(/(*> x 737) - zi~1)(-k> * - f) x «* + W - *«'>]} 'dz

= —<f i-^- - [(£ + 1)0' - ico']Z<~2>(£; z - f)
2-mJ c U — f

-i{[(-£+l)0'-^w']Re(-i7)

(4.4)

- (£ + 2)0' Re

V

+ i(6' + iw') Im (-)\dy-
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Proof. Applying "Cauchy's Theorem" to the function shown in (4.4), the

integral in (4.4) is seen to be equal to the integral of the same function taken

around any small circle T with f as centre. Let z — f = reie be such a circle. We

shall show that as r—»0, the integral approaches/(f).

Now, the first term, (l/2xi)//(z)/(z —f)dz gives/(f) in the limit, by the

same argument used to prove the result for analytic functions. It is only

necessary, then, to show that the limit of the other terms is 0.

Now,

Z<~2Kk, z - f)

— r~x

= - {[(¿ + 2) cos 0 cos 20+2 sin 0 sin 20] - ik sin 0 cos 20} .
2(¿ + 1)

Therefore

Re{Z<-2)(¿;z - f)}«fe

/,2t                      I-[(¿ + 2) cos 0 cos 20+2 sin 8 sin 28]ei8idB
o         2(¿ + 1)

¿ + 4
=-xi

4(¿ + 1)

and

2t

0

¿X

r r 2t     ki
é   Im {Z<-2>(¿; z - Ç)}dz = + I      -sin 0 cos 28eied8

J T J o      2(k + 1)

4(¿ + 1)

Therefore, the terms — (l/2xi)^p[(¿ + l)0' — ico']Z(_2,(¿; z — Ç)dz give, in the

limit, (l/2(¿ + l)) [(¿ + 1)0'(f) -ico'(f)].
Next,

dz = xi,

dy = 0,

and so the other terms give, in the limit,
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£+2 ir i
0'(f) + y[(* + l)0'(f) + 7^7 «'(f)]

[(£+l)0'(f)-ico'(f)].
2(£ + 1)

Thus the total contribution form the integral around a small circle is/(f).

Q.E.D.
The corresponding formula in the case £ = — 1 is

m = ̂ rf{~i' [(/to x TTt) - z(-2)(-Uz - f) X (0' + icoojl • dz

(4.5)     =- £ /-/to- _ (e' + ico')Z<-2>(-1 ; z - f) - 0' Re f-U dz
2xiy c U — f \z - f/;

+ f'Re(rb)+i'Im(^i)K
We note that the only one of our previous results used in the above proof

was Cauchy's Theorem. Therefore the only hypotheses needed for (u+iv)

are those given in our original definitions, Definition I and Definition II.

If other types of dot and cross-products are used in the integrand, the

integrand will be found to differ from the above by an additive term propor-

tional to

1    (£ + 2) [(£ + 1)0' - ico']

~2H "       (£+ l)(z-f)

(with a real constant of proportionality). Thus the integral will have the value

*+ 2 r
/(f) + (real constant) —-— [(£ + l)0'(r)ico'(f)].

k + 1

The integral in (4.5) is always a B.A.F. (£) for f inside or outside C,

provided u, v, 8' and w' are any functions continuous on C. This is not im-

mediately obvious since the integrand, regarded as a function of f, is not one

of the products we have defined in Chapter III. However, a little algebra

shows that it is B.A. and its A.F. is

lirij c

(£ + 1)0' - ico'
dz.

2iriJc (z - f)2

This, of course, is (d/dz)[(£ + l)0'-i»']=[(£ + l)0-i»] when [(£ + 1)0'-ico']

is analytic inside C but, in any case, it is analytic. This A.F. does not, of

course, involve/(z) since the terms involving/(z) are obviously analytic.
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It is clear that, as in the case of analytic functions, the domain D does

not have to be simply-connected but can be bounded and multiply-connected.

As a first consequence of Cauchy's formula we see that all derivatives of

f(z) exist inside D; this follows as for analytic functions.

Cauchy's formula will now be applied to the problem of differentiating

series term-by-term.

Theorem 24. Suppose that \fi(z),f2(z), ■ ■ ■ ,fn(z)} is a sequence of B. A. F.

(k), inside a domain D and that ^" fn(z) is uniformly convergent in every closed

region D' interior to D. Suppose also that the series of A. F.' s Z" [(¿ + l)0n —iw„]

ii uniformly convergent in D'. Then

(a) /(*) = ¿/n(z)
1

ii bi-analytic of type k inside D and its A.F. is

[(k +  1)0 -  ico]   =   £  [{k +  1)0, - ÍC0„].
1

(b) d «    d
Tf(*) = Z TMz)
dz i    az

in D'.

The A.F. (d/dz)f(z)is

00

d/dz[(k + 1)0 - ico] - 2 d/dz[(k + 1)0„ - ico„].
i

Also, the differentiated series is uniformly convergent in D' and has a uniformly

convergent A.F.

Proof, (a) This has been proved previously. A different proof will now be

given, using Cauchy's integral.

Let C be a continuous simple closed rectifiable curve or a set of such

curves, bounding D'. Then, /n(f) is a Cauchy integral taken over C. Since

0„', co„' andfn(z) are uniformly convergent on C, we can sum such integrals by

summing inside the integral sign.

Thus, /(f) = ^î ¿7„(f) is a Cauchy integral and so, by our previous re-

mark, B.A. (k) with A.F.

1     r(k+l)8' -ico'
^~- 9 —<—^—dz = & + Ve - ^
2x1.7        (z - f)2

since ((¿ + 1)0' —ico') is analytic inside C. Q.E.D.

(b) We have
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d \     r   d IV fiz)

+ i(0' + ico) Im (-X\dy\

= 1   r d|rZAto_(2:{(yfe + l}on,_W)z(_2)(¿)Z_f)
2iriJ     df (L z — f

_(i+2)i-Re(_l_)]d,_f[(_(4+1K__J_^Re(7l_)

+ i(0' + ico') Im (-jl dy\

-t-.f1    2iriJ

d   |r/n(f^ _   t        + _  w ^

df ILz - f

<* + «»'R« C-r?)]* - '[(-'*+ 1)9'- ITT"') EeC =1)

+ i(0' + ico') Im (-jl dy|

d/„(f)
£

df

That the A.F. of (d/dz)f(z) is J^?(d/dz) [(£ + l)0„-*w„] follows from the
above and that this is id/dz) [(£ + 1)0 —ico] follows from the result on analytic

functions.

That the differentiated series Xa (d/dz)fn(z) is uniformly convergent

follows as for analytic functions [7]. Q.E.D.

By repeating the above process, we see that a uniformly convergent series

of B.A.F.'s can be differentiated term-by-term any number of times.

It is sufficient for the validity of Theorem 24 to assume that £/»to>

y^0„ and y^con are uniformly convergent on some simple closed rectifiable

contour C; the above proof then goes through and the same conclusions fol-

low.

Using Theorem 24 it is possible to obtain simple formulae for the coeffi-

cients an and b„ in equation (4.1). o„, of course, is determined by the deriva-

tive of the A.F. oí fiz). Also, &o=/(z0). To find bi, differentiate equation (4.1)

term-by-term. Thus,
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¿ nbn(z - zo)-1 = —{/(*) - ¿fln-Z<»)(¿;z - z0)l .
i dz ( o )

Now, this derivative in the sense of analytic functions can be written as

df      d   "
T - T T, «.-2(,)(i; z - zo)
flz      az  o

where the differentiation is in the sense of bi-analytic functions since bi-

analytic differentiation reduces to analytic differentiation whenever the

differentiated function is analytic.

Therefore,

¿ nbn(z - zo)*'1 - -f - ¿ Mfln-Z("-1)(¿, z - zo)
1 dz        i

- — a0-Z«»(¿, z - zo),
az

and so, putting z = zo in this equation,

df

dz

k + 2
— âo—-•

2(¿ + 1)

where än is the complex conjugate of an. Repeating this process of differentiat-

ing term-by-term, we get, finally,

ao = [(¿ + l)0(zo) — ia(zo)],

1    ¿» .
fl„ =-[(¿ + 1)0 - ico]

m! dz*
(4.6)

m!  dz*

bo =/(zo),

*- =
1   Cd*

m! \dz*
f(z)

k + 2
- (n - 1)!-

2(* + l)
«7.-1 i    ■

(4.7)

The result when ¿ = — 1 is

ao = 0(zo) + ico(zo),

1    d*
a„ =-(0 + ico)

m!  dz*

bo =/(zo),

1   (d*f(z)°* = —~A~~',—
m! I dz*

(m- 1)!
ä„-i\

The Taylor's series of the elementary functions are now easily obtainable.

The results are
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(4.8) E(k;z)=    V"2\. + t, -ZM(i; *) (01-1),
2(¿ + 1)       o    »!

¿ + 2 °°      (—1)"
(4.9) S(¿; z) =-+ £ —-— Z<2»+1>(¿; z),

2(¿ + l)        o   (2m+1)!

(4.10) C(¿;z) = Í:^-^-Z(2«)(¿;z),
o     (2m) !

¿ + 2 -   (-I)"-1
(4.11) L(k; 1 + z) = - + £ ^—^— Z<">(¿; z).

2(¿ + 1) i M

Finally, if w and z0 are real, mi?* — 1, we have the following analogue of

the Binomial Theorem:

k + 2      z¡*+1
z<m>(¿;z + zo) =

2(¿ + 1)  m + 1
(4.12) K J

"   tk(»î — 1) • • • (m — m + 1)
+ £ —----«,—».z<">(*;«).

ni

If mi is —1, the first term must be replaced by ((¿+2)/2(¿+l)) log |zo|.

The above formulae are obviously valid wherever the corresponding for-

mulae for analytic functions hold.

The results when ¿= — 1 are easily written down, from the above.

3. Bi-analytic functions with isolated singularities. The example Z(-n>(¿;

z), where m is a positive integer, shows that it is possible to have single-valued

functions which are bi-analytic except at one point. We shall say that a func-

tion/(z) which is bi-analytic for 0 < | z — Zo| <R has an isolated singularity at

z = zo. An attempt will be made in this section to classify the types of isolated

singularities.

We shall assume that both the B.A.F. and its A.F. are single-valued. At

least when k is — 1 the example L( — 1 ; z) shows that it is possible for a func-

tion to be single-valued but to have a multi-valued A.F. We shall not con-

sider such functions.

Suppose, then, that/(z) is B.A. for0<|z —Zo| ̂ R. Then, Laurent's Theo-

rem shows that

CO oo

/(*) = Z a»-Z<">(*; z - zo) + E bn(z - z0)n   for   0 < | z - z01   û R.
—oo —00

Let g(z) = XX bn(z-zo)*,fi(z) = X-« a„-Z<»>(¿; z-z0).
Now, {a„} and so/i(z) is completely determined by the A.F. of /(z), say

h(z). Therefore, in classifying the singularities of f(z), attention must be paid

to the singularities of the A.F., h(z). The difficulties of the problem lie in the

question as to what types of behavior in f(z) are possible when h(z) behaves
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in a given manner; as will be seen we have not been completely successful

in answering this question.

The problem will be discussed under three headings, corresponding to the

different possible singularities of h(z).

(A) Suppose h(z) is bounded in the neighbourhood of zo-

Then, h(z) has at most a removable singularity and so therefore its integral

S*Zlh(z)dz is regular, where z, is any point in the neighbourhood of Zo. Thus

/ito=E¿>n.Z<»>(£;z-Zo).
(A.l) Suppose/(z) is bounded in the neighbourhood of Zo.

Then it can be shown that /(z) is equal in the neighbourhood of Zo but

not necessarily at Zo, to a B.A.F. which is B.A. not only in the neighbourhood

of Zo but at Zo itself, that is, for all z, in | z —z0| =J?. In this case,/(z) is said

to have a removable singularity.

This is proved, as with analytic functions, by representing fiz) as a

Cauchy integral taken over |z —Zo| —R and a small circle \z — z0| =p<R. It

is easily seen that as p—>0, the latter integral —»0 and since the values oí fiz)

do not depend on p, /(z) is equal, except at zo, to a Cauchy integral taken

Q.E.D.

oo oo

£ an-Z<«>(£; t - z0) + T, bn(z - *„)"
o o

| fiz) I —> oo    as    z —> zo.

X>n.Z«(£;z - zo) + S *«(« - zo)"
0 -p

with b-p 7*0,    for    | z — zo |   =2?.

For, fi(z)—»0 as z—>zo and there can not be an infinite number of terms

with n negative in g(z), since giz) would not approach «> if there were, and so

f(z) would not approach oo.

This means that for some integer p, \z — zB\pf(z) is bounded.

(A.3) f(z) is unbounded for z near z0 but |/(z)| does not approach oo as

z—>zo.

Then,

00 00

(4.15)    f(t) = 2>n-Z<»>(£;z-Zo) + Z¿n(z-f)n   for 0 < | z - z0|   ú R.
0 —oo

Thus/(z) comes close to every value for z near Zo (Weierstrass) and takes

over \z—Zo\ =R.

Thus,

(4.13) f(f)-

for \z — Zo\ =i?.

(A. 2)

Then

/to -
(4.14) JKJ
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on every value, with at most one exception an infinite number of times

(Picard).

Next, consider the situation when h(z) has a pole.

(B) ä(z)—>oo as z—>zo

Thus,/i(z)= X"Pan-Z(n)(¿; z —Zo), «-„5^0, and so \z — z0|p_1/i(z) is bounded

for some integer p.

(B.l) f(z) is bounded near z0. We shall show that this is impossible.

Now, /i(z)—>°° as z—>zo. Therefore, if/(z) is to be bounded,

CO

/(Z)   = /i(z) +   £ b»(z - Zo)*, Ä-jH-l ^ 0.
-jH-i

The sum in g(z) must start at ( — p+i) since if it started at any other value,

g(z) would approach » at a different order than/i(z) and so/(z) could not be

bounded.
By the same argument, the highest order terms a_p-Z-J,(¿; z — Zo) and

&_p+i(z —z0)-p+1 must add up to zero if f(z) is to be bounded.

Consider the real part of such an equation and put the functions in the

polar form. Then, there is a factor r~p, py± — \, which can be cancelled and so

we get a trigonometric series that adds up to zero. All the coefficients must

therefore be 0 and so it can be seen then that a_p and b-p+x must each be 0.

If pis -1, then |Z(~»(¿; z-z0)| =0 (log r) while |z-z0|-p+1 = 0(l) and

so the argument is simpler. Q.E.D.

(B.2) /(«)—>°° as z—>Zo.

00 00

(4.16) f(z) = X fl„-Zf>(¿; z - zo) + X bn(z - z0)\
—P —CO

We have not been able to discover whether a finite or an infinite number

of the &_„'s (m>0) differ from 0 in this case.

(B.3) f(z) is unbounded for z near z0 but \f(z)\ does not approach  « as

Z-*Zo.

In this case it is obvious that

CO CO

(4.17) f(z) = X«n-Z<»>(¿;z - z„) + X bn(z - z0)*
—P —00

where there are an infinite number of the bn's for m<0 which are nonzero.

Finally we have

(C) h(z) has an essential singularity.

Then

00

fi(z) = I>*-z(B)(¿;z-zo).
—oo
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It would appear plausible that a function like this /i(z) would approach

indefinitely close to any given number as z—>Zo. However, we have not been

able to prove any theorem on the behavior of such functions.

Consequently we are not able to give any further results in this case.

Chapter V: Elasticity theory

1. Stress functions. The usual method of relating problems of plane strain

and generalized plane stress to the theory of biharmonic functions is by means

of a stress function [8]. We shall now relate this procedure to the theory of

bi-analytic functions.

Suppose, then, that iu+iv) is bi-analytic function of type £ with associ-

ated function (£ + l)0-iw (£>0).

Let

£n = (£ + 1)mx — (£ — 1)»»,

(5.1) Eu = uy - vx,

En = (£ - l)ux - (£ + l)v

These functions Ey when multiplied by Lamé's constant p give the

elastic stresses when u and —v are elastic displacements.

Then,

(5.2)

dEii       dEii
-1-=    UXX   +   Uyy   +   k8X   =    0,

dx dy

dEi2       dE22
-\-=     £0¡,    -    VXX    -    Vyy    =    0,

dx dy

En + E22 = 2kd,    and    so    A(£n + £22) = 0.

From (5.2), it follows that there exists a function $> such that

-En "= 2$ÏV,       En = - 2$xy,

(5-3) ,     ,
E22 = 2$xx,       and A(A4>) = 0.

This function $ is the usual Stress-function [8],

We shall now express u and v in terms of $>.

Let ($+i^) be B.A. (£) with A.F. [(£ + l)0-ifi].
Then, 2£0 = £U+£22 = 2A$= -2£0I and so 0*= -0. Also

<■'!/Zu = (£ + 1)mx - (£ - IK

= (£ + \)ux - (£ - l)(w, - 0)

= 2m* + (£ - 1)0
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and so

1 £-1
(5.4) ux = — En +-—e..

2 2

Similarly,

1 £-1
(5.5) vy- Ett-— 0».

Let <p+if = d/dzi^+i^).
Then, from (5.4),

£ - 1
Ux = $yv H-— 0*

k- 1               £ + 3
- (O - f.)y + —~®x-—- 0x - *,

¿à L

k + 3
-— ©» - (0, - e.)

/£ + l \

|m + — (£ + 1)0 + 0     =0,       (v-Í2 + 0 j  =0.

|m + — (£ + 1)0+ 0I   and   (v-Í2 + 0 j

Similarly

Thus

Now,

are the real and imaginary parts of a bi-analytic function. It is therefore easy

to see that

u + iv= - (0 + if)-[(£ + 1)0 - *Q] + iay + b + icx + id)

where a, b, c and d are real constants. However, since Ei2 = uy — vx = — 2i>IV,

it follows that c = a. Further f is only determined by 4> to within a function

of the form
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1 1      A
— Ax2 - ———y2 + ax + ßy + y
L i k + \

and so it is easily seen that (0+if) + (l/2) [(¿ + 1)0 — ifí] is determined only

to within a function of the form (ay+b)+i(ax+d).

Finally, then, we can write

d 1
(5.6) u + iv =-(* + t¥)-[(¿ + 1)0 - *0].

dz 2

This result shows that the introduction of a stress function in elasticity

theory is analogous to the introduction of a complex potential in the theory

of perfect fluids; in fact, when (u+iv) is analytic, (5.6) reduces to

d
u + iv = — — (/z)

dz

where f(z) is analytic.

What has been shown above is that if (u+iv) is B.A. (¿) then it can be

expressed in the form (5.6). The converse statement is also easily seen to be

true: If ($+it) is B.A. (¿) with A.F. [(¿+l)0-iß], then (u+iv) defined by
(5.6) is B.A. (¿). Also, if £<y are then defined by (5.1), then (5.3) holds.

Finally, we note that the terms of the form (ay+b)+i(ax+d) in (5.6)

represent a rigid body displacement.

2. Betti's Reciprocal Theorem. Starting with the equations defining bi-

analytic functions, we shall now obtain some forms of Green's Identities.

These will correspond to those given in [4] for the case ¿= — 1. With them

we shall obtain a uniqueness theorem and Betti's Reciprocal Theorem. We

shall then obtain "Cauchy's Integral Formula" (Theorem 23) from Betti's

Theorem by an integration-by-parts technique. This result corresponds to the

fact that Cauchy's Formula for analytic functions can be obtained, by

integrating by parts, from the Green's representation of harmonic functions

1   r (   d log r     du        \
«(*» y) = — I   ( u —-— l°g r ) ds.

¿rJe\      an on        /

First, then, we have

Lemma I. Supposef(z) =u+iv is B.A. (¿) ím a domain D and whose A.F. is

(¿ + 1)0—ico. Suppose also that U and V are functions possessing continuous first

derivatives in D and let

0    =     UX   -    Vy, n    =     Uy   +    VX.

Let 0, co, U and V be continuous in D + C, where C is the simple closed con-

tinuous rectifiable boundary of D.

Then
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I  I   6@dxdy -i-I  I   uüdxdy
(5.7) D k + l       D

= <b \ U[ 0»i H-co»2 ) — VI 0»2-comí )   ds,
Ici   X        £ + 1     /        V £ + 1      /J

where ni and n2 are the x and y components o/ the outward drawn normal to C.

Proof. This is essentially the same as the proof of Theorem 8 in [4]. Q.E.D.

Corollary I. As a corollary of this we see that */ iu+iv) is B.A. (£) and

u, v, 0 and w are continuous in D + C, then

(5.8)
//.(•"+ ÏTÏ "O**

= Oft    m ( 0»i H-com2 ) — v [ 6n2-co»i )   ds.
Jcl \        £ + 1     /       \        £ + 1      /J

Corollary II. From (5.8) we see that */, in addition, u = v = 0, then u = v

= 0 in D + C, provided £ + l>0.

For then the right hand side of (5.8) is 0 and so 02 + (l/(£ + l))w2 = O in D

and so 0 = » = O in D. Therefore iu+iv) is an analytic function with 0 bound-

ary values and so is identically 0. Q.E.D.

Lemma II. With the same assumptions as in Lemma I,

jf {Ui&x + 2uv) + Vi2ux - 6y)]dxdy

1 f  ,                           2k + \ r c
— en u{Un2 + Vni)ds-j  I  uüdxdy.
\Jc k +  1 J J D

(5.9)
2£ + 1

£ +

Proof.

f f {Z/(0, + 2co„) + F(2cox - 6y))dxdy

2k + 1 f r
=- j  I   (t7cov + Vux)dxdy

k + 1 J J D

- f f {iUw)y + iVu)x]dxdy-f f iwUy + uVx)dxdy
+  1  J J k +  1 J J D

+1 r 2k +1 c r
-<b uiUnt+ Vni)ds-I  I   uüdxdy. Q.E.D.
+ \Jc k + 1 J J D

We now make the following definitions, valid for any pair of functions,

(m, v) having continuous first derivatives in (Z> + C):
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1
A(u, v) - — (ux + Vy)ni + uyn2,

1
B(u, v) = vxni + — (vy + ux)n2.

¿à

Lemma III. Let

0   =    UX   —    Vy, a    =    Uy   +   VX,

0 = V. - Vy, n = Vy + vx,

where u,v, U, V are continuous and have continuous first derivatives in D + C,

and 0, co, 0, ß have continuous second derivatives in D.

Then

<f{ UA(u, v) + VB(u, v)}ds-f f { U(8X + 2coy) + F(2cox - dy)}dxdy

= <f{uA(U,V) + vB(U,V)}ds
(5.11) J c

-f f {u(@x + 20„) + t>(2i2x - ®y)}dxdy.

Proof. This is very similar to the proof of Theorem 9 of [4].

Let

M(U,   V)    =    Uxx   +   2Uyy   +   Vyx   =    BX   +   2Uy,

M(U,   V)    =    2VXX   +   Vyy   +   UyX   =    2uX   ~   By.

Then

f Í* { UM(u, v) + VM(u, v) - uM(U, V) - vM(U, V)}dxdy

= f f {(Uux)x + 2(Uuy)y + (Uvy)x + 2(Vvx)x + (F^)„ + (Vux)y}dxdy

- f f {(uUx)x + 2(uUy)y + (uVy)x + 2(vVx)x + (fV^, + (vV',),} dxdy

= 2<b{UA(u, v) + VB(u,v) - uA(U, V) - vB(U,V)}ds

= f f {U(8X+ 2to„) + F(2co, - 8y) - u(%x + 20„) - i»(2Q, - 0„)}dxdy.

Q.E.D.
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Definition.

1 1
X(m, v)  =  A (m, v)-COM2 H-£0Wi

= — [mi + Vy + £(m» — Vy)]ni — luy-co j nt ;

(5.12)
11

F(m, v) = 5(m, v)-co»i -|-£0«2

= ( vx-co 1 «i H-[ux + Vy — £(m« — Vy)]n2.

Theorem 25 (Betti's Reciprocal Theorem).

(5.13)      <f{UXiu,v) + VYiu,v)}ds = £{uXiU, V) + vYiU, V)}ds

where iu+iv) and iU+iV) are B.A. (£) and iu, v), (¿7, V) are continuous and

have continuous first derivatives in D + C.

Proof. Starting with (5.11) and substituting from (5.9) for the double

integrals we get

.^.[WlF)-^±Lfc,]+,[j(«,.n-^±Lfcl]}*.

Now, from Lemma I,

OS)

CD < ¿7( 0»i H-com2 ) — V( 0w2-■ comí )>ds
fc\    \ £ + 1/ V £ + 1//

= CD <m( 0»i H-Í2«2 ) — v[@n2-ünAfds.
fc\\ £ + 1       / V £ + 1       //

Adding k(ß)/2 to (a) we get the required result. Q.E.D.

If

Xx   =   -{ik+l)Ux-ik-l)Vy},

1
Xy  =  —  («»  -  t>«),

I\ = — {(*- 1)mx- (£+ 1)»,},
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then

X(u, v) = Xxni + Xvn2,

— Y(u, v) — Xvni + Yvn2.

Now, Xx, Xy, Yy are the usual stresses of elasticity theory divided by 2ju, u

being Lamé's constant and so Theorem 25 is the usual form of Betti's Re-

ciprocal Theorem.

This could be obtained more directly of course, but we wished to do it

starting with the basic equations defining bi-analytic functions.

It is intended, later on, to integrate by parts in (5.13). To do this we first

prove

Lemma IV.

X(u,v)^(v-\a>),

(5.14)
d ( ¿ + 1    \

K<„, „__(. -__,),

where 6 = dx , co=cox', so that

d   r
(k + 1)0 - ico = — [(* + 1)0' - ico'].

dz

Proof.

X(U,   V)    =   -  [Ux  +   Vy  +   k(Ux  —   Vy)]ni  +\Uy-(Uy  +   Vx)       M2

1 11 1
= — [»„Mi — vxn2] + ■— m„m2 -\-■ (k + l)uxni-kvvni

1 .1 1 1
= —■ [»„Mi — vxn2] H-(co — vx)n2 -\-(k + 1)(0 + »„)mi — ■— kvvni

I, L L ¿>

— (»»Mi — vxn2) -\-[com2 + (k + l)0Mi]
it

= (»„Mj — »«M2)-( —coi'm2 + co„'mi)

= — I »-co' ) .
0i\ 2      /

The second result follows similarly. Q.E.D
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Lemma V. Under the hypotheses of Theorem 25,

r {   du' d&       du dV)
(5.15)       (t <u-(£+ l)v-+ co'-(£+ 1)0'->ds = 0,

J c \     ds ds ds ds J

where

d r— [(£ + 1)0' - iü] = (£ + 1)0 - iü,
dz

d   r
— [(£ + 1)0' - iu'] = (£ + 1)0 - ico.
dz

Proof. This follows immediately from Theorem 25 and Lemma IV, by

integrating by parts in the integral <f> [UX(u, v) + YY(u, v) ]ds. It is assumed,

of course, that m, v, U, V, 8', »' are single valued on C. Q.E.D.

Lemma VI.

50/ ô©/ dUi dVx

(5.16)

vib,)

where

i   rv  aa{ 0©/       dUi dV{\
«(&f) =-<f>    « •—■- (*+ 1)»-hco'-(£+ 1)0'-Ids,

2irJcL      ds ds ds ds J

1    rr   dQi d®2'        dU2 dVtl
= +— 6    m-(£+ l)v-hco'-(£+ 1)0'-\ds,

2wJ    L     ds ds ds ds J

£ (y - n)2        k+2
Ui =-■ +-log r,

2(£ + 1) r2 2(£ + 1)

£        ix- Q(y - n)

1 ~ 2(k + 1)  " r2

(k + 1)0/ - iß/ = log(z - Ö,

where % = ¡;+in, z = x+iy, r2= ix — i-)2 + (y — w)2 and where

k (x - &(y - n)
¿72 =

2(k + 1) r2

£ (y - n)2        k + 2

2(£ + 1)        r2 2(£ + 1)

(£ + 1)0/ - ifi/ = ilog(z-í).

logr,

Proof. Lemma V is applied to a contour consisting of the boundary C and

a small circle T about £.

When í/+iF=Z(-1'(£, z-£) the first result in (5.13) is obtained; when

{7+iF=i-Z(~l)(£, z — £) the second result is obtained. Q.E.D.
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Theorem 26. // (u+iv) is B.A. (k) in D, and u and v have continuous

derivatives of the first order in D + C and if C is a continuous rectifiable contour

x = x(s), y = y(s) with x'(s) and y'(s) continuous (*'2+y'2>0), then

«(Ö - w(f) = —: f \\~Z~ ~ t(* + 1)Ö' " «*'&-»(*,z - ö] dz

- i[(k + 1)0' - ico'](0 + ia)dy - (¿ + 2)0' Re (——U

when (¿ + l)0i — icoi = l/(z — £).

Proof. From Lemma VI,

1   c ( oW. 30!
«(Ö + w(Ö - — I   <-(u + iv)-(k + 1)-(-» + iu)

2x J c I ds ds

dUi , ,     dVi .
-[co' + i(¿ + 1)0'] + — [(* + 1)0' - ico']

ds ds

k + 2 5 log r)

= ̂ A{(" + í",([í+1117-i^)

JdUi dVi\ d log r)
+ [(k + 1)0' - ico'] (-+ i-)-(¿ + 2)0' ——}ds

\ ds ds / ds    )

1     f (u + iv r . . (dUi 3FA

d log r~\
- (k + 2)0'-—   ds.

ds    J

Now,

(dUx        dVi\ (dUi .ôFi     \      (dUi        dVx\
f-\- i-J ds — I-dx + i- dx ) + I-1- i-J dy
\ ds ds ) \ dx dx       J      \ dy dy f

d ["/ dVi\        (dUi VI

-*(*+^n(*-*) + '(—*).]*'
Id ) /dUi        dVA

=  \— Z^(k, z-Q}dx + [ ■-+ i-)idy+(ai- i9i)dy
\dz ) \ dx dx /

= j — Z<-1>(¿, z - 8 | dz - i(8i + iai)dy.

Thus,
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«(f) + if ({) = — <f p-^-T - K* + W - «*'ÎZ<-»(A, z - öl dy
2m J c I z — £ )

Next,

0 log r
- i[(£ + 1)0' - ico'](0i + iui)dy - (£ + 2)0'-— ds.

ds

d log r d log r 0 Im log (z - £)
as = -       — dx- -dy

ds dx dx

= Re \—— + |- i Im(log{z - {})] [dx + idy]
L    dx dx J

= Re (d'0S(¡-flfe)-Re(-^).

Finally then, we get (5.17). Q.E.D.

The result is, of course, the same as in Theorem 23 except that these less

restrictive assumptions had to be made on the smoothness of the function

and the contour.

Chapter VI : Viscous Fluids

1. The form of the equations. Consider the viscous flow of a fluid in the

x—y plane. The motion of the fluid is determined by two functions u(x, y)

and v(x, y), the components of the velocity. If the velocities are sufficiently

slow for nonlinear terms to be neglected the equations of motion are

(6.1)

pAu = px,

PAV    =    py,

. UX +   Vy   =   0,

where p(x, y) is the pressure and p a constant, is the coefficient of viscosity.

Let f = uv—vx, so that f is the vorticity.

Then,

0 = pA(ux + Vy) = Ap.

Also, pA(uv-vx) = (pXy-pyX) =0.

Thus,

(6.2)

Ux +  Vy  =   0,

Uy-Vz  =  f,

Af = 0.

Equations (6.1), therefore, imply (6.2). Conversely, however, starting from

(6.2) we can get (6.1).
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For, since Af = 0,

A(uy — vx) = 0    or    (Am)„ = (A»)«.

Thus, there exists a function p such that

1 1
A« = — px,       A» = — pv. Q.E.D.

M n

Also, [p/u+iÇ] is an analytic function, since

1
fX   -   Uyx —   Vxx  =    —   »W  —   Vxx  =    —   A»   =    —   — py,

1 "
f„   =   Uyy —   Vzy  =   Uyy  +   Uxx   =   A«   =   -  />x,

M

which are the Cauchy-Riemann equations.

Thus, (v + iu) is a bi-analytic function of type —1, whose A.F. is

[—f+i(p/n)]. We could also say, of course, that (u — iv) is a bi-analytic func-

tion of type » whose A.F. is [(i/u)p+i^ ]•

All our results on bi-analytic functions can thus be applied to the flow of

viscous fluids.
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