CORRECTION ON A PREVIOUS PAPER

BY E. M. STEIN

The purpose of this note is to correct an error which occurs in the proof of Lemma 5 of [1]. The inequality (3.3) is incorrect and should be replaced by $|k_t(x)| \le (A/|x|)(1+\log(|x|t))$, if $t \ge 1/|x|$, and $n \ge 2$. (Hence, in addition, inequality (3.3*) does not need a separate proof.)

Arguing as before we have,

$$k_t(x) = \int_{\Sigma} \frac{e^{-irt\cos(x', y')} - 1}{r\cos(x', y')} \Omega(y') d\Sigma.$$

Divide the unit sphere Σ into two disjoint regions, Σ_1 , and Σ_2 , so that $\Sigma_1 = \{y' | |\cos(x', y')| \le 1/rt\}$, $(rt \ge 1)$, and Σ_2 is the complement.

The integral corresponding to Σ_1 is estimated by

$$A\int_{\Sigma_1}\left|\frac{rt\cos(x',y')}{r\cos(x',y')}\right|d\Sigma=At\int_{\Sigma_1}d\Sigma=tO(1/rt)=O(1/r).$$

The integral corresponding to Σ_2 is estimated by

$$A\int_{\Sigma_2} \frac{d\Sigma}{r \mid \cos(x', y') \mid} = \frac{A}{r} \int_{\Sigma_2} \frac{d\Sigma}{\mid \cos(x', y') \mid} \leq \frac{A}{r} (1 + \log(rt)).$$

The rest of the proof of the lemma is then concluded as before.

REFERENCE

1. E. M. Stein, On the functions Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 430-466.