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A Hubert space, whose elements are entire functions, is of especial inter-

est if it has these three properties:

(HI). Whenever F(z) is in the Hubert space and has a nonreal zero w,

F(z)(z—w)/(z—w) is in the Hubert space and has the same norm as F(z).

(H2). Whenever w is a nonreal complex number, the linear functional

defined on the Hubert space by F(z)—>F(w) is continuous.

(H3). Whenever F(z) is in the Hubert space, the function F*(z) = F(z) is

in the Hubert space and has the same norm as F(z).

Let E(z) be an entire function such that

(1) | E(z) |   < | E(z) | ,

for y>0 (z = x+iy). We write E(z)=A(z)—iB(z) where A(z) and B(z) are

entire functions which are real for real z and

K(w, z) = [B(z)2(w) - A(z)B(w)]/[t(z - w)].

Then, the set 3C(F) of entire functions F(z) such that

||f||2 = f |f(0|2| E(t)\-Ht < »

with integration on the real axis, and

\F(z)\2ú\\F\\2K(z,z)

for all complex z, is a Hilbert space of entire functions satisfying (Hl), (H2),

and (H3). For each complex number w, K(w, z) belongs to 3C(F) as a function

of z and

F(w) - (F(t), K(w, t)).

By [7], every Hilbert space of entire functions which satisfies (Hl), (H2),

(H3), and which contains a nonzero element, is equal isometrically to some

such 0C(F).

Computations involving these Hilbert spaces use matrix valued entire

functions
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(A(z)    B(z)\

M(Z)=U)     D(z))>

where A(z), B(z), C(z), D(z) are real for real z and

A(z)D(z) - B(z)C(z) = 1,

Re[A(z)D(z) - B(z)C(z)] = 1,

[B(z)I(z) - A(z)B(z)]/(z -z) = 0,

[D(z)C(z) - C(z)D(z)]/(z -z) = 0,

for all complex z. If u and v are complex numbers such that

(3) | « — iv | =  | « + iv \

and if m and v are not both zero, we use the condition

[D(iy)v + iC(iy)v + iA(iy)u + B(iy)u]
(4) i

= o(y[A(iy)v — iB(iy)v + iD(iy)u — C(iy)u])
as y—>+ oo.

Theorem I. Let E(z) be an entire function satisfying (1). A necessary and

sufficient condition that the elements F(z) of 3C(£) whose product by z belongs to

3C(£) fail to be dense in 3C(£) is that there be complex numbers u and v, not both

zero, such that

(5) G(z) = A(z)u + B(z)v

belongs to 3C(£). 7« this case, they satisfy (3) and G(z) spans the orthogonal

complement in 3C(£) of such elements F(z). The orthogonal complement of G(z)

in 3C(£) satisfies (HI), (H2), and (H3).

Theorem II. Let E(a, z) be an entire function satisfying (1). Let M(a, b, z)

be a matrix valued entire function satisfying (2). If there exist complex numbers

u and v such that G(z), defined by (5) for E(z)=E(a, z), belongs to 3C(£(a)),

we suppose that M(a, b, z) satisfies (4) for this choice of u and v. Let

E(b,z) = A(b, z) -iB(b,z)

where

(6) (¿(6, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, z).

Then, E(b, z) satisfies (1) and X(E(a)) is contained isometrically in 5C(E(b)).

For each real number w, there exists an element F(z) of 3C(E(a)) such that

F(w)/E(b, w) * 0.

Theorem III. Let E(a, z) and E(z) be entire functions satisfying (1) and

such that 3C(£(a)) is contained isometrically in 3C(£). Suppose that for each

real number w, there is an element F(z) of X(E(a)) such that F(w)/E(w)^0.
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Then, E(z)=E(b, z) for some choice of M(a, b, z) as in Theorem II. In this case,

M(a, b, z) is uniquely determined by E(a, z) and E(z).

Our purpose is to investigate the ideas associated with Theorem X of [8],

which grew out of Sturm-Liouville differential equations. Let

W)    r(0/
be a matrix valued function of ¿>0 where a(t), ß(t), y(t) are real valued, ab-

solutely continuous functions of />0 such that

(7) a'(t) = 0,        y'(t) = 0,        ß'(t)2 = a'(t)y'(t),

a.e., for OO. We also suppose that

(8) «(0) = lima(0, f   [a«) - a(0)]dy(t)
«\o J o

exist and are finite. An interesting special case occurs when

(9) 0(0) = lim ß(t),        7(0) = Hm y(t)
t\0 !\0

exist and are finite. At times, we also use the condition

(10) lim [a(t)+ 7(0] = °°.

A real number ¿>>0 is said to be singular with respect to m(t) ii it belongs to

an open interval (a, c) in which a'(t), ß'(t), y'(t) are equal a.e. to constant

multiples of a single function and ß'(t)2 = a'(t)y'(t). Otherwise, I is said to be

regular with respect to m(t). Let

Theorem IV. Let m(t) be a matrix valued function of t>0 satisfying (7)

and (8) and such that a(t)>a(0) for t>0. Then, there exists a unique family

(E(t, z)) of entire functions satisfying (1), i = 0, such that for each complex num-

ber w, E(t, w) is a continuous function of t>0, and

(11) (A(b,w),B(b,w))I - (A(a,w),B(a,w))I = w f (A(t,w), B(l,w))dm(t)
" a

whenever a <à and

Urn E(t, w) exp[ß(t)w] = 1

as t—*0. For each fixed a>0, E(a, z) has genus 0 or I and has no real zeros. If

a<b are regular points with respect to m(t), then 3C(E(a)) is contained iso-
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metrically in 3C(£(¿>)). If the interval (a, b) contains only singular points, the

orthogonal complement of SC(E(a)) in X(E(b)) is one-dimensional, unless m(t)

is a constant in [a, b], in which case E(a, z) =E(b, z).

Theorem V. Let E(z) be an entire function of genus 0 or 1 which satisfies

(1). Then,
E(z) = G(z)E(c, z)

for some c>0, where E(t, z) i: defined as in Theorem IV for some choice of m(t),

and G(z) is an entire function of genus 0 or 1 with only real zeros, such that

(12) G(z)G*(w) = G*(z)G(w)

for all complex z and w. If E(z) has no real zeros and if E(0) = 1, m(t) may be

chosen so that G(z) = 1 identically. If E*(z) =E(—z) for all complex z, m(t) may

be chosen so that ß(t) =0 identically.

If m(t) satisfies (9) or (10), the construction has further properties.

Theorem VI. Let m(t) be a matrix valued function of t>0 satisfying (7),

(8), and (9). Then, for each complex number w, there exists a unique continuous

matrix valued function M(t, w)oft — 0 such that

(13) M(a, w)I - I = w f M(t, w)dm(t),
Jo

for a = 0. For each fixed a^O, M(a, z) is a matrix valued entire function of z

satisfying (2).

Theorem VII. If M(z) is a matrix valued entire function of z satisfying (2)

and such that M(0) = 1, then

M(z) = M(a, z)

for some a=0, where M(t, z) is defined as in Thor em V i jor some choice of m(t).

Theorem VIII. If, in the situation of Theorem IV, m(t) satisfies (10), then

Kit, z,z)^co

as t—* °o, for all nonreal complex z. There is a unique nonnegative measure p on

the Borel sets of the real line such that for each a>0,

y_ r  \E(a,t)\2dp(t) = iim y_ Ç   \ E(a, t) \2\ E(b, t) \~2dt ̂

it J     (t - x)2 + y2       »™ t J (t- x)2 + y2

for y>0, and 5Q.(E(a)) is contained isometrically in L2(p) whenever a is regular

with respect to m(t). The union of such 5Q.(E(a)), with a regular, is dense in

L2(p).

For estimates of size, think of the 2X2 matrices with complex entries as
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determining linear transformations in complex euclidean 2-space, thought of

as a Hilbert space, and use the operator norm. The first estimate is crude,

but is of an interesting nature since a knowledge of first derivatives at a point

allows estimates of the entire functions in the complex plane.

Theorem IX. // M(z) is a matrix valued entire function satisfying (2), such

that M(0) = 1, then

™ - (-1 ¡>
where a, ß, y are real numbers such that

aèO,   7^0,    and   ß2 g ay.

U
M(z) = ¿Z MnZ»

is the power series expansion, then

ni\Mn\\ ú(a + y)\

It follows from Theorem IX that the entries of M(z) have exponential

type. This also follows from Theorems III and IV of [8], where it is shown

that they satisfy

(14) f (1 + t2)-1 log+ | F(t) | dt < oo.

Theorem X. In the situation of Theorem VI, let

r(a)=  CWdWdJ-ß'dYYlHt
Jo

for 0<a< oo. If F(z) denotes any one of the entire functions A(a, z), B(a, z),

C(a, z), D(a, z), then

(15) lim r-1 log | F(re<°) |   = t(o) | sin 61

for 99*0, w, as r—> °o.

The construction of Theorem VIII has special properties when m(t) satis-

fies (9).

Theorem XI. Suppose that, in the situation of Theorem VI, m(t) satisfies

(10) and that a(t) >a(0) for t>0. Then, there exists a unique nonnegative meas-

ure p on the Borel sets of the real line such that

(16) j (1 + ñ"lMt) < °°
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and

y   r dp(t)
(17) -       ;-—— = Re lim iC(b,z)/A(b,z)

t J    (I — x)2 + y2 h->»

for y>0. If a>0 is a regular point with respect to m(t), then X(E(a)) is con-

tained isometrically in L2(u). The union of such 3C(E(a)), with a regular, is

dense in L2(p).

Theorem XII. If pis a nonnegative measure on the Borel sets of the real line

which satisfies (16) and does not vanish identically, then p is of the form (17)

for some choice of m(t) as in Theorem XI.

Our proofs use a number of elementary properties of entire functions of

genus 0 or 1.

Lemma 1. If

(18) E(z) = F(z)exp(-az2)

is an entire function satisfying (1) such that a = 0 and F(z) has genus 0 or 1,

then there is a sequence (F„(z)) of polynomials with no real zeros, satisfying (1),

such that

E(z) = lim E„(z)

uniformly on every bounded subset of the complex plane. If E*(z) =£(—z) for

all complex z, we may choose each En(z) so that E*(z) = £„(—z) for all complex z.

Lemma 2. Let E(z) be an entire function satisfying (1). A necessary and

sufficient condition that it be of the form (18), where a = 0 and F(z) has genus

0 or 1, is that for each real x, |£(x+ty)| is a nondecreasing function of y = 0.

Lemma 3. Let E(z) be an entire function satisfying (1). A necessary and

sufficient condition that E(z) = F(z)G(z) where F(z) has genus 0 or 1 and G(z)

is an entire function with only real zeros, satisfying (12), is that

(19) f (1 + «*)-> Re[i£'(i)/£(/)]d/ < ».

Lemma 4. If E(z) is an entire function satisfying (1), of the form (18) where

-Q a, A Fiz) has genus 0 or 1, then K(x+iy, x+ty) ¿5 a nondecr easing func-

tion of y è 0 for each fixed x.

Lemma 5. Let £(z) be an entirr function satisfying (1), of the form (18)

where aèzO and Fiz) has genus 0 or 1. If £(0) = 1, then

log | £(z) |   á xA'(0) + yB'(0) + [A'(0)> - A"(0) + £'(0)'] | z\2/2

for all complex z.
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Lemma 6. Let F(z) be an entire function such that \ F(z) | ^ M(R) for \z\ £R.

Then,

|[F(z)-F(0)]/z|   Í2M(R)/R

for \z\ =F.

Lemma 7. // (z„) ¿5 a sequence of complex numbers such that \zn\ —><» and

i(zn — Zn) ̂ 0 for every n, and

(20) 22 i(zn - zn) | z„ h2 < »,

then there exists an entire function E(z) satisfying (1) such that the zeros of

E*(z), counted according to multiplicity, are just the numbers (z„).

We also use an equivalent formulation of condition (4).

Lemma 8. Let M(b, z) be a matrix valued entire function satisfying (2), and

let u and v be complex numbers which satisfy (3) and are not both zero. Then, the

failure of (4) is a necessary and sufficient condition that

M(b, z) = M (a, z)M(a, b, z),

where M(a, b, z) is a matrix valued entire function satisfying (2) and

A(a,z)=l— ßz,       B(a, z) = az,

C(a, z) = - 72, D(a, z) = 1 + ßz,

and a, ß, y are real numbers, not all zero, such that

a = 0,        7^0,        ß2 = «7,        av = ßu,        ßv = yu.

In this case, the factorization can be made so that M (a, b, z) satisfies (4).

Lemma 9. // in the situation of Theorem VI, a(t) >a(0) for t>0, then

[B(a, z)A(a, z) - A(a, z)B(a, z)]/(z - z) > 0,

for all complex z. For a>0 and y>0, let £>(a, z) be the closed disk in the complex

plane of center

[D(a, z)~K(a, z) - C(a, z)B(a, z)]/[iA(a, z)7S(a, z) - iB(a, z)J(a, z)]

and radius

[iA(a, z)B(a, z) — iB(a, z)A(a, z)]_1.

Then,

[D(a, z) + iC(a, z)] + [D(a, z) - iC(a, z)]w
w —>-

[A(a, z) — iB(a, z)] — [A(a, z) + iB(a, z)]w

is a conformai mapping of the unit disk \ w\ ^ 1 onto £>(a, z). The disk 2D(a, z) is

contained in the right half plane, x = 0. When a^b, S)(a, z) contains S)(b, z).
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Lemma 10. 7« the situation of Theorem VI, let u and v be complex numbers

which satisfy (3) and are not both zero. Suppose that a(t) +y(t) >a(0) +7(0) for

t>0, and that a>0. A necessary and sufficient condition that M(a, z) satisfy (4)

is that

(21) a(t)vv + 7(i)mm - 2ß(t)uv > a(0)vv + y(0)uu - 2ß(0)uv

for t>0.

We need, too, a result which is closely related to previous work.

Lemma 11. Let E(z) be an entire function of exponential type with no real

zeros, which satisfies (1) and (14). Let p be a nonnegative measure on the Borel

sets of the real line such that 3C(£) is contained isometrically in L2(p). Let G(z)

be an entire function of exponential type such that

lim sup | x |_1 log | G(x) |   = 0,

as |*| —>oo. If G(z) belongs to L2(p) and if

(22) G(iy) = o(E(i\y\)),

as |y|—»oo, then G(z) belongs to 3C(£).

Lemma 12. Let E(a, z) and E(b, z) be entire functions with no real zeros,

satisfying (1), such that 3C(£(a)) is contained isometrically in 3C(E(b)). If

[F(z)—F(w)]/(z — w)belongs to 3C(£(o)) whenever F(z) belongs to 3C(£(o)),

then it belongs to 3C(£(a)) whenever F(z) belongs to 3C(£(a)).

Proof of Lemma 1. Since F(z) has genus 0 or 1,

(23) F*(z) = czkeb° u [(1 - 2/zn) exp(z/z„)],

where 2|zn|_2<oo. Since E(z) satisfies (1) and a is real, £(z) satisfies (1).

In particular, F(z) has no zeros for y>0, and therefore i(zn — zn) èO, for every

n. Since F(z) satisfies (1), F*(z)/F(z) is analytic for y>0 and is bounded by 1.

By Boas [l, p. 85], (20) holds. Let s denote the sum of this series. Then

F*(z)/F(z) = (c/c) exp[(o - h - is)z] Ü [(1 - */*»)/(! - *M

for y>0. Since F*(z)/F(z) is bounded by 1 for y>0, so is exp [(b — h — is)z]

and

(24) 5 = il - ib.

The choice of a sequence (E„(z)) is now made from (23) as in Boas [l, pp.

230-231]. If E*(z)=E(-z), b+L = 0 and the zeros of E(z) are symmetrically

placed about the imaginary axis. In this case, the approximating polynomials

are to be chosen with their zeros symmetrically placed about the imaginary

axis. Boas allows his approximating polynomials to have real zeros, but these

are easily removed by small translations parallel to the imaginary axis.
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Proof of Lemma 2, the necessity. Since a = 0, exp(—az2) is a nondecreasing

function of y = 0 for each fixed x. We prove the necessity by showing that

| F(x+iy)\ is a nondecreasing function of y = 0 for each fixed x. From (23)

we have

F'(z)/F(z) = k/z + 5 + ¿2 [(z - s»)"1 + *T*]

and therefore

Re[¿F'(z)/F(z)] = (il -ib- s) 12 + ky \ z \~2 + £ (y + yn) | z - z„ |-2

is nonnegative for y>0 because of (24). The necessity follows.

Proof of Lemma 3, the necessity. Since E(z) satisfies (1) and G(z) satisfies

(12), F(z) satisfies (1). By the necessity for Lemma 2,

Re[*F'(z)/F(z)] = 0

for y>0. By the Poisson representation of a function positive and harmonic

in a half plane, (19) is satisfied with E(z) replaced by F(z). Since G(z) satisfies

(12),

Re[iF'(x)/F(*)] = Re[iF'(x)/F(x)]

and (19) follows.

Proof of Lemma 3, the sufficiency. Let (z„) be the nonreal zeros of E*(z).

Let

Pn(z) = n c» - 2*)-
1

Then, Pn(z) has no zeros for y = 0 and | Pn(z) | = | Pn(z) | for these values of z.

Since E(z) satisfies (1),

En(z)   =  E(z)/Pn(z)

has no zeros for y >0 and |F„(z)| ^|F„(z)| for y = 0. Since F (z) =F„(z)F„(z),

Re[iE'(x)/E(x)] = Re[iPn'(x)/Pn(x)] + Re[»F„' (x)/En(x)}.

Because of the last inequality,

Re[iE/(x)/En(x)\ = 0.

A direct computation yields

j (1 + t2)-1 Re[iPn" (t)/Pn(t)]dt = ir ¿ (1 + yn) | z„ + i h2,

which is at most equal to (19). By the arbitrariness of «, (20) holds and

J2|z„|_2< oo. Let F0(z) be defined by (23) with c = l, & = 0, and b chosen so

that equality holds in (24). Then, F0(z) satisfies (1) or is a real exponential.
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Therefore, Go(z) =E(z)/F0(z) is an entire function which has no nonreal zeros

and |Go(z)| = |Go(z)| for y>0. It follows that G*(z)/G0(z) is an entire func-

tion which has no zeros and is bounded by 1 for y>0, and has absolute value

1 on the real axis. By Boas [l, p. 92], this function is equal to exp(2¿Az) for

some h^O. Let

F(z) = Fo(z) exp(-iÄz),       G(z) = G0(z) exp(ihz).

It is clear that these functions have the required properties.

Proof of Lemma 2, the sufficiency. Our hypothesis implies that when

h>0, E(z — ih) satisfies (1). As in the proof of necessity for Lemma 3, E(z — ih)

satisfies (20). Let (z„) be the nonzero zeros of E*(z). We have shown that

E (* + yn) | Zn + ih \~2 <   oo

and this implies that E|2n|_2<°° and that (20) holds for the sequence

(z„). Let F0(z) be defined by (23) with c= 1, k equal to the multiplicity of the

zero of E(z) at the origin, and b chosen so that equality holds in (24). As in

the proof of sufficiency for Lemma 3, there is a real number A = 0 such that

G(z)=E(z)/F(z) satisfies (12) if we define F(z) = F0(z) exp(-ihz). By con-

struction, F(z) has genus 0 or 1 and satisfies (1), whereas G(z) is an entire

function with no zeros. By the necessity for Lemma 2, F(z — ih) satisfies (1)

for each h>0 and therefore G(z — ih) satisfies (1) or (12). Since G(z) satisfies

(12), we see that | G(x+iy) \ is a nondecreasing function of y = 0 for each fixed

x. By the Poisson representation of a function positive and harmonic in a

half plane,

Re[iG'(z)/G(z)] = 2ay

for y ^0, where o^0, since the harmonic function on the left vanishes on the

real axis because of (12). By (12), the same formula holds for all complex z.

By the Cauchy-Riemann equations

G'(z)/G(z) + 2az = ß

is a real constant. Therefore,

G(z) = G(0) exp[ßz - az2].

The lemma follows on rearranging the factors of E(z).

Proof of Lemma 4. By Lemma 1, it is sufficient to consider the case that

E(z) is a polynomial. Let w be held fixed with i(w — w)^0, and consider

K(w, z) as a polynomial in z. Then, (1) implies that K(w, z) has no zeros for

y>0. By Lemma 2, \K(w, w+ih)\ ^K(w, w) when ft^O. By the definition
of 3C(F),

| K(w, w + ih) |2 = \\K(w, t)\\2K(w + ih,w + ih)

where
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\\K(w, 0||2 = (K(w, t), K(w, 0) = K(w, w).

The two inequalities imply that

K(w + ih,w + ih) = K(w, w).

Proof of Lemma 5. By Lemma 1, it is sufficient to prove the lemma in the

case that E(z) is a polynomial. Then,

E(z) = u (1 - s/«.)

with only a finite number of factors, and i(zn — zn) èO for every n. From this

we find (zn = x„+i'y„)

£'(0) - £ y» 12, h2,      - ii'(o) = £ x„ | z„ h2

A'(0)2 - A"(0) - £'(0)2 = £(*«- y\) 12»r

and so

4'(0)2 - A"(0) + £'(0)2 ^ X) I Znl"2-

The inequality log t=t — 1 for i>0 becomes

log | 1 - z/zn | á [ — x x„ + y y„ + | z 12/2] | zn |~2

when /= 11— z/z„|2. The desired inequality follows on summing over w and

making the obvious substitutions.

Proof of Lemma 6. Apply the maximum principle to [£(z) —£(0) ]/z.

Proof of Lemma 7. By the Weierstrass factorization, there exists an entire

function F(z) whose zeros are the given ones, counting multiplicities. Then,

G(z) = F(z)F*(z) is an entire function. By Boas [l, p. 90], (20) implies that

B(z) = II [(1 - */*»)/(! - z/«»)]

converges uniformly on any bounded set at a positive distance from the zeros

of G(z). Obviously, £(z)£*(z) = 1 and |£(z)| <1 for y >0. Therefore, G(z)/B(z)

is an entire function satisfying (1) and all its zeros have even multiplicity.

We may write G(z)/B(z) =E(z)2 for some entire function £(z). It satisfies (1)

and has the desired zeros.

Proof of Lemma 8. Let

(v     — u\ /     V    M\
) M(b, z)( ).

U V/ \ —M      v)

It is easily verified that M(z) is a matrix valued entire function satisfying (2),

and that M(b, z) satisfies (4) for the given u, v if, and only if, M(z) satisfies

(4) for « = 0, p = l. For the rest of the proof, we will restrict ourselves to the

case w = 0, v=\, since the general case can be obtained by this simple inner

automorphism. The hypothesis (2) for M(b, z) implies that
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/(*) = [D(b, z) + i C(b, z)]/[A(b, z) - i B(b,z)}

is defined and analytic for y > 0 and has a nonnegative real part. This function

remains continuous in the closed half plane and

Re/(«) = \A(b,x) - iB(b,x)\~2.

By the Poisson representation, there is a number & = 0 such that

y   Ç   Ref(t)dt
Re/(z) = —-——- + ky

■tc J (t — x)2 + y2

for y>0. By the Lebesgue dominated convergence theorem,

k = lim y-1 Ref(iy)

as y—>+ oo. Furthermore,

Re [/(«) + ikz] ^ 0

for y>0. If M(b, z) does not satisfy (4) for w = 0, v= 1, then k>0. Let

¿(a, b, z) = ¿(¿, z),       B(a, b, z) « F(6, z).

By Theorem IV of [8], there exist entire functions C(a, b, z), D(a, b, z) such

that M (a, b, z) so defined satisfies (2) and (4) for « = 0, p = l. By adding con-

stant multiples of A (a, b, z) and B(a, b, z) to C(a, b, z) and D(a, b, z), if

necessary, we may suppose these two functions chosen so that

C(a, b, 0) = C(b, 0),        D(a, b, 0) = D(b, 0).

Then, (2) implies that

g(z) = [D(a, b, z) + iC(a, b, z)]/[A(a, b, z) - iB(a, b, z)]

is defined and analytic fory>0 and has a nonnegative real part. By construc-

tion, Re g(x) = Ref(x) and g(iy) =0(y) as y—>+ oo. By the Poisson representa-

tion, g(z) and f(z)+ikz have the same real part for y>0. By the Cauchy-

Riemann equations, these two functions differ by a constant in the upper half

plane. Since they are continuous in the closed half plane and agree at the

origin, they are identical. It follows that

D(b, z) + iC(b, z) + ikA(b, z) + kB(b, z) = D(a, b, z) + iC(a, b, z)

for y>0, and hence by analyticity, for all complex z. Since we have entire

functions which are real for real z,

C(a,b,z) = C(b, z) + kA(b,z),

D(a, b, z) = D(b, z) + kB(b, z),

for all complex z. Let M(a, z) be defined as in the statement of the theorem

with a = 0, ß = 0, 7 = k. The sufficiency then follows. Since the necessity is
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proved by essentially reversing the above procedure, the proof is omitted. It

was clear from the construction that M (a, b, z) satisfies (4) with u = 0, v=l.

Proof of Theorem VI. The theorem is Theorem XA of [8] with Co = l,

50 = 0, Ci=l, 5i=0,

C0(t, z) = Ait, z),       Soit, z) = Bit, z),

-Si(t, z) = C(t, z),       Ci(t, z) = Dit, z),

ail) = y'(t),        b(t) = ß'it),        c(t) = a'(0-

Proof of Lemma 9. It follows from (2) that £(a, z) is without zeros for

y = 0 and that | £(a, z) | = | £(a, z) | for these values of z. In other words,

| £*(a, z)/Eia, z)\   = 1,

for y>0. By Boas [l, p. 92], we must have both of these inequalities strict

unless £*(ö, z)/Eia, z) is a constant. In that case, £(a, z) satisfies (12) and

has no zeros. Since £(a, z) has exponential type and satisfies (14), it is then

a constant, which is 1 by its value at the origin. If a>0, the z derivative of

£(a, z) at the origin is a(a) — a(0), which is positive by hypothesis. Therefore,

£(a, z) satisfies (1) in this case and £(a, z, z)>0 for all complex z. When

a <b, let Mia, b, z) be defined by (26). The conclusions about conformai map-

ping follow from (2) and (6) using Lemma 1 of [8].

Proof of Lemma 10. The inner automorphism in the proof of Lemma 8

will reduce the problem to the case m = 0, v = 1, and we restrict ourselves to

this choice of u and v. By (7), a(0 is a nondecreasing function of t — 0. There-

fore, if a(a)=a(0) for some a>0, a(0=a(0) for 0 — t — a. Since (7) implies

that

[ßit) - ßiO)]2 =  [ait) - a(0)][7(0 - 7(0)],

it follows that ßit)=ßi0) for 0 = tSa. Definition (13) then yields

Ait,z) = l, £(/, z) = 0,

Cit, z) = 7(0)a - y(0z,        Dit, z) = 1,

when 0 — t — a, and for fèa,

Mit, z) = M (a, z)M(a, t, z),

where Mia, t, z) is a matrix valued entire function of z which satisfies (2).

Since a(0+7(0>«(0)+7(0) for ¿>0 by hypothesis, 7(0>7(0) for 0<t = a.

By Lemma 8, Mit, z) does not satisfy (4) for m = 0, »= 1, when />0. Con-

versely, suppose that (21) is satisfied for i>0. Let

fia, z) = [Dia, z) + iCia, z)]/[A(a, z) - iB(a, «)].

As in the proof of Lemma 8,

kid) = lim y-1 Re fia, iy)
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exists as y—>+ =°. In the notation of Lemma 9,f(a, iy) and f(b, iy) belong to

D(a, iy) when o = è. By Lemma 4, the radius of D(a, iy) remains bounded

as y—»+00. Therefore, k = k(a)=k(b) is a constant. On the other hand, we

see from the proof of Lemma 8 that

(L ><*■•>
is a matrix valued entire function which satisfies (2). But (2) implies positivity

properties of the derivatives of the entire functions at the origin. These are

stated in Theorem IX, but the proof is immediate. They imply that

Oáü y(a) - y(O).

By (9) and the arbitrariness of a, k = 0. As in the proof of Lemma 8, it follows

that M(a, z) satisfies (4) for m = 0, v = 1.

Proof of Lemma 11. Let L he an element of L2(p) which is orthogonal to

3C(F) and consider

J t — z

cw.f **"*-«*** mm.
J I — z

Our hypotheses make these integrals absolutely convergent for all complex z.

The argument of [2, p. 147] shows that P(z) and Q(z) are entire functions of

exponential type. By Boas [l, p. 97], the indicator diagrams of E(z) and

G(z) are vertical segments, and the same is true of P(z) and Q(z) by the esti-

mates of [2]. Since L is orthogonal to 3C(F),

P(z)E*(z) - Q(z)E(z) = 0

vanishes identically. Since E(z) has no real zeros by hypothesis and satisfies

(1), there is an entire function H(z) such that

P(z) = E(z)H(z),       Q(z) = E*(z)H(z),

for all complex z. As a result of the representation theorem, Boas [l, p. 92],

applied to E(z), H(z) has exponential type and its indicator diagram is a verti-

cal line segment. By the Lebesgue dominated convergence theorem and (22),

H(z) goes to zero at both ends of the imaginary axis. By Boas [l, pp. 83, 97],

H(z) vanishes identically. By the arbitrariness of L,

[E(z)G(w) - G(z)E(w)]/(z - w),

[E*(z)G(w) - G(z)E*(w)]/(z - w),

belong to ¡JC(F) for every complex number w. Let
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Giz) = [Giz) - S(z)] + S(z),

where Giz)—Siz) belongs to 3C(£) and S(z) is orthogonal to 3C(£). Then,

[E(z)S(w) - S(z)Eiw)]/(z - w),

[E*iz)Siw) - Siz)E*iw)]/iz - w),

belong to X(£) for every complex number w. The orthogonality of S(z) to

3C(£) implies that for every nonreal complex number w,

([S(t)K(w, w) - Kiw, t)S(w)]it - w)/(t - w),

[Sit)Kiw, w) - Kiw, t)Siw)])

= ||s||2A(w, w) + | Siw) \2Kiw, w),

which is equal to the product of

\\S(t)K(w, w) - Kiw, t)Siw)\\

and

\\S(t)K(*, w) - Kiw, t)Siw)\\

with the inner product taken in L2(p). In particular, | S(w) \ = | S(w) |. Equal-

ity occurs in the Schwarz inequality only when there is linear dependence. So,

[S(z)K(w, w) — K(w, z)S(w)](z — w)/(z — w)

and

S(z)K(w, w) - Kiw, z)Siw)

are linearly dependent. Therefore, 5(z) satisfies (25) with Giz) replaced by

S(z). Since S(z) is orthogonal to 3C(£), it follows that there exist complex

numbers u and v such that S(z) satisfies (5). Since \S(z)\ =|5(z)| for all

complex z, u and v also satisfy (3). Therefore, there is a real number a such

that

u cos a + v sin a = 0,

and G(z) is a constant multiple of eùxE(z) — e~iaE*(z), which does not belong

to 3C(£). We are now in the situation of [6]. Since G(z) satisfies (22) by

hypothesis and G(z) —S(z) satisfies (22) by the definition of 3C(£), 5(z) satis-

fies (22). Therefore,

/

5(0

£(0
dt = 2iri £

£(0£'(0 - £(0£'(0

where on the right t ranges in the real numbers such that «"£(0 is real. By

construction, 5(0 vanishes for all such /. By the integral on the left, S(z)

vanishes for all real z and, by analyticity, for all complex z. The theorem

follows.
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Proof of Lemma 12. By Theorem III of [8], £(o, z) is an entire function

of exponential type which satisfies (14). Since 3C(£(a)) is contained isometri-

cally in 3C(£(o)), £(a, z, z) = KQ), z, z) for all complex z. It follows that £(a, z)

has exponential type and satisfies (14). Let p he the nonnegative measure

on the Borel sets of the real line defined by

PÍS) =  f | Eib, t) \~2dt
J s

for every Borel set S. By definition, 3C(£(o)) is contained isometrically in

L2ip), and hence so is 3C(£(a)) by hypothesis. If £(z) belongs to 3C(£(a)),

[Fiz) —F(w) ]/(z — w) belongs to 3C(£(6)) by hypothesis and hence is in L2(p).

Since £(z) is in X(E(a)), it satisfies (14), and (22) for E(z)=E(a, z) by the

definition of 3C(£). Since E(a, z) has exponential type, it has genus 0 or 1.

By Lemma 2, |£(a, iy)\ is a nondecreasing function of y^O. It follows that

[£(z) -F(w) ]/(z-w) satisfies (22) for E(z)=E(a, z). By Lemma 11, this

function belongs to 3C(£(a)).

Proof of Theorem I. If G(z) belongs to 3C(£), then (22) holds by the defini-

tion of 3C(£), and this implies (3). Therefore, there is a real number a such

that

u cos a + v sin a = 0

and G(z) is a constant multiple of eiaE(z) — e~iaE*(z). By Theorem II of [8],

the orthogonal complement of G(z) in 3C(£) satisfies (HI), (H2), and (H3).

By the proof of that theorem,

(25) K(w, z)G(w) - K(w,w)G(z) = [K(w, z)G(w) - K(w, w)G(z)] (z - w)/(z - w)

holds for all complex z if w is not real. Suppose that £(z) and zF(z) are in

3C(£). Then, (z — w)F(z) and (z — w)F(z) are in 3C(£). Take the inner product

of each side of (25) with (z — w)F(z), use (HI) on the right, and expand using

the definition of K(w, z). Then, (25) is equivalent to

K(w, w)((t - w)F(t), Git)) = Kiw, w)(it - w)Fit), Git)).

Since £(w, w) = Kiw, w)>0 and w is not real, it follows that Giz) is orthogonal

to Fiz). Conversely, if the elements £(z), whose product by z belongs to

3C(£), are not dense in 3C(£), there is a nonzero element Giz) of 3C(£) orthog-

onal to them all. The last identity must hold for each such £(z), and this

implies that each side of (25) has the same inner product with (z — w»)£(z).

Since both sides of (25) vanish when z = w, it follows from the arbitrariness

of £(z) that (25) holds. Obviously, Giz) is not the constant multiple of any

Kiw, z). As in the proof of Theorem II of [8], it follows that (5) holds for

some choice of u and v, not both zero, since Giz) does not vanish identically.

By Lemma 7 of [7], Giz) is then unique within a constant factor.

Proof of Theorem II. This is Theorem VII of [8] with
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Caiz) = Aia, z), Saiz) = £(a, z),

Cbiz) = Aib, z), Stiz) = B(b,z),

Co(z) = Aia, b, z), Saiz) = £(a, b, z),

-Siiz) = Cia, b, z), diz) = Dia, b, z).

Proof of Theorem III. This is Theorem VIII of [8] except for the unique-

ness of Mia, b, z), or in other words, of Co(z), 50(z), Ci(z), Si(z) in the notation

of [8]. This will follow as soon as it is shown that in the situation of Theorem

VII of [8], formulas (32), (33), (34), and (35) of [8] must hold with £(z)
= £¡,(z) and £c(z) defined by formula (12) of [8]. Since the proofs are essen-

tially the same as that of formula (21) of [8], they are omitted.

Proof of Theorem IV. For each a>0 and each complex number w, let

Mia, t, w) be the unique continuous function of t^a such that

(26) Mia, b,w)I - I =  f Mia, t, w)dmit)

for b=a. The existence of M(a, b, z) is Theorem VI, which has already been

established, with a change of variable. For each fixed a and b, Mia, b, z) is a

matrix valued entire function of z which satisfies (2).

We start by showing uniqueness. Let (£•■(<, z)) be two families of entire

functions, *= 1, 2, which satisfy (1) for each fixed t and which satisfy (11) for

each fixed z = w. By the uniqueness part of Theorem VI, already proved, (6)

must hold whenever a<b, for each family. It follows that

£i(ô, z)Aiib, z) — Aiib, z)£2(ô, z) = £i(a, z)A2ia, z) — Aiia, z)B2ia, z)

for all complex z. Let this entire function be denoted by £(z). It is independent

of a and b. If the initial conditions for (11) are satisfied by both families,

lim£(z) exp[2ßit)z] = 0

for all complex z, as t—»0. Therefore, £(z) vanishes identically. It follows that

Eiit, z)/Eiit, z) is independent of t for each fixed z with y>0. Our initial con-

ditions imply that this ratio is 1. So, Eiit, z) =£i(i, z) for y>0, and hence by

analyticity, for all complex z. Now, let us prove existence.

Let £(a, b, z)=Aia, b, z)—iBia, b, z). Since £(a, b, 0) = 1, Lemma 5

yields the estimate

log | E(a, b,z)\   = x[ß(a) - ß(b)] + y[a(b) - aia)]

(27) rb
+ | « K«(i) - aia)]2/2 + | z|2       ait)dyit),

J a

for all complex z. Let o>0 be held fixed. By (8), the entire functions

£(a, ô, z) exp[-/3(a)z],
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0 <a = b, are uniformly bounded on each bounded subset of the complex plane.

Therefore, there is a sequence a„\Q such that

E(b, z) = lim E(an, b, z) exp[—ß(a„)z]

exists uniformly on every bounded subset of the complex plane. Since

M (a, c, z) = M (a, b, z)M(b, c, z)

when c^b,

E(c, z) = limJF(a„, c, z) exp[-ß(an)z]

exists uniformly on bounded subsets of the complex plane when c^b, and a

similar argument shows that this is true also when c = &. Since E(c, z) is a

limit of entire functions satisfying (1), it has no zeros for y>0 and |F(c, z)\

¿\E(c, z)\ for these values of z. Therefore, it satisfies (1) or (12), and this

last possibility is ruled out because

B'(c, 0) = a(c) - a(0) > 0

by hypothesis. Our definition implies that (6) holds whenever a <b. Therefore,

(11) holds for each complex number w. From (27) we obtain the estimate

log \E(c,z)\   = xß(c) + y[a(c) - a(0)]

+  \z\2[a(c) - a(0)]2/2 +  \z\2 fCa(t)dy(t). "
J o

By (8) and Lemma 6,

lim E(c, z) exp[ß(c)z] = 1,

as c—>0. This completes the proof of existence. By the uniqueness, the defini-

tion is independent of the defining sequence (a„). Therefore,

E(b, z) = lim E(a, b, z) exp[ — ß(a)z]

uniformly on bounded sets, as a—»0.

The function E(b, z) has no real zero w, since otherwise (6) would imply

that E(a, w) =0 whenever a<b and this contradicts the initial conditions for

(11). Since E(b, z) is the limit of entire functions of genus 0 or 1, Lemma 2

implies that \E(b, x+iy)\ is a nondecreasing function of y = 0 for each fixed

x. Therefore,

E(b, z) = F(b, z) exp[-k(b)z2]

where F(b, z) has genus 0 or 1 and fc(ô)=0. But, (6) implies that k = k(b) is

independent of b and the initial conditions for (11) make k = 0. So, E(b, z) has

genus 0 or 1.

Now, let us show that when b<c are regular points with respect to m(t),

3C(E(b)) is contained isometrically in 3C(F(c)). First, consider the case in
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which there is an interval (a, b) to the left of b which contains only singular

points with respect to m(t) and in which m(t) is not a constant. Since a'(t),

ß'(t), y'(t) are equivalent in (a, b) to constant multiples of a single function,

there are complex numbers u and v, not both zero, satisfying (3), such that

A(a, t,z) = 1- ß(t)z + ß(a)z,        B(a, t, z) = a(l)z - a(a)z,
(28)

C(a, t, z) = y(a)z - y(t)z, D(a, t, z) = 1 + ß(t)z - ß(a)z,

for a_í5¡¿>, where

[a(t) - a(a)]v = [d(l) - ß(a)]u,

[ß(l) - ß(a)]v = [y(t) - 7(a)]«.

Let G(z) be defined by (5) for E(z) =E(a, z), or equivalently, for E(z)=E(b, z).

By (6), we may choose u and v so that

(29) K(b, w, z) = K(a, w, z) + G(z)G*(w)

for all complex z and w. Since K(a, z, z) =0 for all complex z, (22) holds for

E(z) =E(b, z), and this implies that

(30) lim E*(b, iy)/E(b, iy) = - (u + iv)/(u - iv),

as y—> + oo. Since b is a regular point with respect to m(t) by hypothesis, (21)

is satisfied for ¿ = i> if 0 is replaced by b. By Lemma 10, M(b, c, z) satisfies (4)

for the above u, v. By the proof of Theorem VII of [8], 3C(E(b)) is contained

isometrically in 3C(F(c)).

If there is no interval (b, b+E) to the right of b containing only singular

points with respect to m(t), Lemma 10 shows that M(b, c, z) satisfies (4) no

matter what the choice of u and v. By Theorem II, K.(E(b)) is contained

isometrically in 3C(F(c)) in this case.

In the remaining case, there is a sequence bn/b for which the isometric

inclusion of K.(E(bn)) in 3C(F(c)) has been shown for every «. Then,

K(bn, w, z) —> K(b, w, z),

for all complex z and w. Using inner products in K(E(c)), one finds that for

each fixed w, the sequence on the left is a Cauchy sequence, and that the con-

vergence takes place in the metric of 3C(F(c)). Therefore, K(b, w, z) belongs

to 3C(F(c)) and

K(b, wi, wi) = (K(b, wi, t), K(b, w2, t))

for all complex wi and w2, if the inner product is taken in 3C(F(c)). Therefore,

the finite linear combinations of the functions K(b, w, z), where w ranges in

the complex plane, belong to 3C(F(c)) and have the same norm there as in

3Q.(E(b)). Since such combinations are dense in 3C(E(b)), K(E(b)) is contained

isometrically in 3C(E(c)).
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If a and o are regular points with respect to mit) and if the interval (a, b)

contains only singular points, and if mit) is not a constant in (a, b), formula

(29) shows that Giz) spans the orthogonal complement of 3C(£(a)) in 3C(£(6)).

Proof of Theorem VII, when Af(z) is a polynomial. By inspection there

exist complex numbers u and v, not both zero, satisfying (3), such that Miz)

does not satisfy (4) for this choice of u and v. By Lemma 8,

/l — ßiz        aiz   \
Miz) = ( J M riz),

\   — 7iz      1 + ßizj

where ai, p\, 71 are real numbers, not all zero, such that

2
ai è 0,        71 ^ 0,        ßi = aiyi,

and Miiz) is a matrix valued polynomial satisfying (2). In fact, if Mi(z) is

chosen so as to satisfy (4) for the above u and v, the degree of Mi(z) will be

less than the degree of Miz). If Miz) has degree r, we may continue induc-

tively to find that

*   /l — ßkz        akz   \
(31) Miz) = u ( ,     J M(0)

1   \ -ytz      1 + ßkzf

with the factors taken from left to right in numerical order, where ak, ßk, yk

are real numbers such that

a* ^ 0,        yk ^ 0,        ßk = akyt,

«*7*-i + 7*a*-i — 2/SwS*_i > 0,

for A = 2, • • • , r. Since M(0) = 1 by hypothesis, this factor may be omitted

in (31). Let

aitk) = ai + • ■ • + ak,

ßih) = ßi + ■ ■ ■ + ßh,

y(tk) = 7i + • • • + 7*,

for

Ik = ai +■■■+ ak + yi +■■■+ yk

and A = 0, • • • , r; when A = 0, each sum is interpreted as 0. Let a, ß, 7 be

defined linearly in each interval [tk-i, tk], A= 1, • • • , r, and be constant in

[tr, 00). It is easily verified that mit) so defined satisfies (7), (8), and (9), and

that Miz) = Mitr, z) when Mit, z) is defined by (13).

Proof of Theorem V, when £(z) is a polynomial. Since £(z) satisfies (1), it

does not vanish identically. Because of the factor of Giz) in the formula we

wish to obtain, we may restrict ourselves to the case that £(z) has no real

zeros and£(0) = l.Then, 1 belongs to 3C(£) and therefore [£(z) — £(a»)]/(z—w)
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belongs to 3C(F) whenever F(z) belongs to 3C(F). By Theorem III and IV of

[8], there exist entire functions C(z) and D(z) such that M(z) so defined satis-

fies (2), and (4) with u = 0, v=l. By altering C(z) and D(z) by constant

multiples of A (z) and B(z), if necessary, these may be chosen so that M(0) ■> 1.

The proof of Theorem IV of [8] shows that C(z) and D(z) are polynomials.

By Theorem VII, which has been established for polynomials, there is a

matrix valued function m(t) satisfying (7), (8), and (9), such that M(z)

= M(a, z) for some a = 0. We will choose m(t) so that m(0) =0 and m(t) is not

constant in any interval to the right of the origin. Since M(z) satisfies (4)

for u = 0, v= 1, a(t)>a(0) lor t>0 by Lemma 10. Since E(z) is not a constant

by hypothesis, a>0. The theorem now follows since (13) implies (11) when

(3(0) =0. If F*(z) =F(-z), A(z) is even and B(z) is odd. The proof of Theo-

rem IV of [8] shows that C(z) is odd and D(z) is even. In our proof of Theo-

rem VII for polynomials M(z), each ßk vanishes, and so ß(t) vanishes identi-

cally.
Proof of Theorem V. By the choice of G(z) in the desired factorization,

we may restrict ourselves to the case that E(z) has no real zeros and F(0) = 1.

By Lemma 1, there is a sequence (F„(z)) of entire functions such that

En(z)—*E(z) uniformly on bounded sets and these conditions are satisfied:

each En(z) satisfies the hypotheses of the theorem, has no real zeros, has value

1 at the origin, and the conclusion of the theorem has already been estab-

lished for this function; that is, each Fn(z) is equal to En(cn, z) for some c„>0,

where En(t, z) is defined by (11) for some matrix valued function mn(t) satis-

fying (7) and (8) and such that an(t)>an(0) for />0. By a reparametrization,

we may suppose each mn(t) so chosen that an(0) =0 and

(32) an(t) +  f an(s)dyn(s) = /,
J o

for ¿ = 0. Then,

An"(0)   =    - ßn(Cn), Bn' (0)   =   an(cn),

A/(0)2 - An"(0) = 2 f'an^dynd).
Jo

Since En(z)-+E(z) uniformly on bounded sets,

A: (0) -+ ¿'(0),       B/ (0) -> B'(0),       AÜ'(0) -* A"(0).

Therefore, c = lim c„ exists. This number is strictly positive because it is no

less than F'(0)2; B'(0) >0 because E(z) satisfies (1) and F(0) 9*0. By (32), the

functions (an(t)) are uniformly bounded and equicontinuous on every

bounded set. We may suppose by going to a subsequence that a(t) = lim an(t)

exists uniformly on every bounded set. Obviously, a(t) is a nondecreasing, ab-

solutely continuous function such that a(0) =0 and a(c) = F>'(0) >0. Let 6 be
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the largest value of t such that ait) =0. When S <a <b, (7) and (32) imply that

0 = 7.(4) - yn(a) Ú (b - a)an(a)-\

| ßn(b) - ßnia) I   á (b - a)an(a)-"2.

By altering each 7„(0 by a constant and by going to a subsequence, we may

suppose that

ßit) = lim/3n(0,       7(0 = Hm 7.(0

exists uniformly in each interval [a, b] to the right of 5. Then, mit) so defined

satisfies (7) for />5. When 5<a<o,

a„ib) - a„(a) +  I   an(0¿7™(0 = b - a,

by (32). Since a(0 and 7(0 are uniform limits in [a, b],

aib) - aia) +  I   a(0¿y(0 = b - a.
J a

By the Lebesgue monotone convergence theorem,

aib) - a(5) +  f a(0¿y(0 =6-5.

When a>5, let M„(a, /, z) and Mia, t, z) he defined by (26) for m„it) and

mit), respectively. Since mn(0—»tw(0 uniformly on bounded sets to the right

of a,
Mnia, b, z) -» Mia, b, z)

uniformly on bounded subsets of the complex plane; a similar situation occurs

in the proof of Theorem XII and the reader should have no difficulty filling

in the proof in this case. Since

a„ic) — a„(c„) + 7„(c) — 7»(c„) —> 0,

the proof of Theorem IX shows that

MniCn, C,Z)^1

uniformly on every bounded subset of the complex plane. Since (6) holds in

the form

iAnic, z), Bnic, z)) = (^„(c„, z), £„(c„, z))M(c„, c, z)

if Cn'è.c, and a similar formula holds when c = cn, and since £n(c„, z)-+Eiz)

uniformly on bounded sets, £„(c, z)—*Eiz) uniformly on bounded sets. Let

£(i, z) be defined by

£(/, z) = lim Enit, z)
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for í>5. By (6), the convergence is uniform on bounded sets, and as we have

seen, £(z)=£(c, z). From this definition, it is clear that each such £(/, z) is

an entire function satisfying (1) with

B'it, 0) = lim Bn' it, 0) = lim an(0 = a(0 > 0.

Formula (6) holds when 5<a<6. We also have

A'it,0)2 - A"H,0) = lim [A: it, 0)2 - An-'it, 0)]

= 2 lim   I   anis)dy„is)
J o

=   2 lim [t - a„(0]

= 2 - 2a(0

= 25 + 2 f a(5)07(5).

Since each £„(/, z) has genus 0 or 1 by Theorem IV, Lemma 5 applies and in

the limit we have the estimate

log | £(/,z) |   = - xßii) + yait) + \ z\2 f «(5)07(5)

+  |z|2a(02/2+  |z|25.

When b~ = t^c, the entire functions

£(i, z) exp[ßii)z]

are uniformly bounded on every bounded set. Therefore, there exists a se-

quence tn\b such that

Fiz) = lim £(ín, z) exp[ßitn)z]

exists uniformly on every bounded set. This means that £(z) is an entire

function with no zeros for y>0, such that

£(0) = 1,     I Fiz) I   =  I Fiz) I   for y > 0,    and    log | £(z) |   g ô| z|2

for all complex z. Since

Re - i'£'(0) = lim a(/„) = a(5) = 0,

Fiz) cannot satisfy (1) and so must satisfy (12). It is an entire function

which is real for real z, has only real zeros, and

£'(0) = 0,        F"(0) = - 25.

By Theorem IV, there exists a family (£(5, ¿, z)), t^d, oí entire functions

satisfying (1), such that (6) holds when S<a<o, and
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E(5, t, z) exp[ß(t)z] -+ 1,

for all complex z as t—>5. By (6) for E(t, z) and E(b, t, z),

B(b, z)A(5, b, z) - A(b, z)B(ô, b, z) = B(a, z)A(S, a, z) - A(a, z)B(ô, a, z),

when d<a<b. Let this entire function be denoted by L(z). It is independent

of a or b. Since F(z) is real for real z,

L(z) exp[ß(l„)z] -► 0

for all complex z, and therefore L(z) vanishes identically. Now (6) implies

that

E(t, z)/E(o, t, z)

is independent of t>h when y>0. On letting t = t„ and taking the limit, we

find that this ratio is equal to F(z). So,

E(t, z) = F(z)E(S, t, z)

for y>0, and hence by analyticity, for all complex z. Since E(z) =E(a, z) has

no real zeros by hypothesis, F(z) has no zeros. Our previous size estimates

for this function and the value of its first two derivatives at the origin now

show that

F(z) = exp(-5z2).

But E(z)=E(a, z) has genus 0 or 1 by hypothesis and E(ô, a, z) has genus 0

or 1 by Theorem IV. By Boas [l, p. 27], 5 = 0 and the theorem follows. In

case E*(z)=E( — z), each En(z) may be chosen so that E*(z)=En( — z) by

Lemma 1. By Theorem V in the case already proved, we may choose each

ßn(t) so as to vanish identically. Therefore, ß(t) = lim ß„(t) vanishes identically

in this case.

Proof of Theorem VII. For simplicity, we will suppose that M(z) satisfies

(4) for « = 0, v=l. The general case can be obtained by an inner automor-

phism, as in the proof of Lemma 8. Then, (2) implies that E(z) =^4(z) —iB(z)

has no zeros for y = 0 and that |F(z)| ^ |F(z)| for such values of z. As in

the proof of Lemma 9, E(z) satisfies (1) or else is equal to 1 identically. If

E(z) = 1 identically, (2) implies that Re D(z) ^ 1 for all complex z and hence

D(z) = 1 identically by the argument for E(z). From (2), we have

[C(z) - C(z)]/(z - z) è 0

for all complex z. By the Poisson representation of a function positive and

harmonic in a half plane,

iC(z) — iC(z) = iy(z — z)

for y>0, where 7^0 is a constant. By symmetry, the same formula holds for
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all complex z. By the Cauchy-Riemann equations, C(z)+7z is a constant,

which is equal to 0 by its value at the origin. Since we have assumed that

Miz) satisfies (4) for u = 0, 0 = 1, we see that 7 = 0 and that Af(z) = 1 identi-

cally. The theorem certainly holds in this case. Now let us consider the case

in which £(z) satisfies (1). Since £(z) has exponential type, it has genus 0 or

1. By Theorem V, £(z) =£(c, z) for some c = 0, where £(i, z) is defined as in

Theorem IV for some choice of mit). Actually, the definition of w(0 for t = b

is not relevant for the definition of £(ô, z). We may suppose with no loss of

generality that 6 is a regular point with respect to mit). If a<b and a is

regular, 3C(£(a)) is contained isometrically in 3C(£(6)) by Theorem IV. By

Lemma 12, [£(z) — £(«»)]/(z — w) belongs to 3C(£(a)) whenever £(z) belongs

to 3C(£(a)), since it belongs to 3C(£(6)) whenever £(z) belongs to 3C(£(o)) by

Theorems III and IVof [8]. By these same theorems, there exist entire func-

tions C\a, z) and 7J>(a, z) such that Mia, z) so defined satisfies (2), and (4) with

u = 0,v = l. Since £(a, 0) = 1, we may suppose, by altering C(a, z) and £(a, z)

by constant multiples of Aia, z) and £(a, z), that Mia, 0) = 1. Then, they

are uniquely determined by Aia, z) and £(a, z). Let Mia, b, z) be defined by

(26). Since Mia, b, z) satisfies (2) and M(a, z) satisfies (2), and (4) for u = 0,

0= 1, it is easily verified that

M(b, z) = Mia, z)M(a, b, z)

satines (2), and (4) for m = 0, 0 = 1. Certainly, MQ), 0) = 1 since M(a, 0) = 1 by

construction and Mia, b, 0) = 1 as a result of (26). By the uniqueness part of

Theorem IV of [8], Miz) = A7(6, z). Define Mit, z) for t = a by

Mit, z) = Mia, z)Mia, t, z).

Because of the uniqueness just described, the definition of Mit, z) does not

depend on the choice of a. If there is a smallest regular point a>0, the situa-

tion is especially simple. By definition, a'it), ß'it), y'(t) must be equal to con-

stant multiples of a single function in [O, a]. Since m it) was obtained by

Theorem IV, a(a)>a(0) and a'it) does not vanish a.e. in this interval. It

follows that ß'(0 and 7'(0 are constant multiples of a'it) in [O, a] and that

mit) satisfies (9). On solving (11), we find that

E(a, z) = [1 - ßia)z - iaia)z + 0(O)z + ia(0)z] exp[-/3(0)z],

for all complex z. By Theorem IV of [8], £(a, z) satisfies (14) and hence

0(0) = 0. Let Mit, z) he defined by (13) for ¿>0. Since (13) implies (11) when

0(0) = 0, this does not contradict our previous definition of A it, z) and £(/, z).

By Lemma 10 and the uniqueness part of Theorem IV of [8], this definition

of Mit, z) agrees with our previous definition for all /. The theorem now fol-

lows in the case that there is a smallest regular point a > 0.

If there is no smallest regular point a>0, then Mit, z) has been defined

for all t > 0. Since
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C'(a, b, 0) = 7(a) - y(b)

whereas

C'(b, 0) = C'(a, 0) + C'(a, b, 0)

by (6), we have

y(a) - y(b) - C'(a, b, 0) = - C'(a, 0)

and this quantity is nonnegative as a result of (2). Since y(t) is then a non-

decreasing function of / which is bounded below, 7(0) =lim y(t) exists and is

finite as i—>0. Now (7) implies that ß(0) = lim ß(t) exists and is finite as t—»0

and that m(t) satisfies (9). Let M0(t, z) he defined by (13) for <^0. By the

uniqueness part of Theorem IV,

E(t, z) = Eo(t, z) exp[-ß(t)z],

for í^O and all complex z. By Theorem IV of [8], F0(i, z) satisfies (14). Since

E(t, z) also satisfies (14), 0(0) =0. So, E(t, z) =F0(i, z) for <>0 and all complex

z. As above, the uniqueness part of Theorem IV of [8] implies that M(t, z)

= Mo(t, z) for f>0 and all complex z. The theorem follows.

Proof of Theorem VIII. Let a > 0 be regular with respect to m(t). By Theo-

rem IV, 5C(E(b)) contains 5C(E(a)) isometrically when b>a and 6 is regular;

the same conclusion can be made if b is not regular since the values of m(t)

for t>b do not affect the definition of 3C(F(¿>)). Since E(a, z) has no real zeros

by Theorem IV, it follows from Theorem VA of [8] that there exists a func-

tion W(a, b, z), defined and analytic for y>0, such that | W(a, b,z)\ ^ 1, and

y   r   I E(a> ') I21 E(b> 0 l-,# E(a> *) + F*(a, z)W(a, b, z)
= Re

/it J (t - x)2 + y2 E(a, z) - E*(a, z) W(a, b, z)

for y>0. In fact, it was shown in the proof of Theorem VII of [8] that

1 + W(a, b, z)      D(a, b, z) + iC(a, b, z)
(33)

1 - W(a, b, z)      A(a, b, z) - iB(a, b, z)

Since the functions W(a, b, z), b^a, are uniformly bounded for y>0, there

is a sequence c„ / 00 such that

W(a, z) = lim W(a, cn, z)

converges uniformly on every bounded set at a positive distance from the

real axis. Therefore, W(a, z) is defined and analytic for y >0 and | W(a, z)\ £1.

By (6) and (33),

W(b, z) = lim W(b, Cn, z)

is defined and analytic for y>0 when b>a, and | W(b, z)\ £1, and
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(34) 1 + ^(ffl>z) = [7J(a, b, z) + iCja, b, z)] + [Dja, b, z) - iCja, b, z)]Wjb, z)

1 - IF(a, z)     [Aia, b, z) - i£(a, b, z)] - [Aia, b, z) + iB(a, b, z)]W(b, z)

for y>0. By the Poisson representation of a function positive and harmonic

in a half plane, there is a nonnegative measure /¿(o) on the Borel sets of the

real line and a number A(o) =0 such that

y   r   \Eib,t)\2dpib,t)       t/^ E(b,z)+E*(b,z)W(b,z)
(35) —   S-h A(o)y = Re-

re J        (f - x)2 + y2 £(6, z) - £*(o, z)W(b, z)

for y>0; the factor of |£(6, 0|2 m the integrand on the left is permissible

since £(o, z) has no real zeros by Theorem IV. We claim that A(6) =0 when

b is regular. This follows by Theorem VB of [8] unless there are complex num-

bers M, 0, not both zero, such that Giz), defined by (5) for £(z) =£(6, z), be-

longs to 3C(£(6)). In this case, o is the right-hand end point of an interval of

singular points by the proof of Theorem IV. For simplicity, we will suppose

that a is the largest regular point less than 6, and that u and v are chosen so

that Giz) has norm 1 in 3C(£(6)). Then, (28) holds for a<*túb, and (29) and

(30) hold. To show thar A(o) =0, we must show that

[1 + Wib,z)]v+ [1 - W(b,z)]iu

[1 + W(b, z)]iu + [1 - IF(ô, z)]v

is oiy) when z = iy and y—>+ oo. We apply (34) with a replaced by 6 and b

replaced by c, where c>b and mit) is not constant in [b, c]. By the proof of

Lemma 10, it is sufficient to show that]

[1 + Wjb, c, z)]v + [1 - Wjb, c, z)]iu

[1 + W(b, c, z)]iu + [1 - Wib, c, z)]v

is oiy) when z = iy and y—»+ oo. By (33), this is equivalent to showing that

A7(ô, c, z) satisfies (4) for the given u, v. This follows from Theorem III since

3C(£(6)) is contained isometrically in 3C(£(c)) by Theorem IV, when 6 is

regular. By the proof of Theorem IX of [8], (34) implies that /¿(a)=i¿(o)

when b is regular. Therefore, there is a single nonnegative measure p on the

Borel sets of the real line such that every 3C(£(6)) is contained isometrically

in L2ip) when 6 is regular with respect to mit).

If there is a largest regular point 6, the situation is particularly simple.

Then, there are complex numbers u and v, not both zero, satisfying (3), such

that (28) holds when a is replaced by b and t = b. A direct computation from

(10), using (6), shows that £(i, z, z)—»oo for all nonreal z as f—»oo. It also

shows that

Wib, z) = lim Wib, c, z)

exists as c—»oo, without going to a subsequence, and that
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W(b, z) = — (u — iv)/(u + iv)

is a constant of absolute value 1. The orthogonal sets of [6] show that

3C(F(¿>)) fills L2(p) in this case. For the rest of the proof, we will suppose that

the regular points are unbounded. Let M(z)2 = lim K(t, z, z) as t—»oo. The

limit certainly exists since K(t, z, z) is a nondecreasing function of t for each

fixed z. We must show that the limit is infinite when z is not real. To see this,

argue by contradiction, supposing that M(wo) is finite for some nonreal w0.

Let 3Co be the union of the spaces SC(E(b)), with b regular, and consider it as

an inner product space contained isometrically in L2(pt). Then,

M(z) = sup | F(z) | ,

where F(z) ranges in the elements of 3C0 of norm at most 1. Let G(z) be a fixed

element of 3Co, of norm at most 1. If F(z) is in 3Co and has norm at most 1,

and if w is not real,

[F(z)G(w) - G(z)F(w)]/(z - w)

belongs to 3C0 as a result of (HI) and has norm at most

2[|FH¡ + \G(w)\ ]/\w-w\ .

Therefore,

F(w0)G(w) - G(w0)F(w) I F(w) I + I G(w) |      t   s
-   ^2--¡-i-—.-M(w0).

Wo — w I w — w I

If w is closer to w0 than it is to the real axis and if G(z) is chosen so that

| G(wo) |/1 wo - w |   > 2M(w0)/ | w - w \ ,

the last inequality implies that M(w) is finite, by the arbitrariness of F(z).

It also implies that M(w) remains bounded in a neighborhood of w0. Since

K(b, z, z) =K(b, z, z) for all b, M(z) = M(z). Since K(b, x+iy, x+iy) is a non-

decreasing function of y ^ 0 for each fixed b and x by Lemma 4 and Theorem

IV, M(x+iy) is a nondecreasing function of y^O for each fixed x. It follows

that M(z) is finite and locally bounded in the complex plane. Let 3C be the

Hilbert space of entire functions F(z) in L2(p) which are limits of sequences

(Fn(z)) in 3Co which converge to F(z) both pointwise and in the metric of

L2(jx). This definition is possible by the properties of M(z), and 3C satisfies

(HI), (H2), and (H3). By [7], 3C=3C(F(oo)) for some entire function

F(oo, z) satisfying (1). When b is regular, 3C(F(6)) is contained isometrically

in 3C(F(oo)), and E(b, z) has no real zeros by Theorem IV. By Theorem III,

there is a matrix valued entire function M(b, oo, z), satisfying (2), such that

(¿(oo, z), B(cc,z)) = (A(b, z), B(b, z))M(b, oo, z)

for all complex z. Because of Theorem I of [8], the choice of E( oo, z) can be
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made so that M(b, oo, 0) = 1 for at least one value of o. By (6) and the unique-

ness part of Theorem III,

Mia, oo, z) = Mia, b, z)Af(6, oo, ¿)

whenever 6 =a and 6 is regular. Since Mia, b, 0) = 1, we see that M(b, oo, 0) = 1

for all regular b^a. By taking derivatives at the origin in the last identity,

we find that

B'ia, co.O) = aib) - aia) + £'(6, »,0),

-C'ia, oo,0) = 7(6) - yia) - C'ib, co,0).

But (2) implies that £'(6, °o, 0) =0 and - C'ib, oo, 0) ^0, and therefore

«(b) + y(b) - a(a) - y(a) g B'(a, oo, 0) - C'ia, oo, 0).

This contradiction of (10) shows that Miz) is infinite whenever z is not real.

Now, (34) implies that

W(a, z) = lim W(a, b, z)

as 6—» », since the left-hand side of Í33) and the left-hand side of (34) belong

to 3D(ô, z) by Lemma 9, and since the radius of SD(6, z) goes to zero as 6—» oo.

It remains to show that the union of the spaces 3C(£(o)), with b regular,

is dense in L2(p). Let £ be an element of L2(p) which is orthogonal to every

such 3C(£(6)). If £(z) and G(z) are in this union, and if w is not real,

[F(z)G(w) - G(z)F(w)]/(z - w)

is in this union, and therefore

/ t — w

Since w is not real,

F(t)G(w) - G(t)F(w)
— L(t)dp(t) = 0.

„,     r F(t)Lit)dp(t) r
G(w) I    -   =   F(w) |

J I — w J

Git)Lit)dpit)

t

= 2 | £(w)|||g||||7|| \w - w\-\

The arbitrariness of Giz) implies that

F(t)I(t)dp(t)

/
= 0

w

since Miw) is infinite. By the arbitrariness of w, Fit)Lit) vanishes a.e. with

respect to p. Since £(6, z) has no real zeros by Theorem IV, for each real I

there is an element £(z) of 3C(£(o)) such that £(0^0. Therefore, £(0 van-

ishes a.e. with respect to p. This completes the proof that the union of the

spaces 3C(£(o)), with 6 regular, is dense in L2(p).
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Proof of Theorem IX. By Theorem VII, M(z) — M(a, z) for some a^O,

where M(t, z) is defined as in Theorem VI for some choice of m(t). Let it be

chosen so that m(0) = 0. Let

M(t, z) = £ Mn(t)z»

be the power series expansion. Then, Mo(t) = 1,

V-7(0     ß(t)J

each M„(<) is a continuous function of /^0, and

(36) Mn+i(t)I =  f MB(i)j»'(s)di.
Jo

By (7),

||m'(0||2 Û a'(t)2 + 2ß'(t)2 + y'(t)2 Û [a'(t) + y'(t)]2

a.e., lor t^O. Therefore,

||Mn+i«)|| £ (t\\Mn(s)\\[a'(s) + y'(s)]ds.
Jo

Since || Mo(<)|| = 1, we find inductively that

«!||M„(0|| ^ [a(t)+y(t)]\

The theorem follows.

Proof of Theorem X. As we have seen, for each t^O, A(t, z), ■ • ■ , D(t, z)

are entire functions of exponential type which are real for real z and satisfy

(14). By Boas [l, p. 116], when 99*0, it,

lim r-1 log | F(reie) \   = r \ sin 6 \

holds for each of these entire functions, with t equal to the type of F(z). It

follows from (2) that each of the functions

[D(t, z) + iC(t, z)]/[A(t, z) - iB(t, z)],

iA(t,z)/B(t,z),       iC(t,z)/D(l,z)

and its reciprocal is defined and analytic for y>0 and has a nonnegative real

part. By the Poisson representation, each of these functions and its reciprocal

is 0(y) on the upper half of the imaginary axis, as y—+oo. Therefore, each of

the entire functions A(t, z), • • • , D(t, z) has the same type t(0, t). We will

prove the theorem by showing that t(0, t) =r(t). Let

F(t,z) = A(t, z) exp[ir(t)z],

G(l, z) = B(t, z) exp[i'r(0z].



148 LOUIS de BRANGES [April

For each fixed /, £(í, z) and G(í, z) are entire functions of z. For each fixed z,

£(f, z) and Git, z) are absolutely continuous functions of / such that

[Git,z)Fit, z) - Fit, z)Git, z)]'/iz - z)

= Fit, z)FH, z)a'it) + Git, z)Fit, z)[ß'H) + ir'it)]

+ Fit, z)V(t, z)[ß'it) - ir'it)] + Git, z)Git, z)y'it)

= Q,

a.e. as a result of (7) and the definition of t(0. Therefore,

[Git, z)Fit, z) - Fit, z)Git, z)]/iz - z) = 0

is a nondecreasing function of t — 0. It follows that

r(0, 0 - rit) = 0

is a nondecreasing function of 2 = 0. When a = b, let A7(a, b, z) he defined by

(26). The argument just gone through shows that each of the entire functions

Aia, b, z), ■ • ■ , Dia, b, z) has the same type ria, b) and that

r(a, b) = rib) - ria).

Because of (6), we also have

t(0, 6) = r(0, a) + ria, b).

Let

=e:y£\i
where p, q, r are real numbers such that pr — q2= 1. If A7„(0 is defined as in

the proof of Theorem IX,

M„+i(0£ = -  f Mnis)PP-lm'is)IPds
Jo

and so

||Af«+i(0£|| =   f ||Mn(5)£||||£-W5)7£||d5.
J o

Since || A7o(0£|| =||£||, we see inductively that

«!||Mn(0£|| =\\P\\(Ï ||£-Iw'(5)7£||d5^

and therefore

log||Mit,z)P\\ = log||£|| + | z|   f ||£-W(5)7£||d5.
Jo
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Therefore,

r(0,0á  f'llF-WW/FlIáj.
Jo

A similar argument will show that

r(M)= f)\P-W(t)IP\\dt

when 0^o = ¿>. Since

0 = t(0, b) - t(0, a) g r(a, b),

the last inequality implies that t(0, f) is an absolutely continuous function of

t and

T'(o, t) g ||f-W(0/f||

a.e. Since the 2X2 matrices with real entries are a separable metric space,

r'(0,l) g infllF-VW/Fll

where p, q, r are allowed real values such that pr — q2 = l. If for some real

/. m'(t) exists and r'(t) >0, choose p, q, r so that

a'(t) = (p2 + q2)r'(t),

ß'(t) = (pq + qr)r'(t),

y'(t) = ($2 + ñr'(t).

Then,

||F-W«)/F|| = ||/r'(/)|| = r'(t),

for this choice of P. When r'(t) =0,

inf ||p-W(/)/P|| = 0,

by continuity. We have shown that r'(0, t) =t'(<) a.e. and so t(0, t) úr(t) for

t ̂  0, since both functions vanish at the origin. We have already obtained the

reverse inequality. So, t(0, /) =t(<) and the theorem follows.

Proof of Theorem XI. For y>0

/(z) = lim iC(b, z)/A(b,z)

exists as ¿>—> oo by Lemma 9 since the fraction on the right belongs to î>(b, z)

and the radius of D(2>, z) goes to zero by Theorem VIII. Since the convergence

is bounded on bounded sets at a positive distance from the real axis, f(z) is

defined and analytic for y>0. Since/(z) belongs to 3)(Z>, z), Re/(z)=0 for

y>0. Since a(t) >a(0) by hypothesis, each M(b, z) satisfies (4) for m = 0, v= 1

by Lemma 10. For each fixed b,
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[D(b, iy) + iCib, iy)]/[A(b, iy) - ¿£(6, iy)]

belongs to 2D(6, iy) and is oiy) as y—»+ oo. Since the radius of 2D(o, iy) remains

bounded as y—»+oo for each fixed b, by Lemma 4, we have f(iy)=o(y) as

y—»+ oo. By the Poisson representation of a function positive and harmonic

in a half plane, (17) does define a nonnegative measure p. As in the proof of

Theorem VIII, let
Wia, z) = lim Wia, b, z)

as 6—»co, where Wia, b, z) is defined by (33). Then, for each a>0,

y   r dpit)

I it - x)2 + y2

(37)
[Dia, z) + iCia, z)] + [Dia, z) - iCia, z)]W(a, z)

[Aia, z) - iB(a, z)] - [¿(a, z) - ¿£(a, z)]lF(a, z) '

for y>0, because of (6) and (17), and because the radius of SD(o, z) goes to

zero as b—» oo. Let the measure /¿(o) be defined by (35) when b is regular with

respect to mit); as in the proof of Theorem VIII, A(o) =0. By the proof of

Theorem VI of [8], /¿(o) =p. The theorem now follows from Theorem VIII.

Proof of Theorem XII, when p is supported at a finite number r of points.

Since p does not vanish identically by hypothesis, r>0. Consider the poly-

nomials of degree at most r — 1 in the norm of £2(/0- They form a Hubert

space of entire functions which satisfies (HI), (H2), and (H3) and which con-

tains a nonzero element, the constant function 1. By [7], this Hilbert space is

equal isometrically to some 3C(£), for some entire function £(z) satisfying (1).

By Theorem I of [8], we may choose £(z) so that £(0) = 1. Since £(w, z)

belongs to 3C(£) for every complex number w, it has degree at most r — 1,

and has degree r — 1 for some values of w; so, £(z) is a polynomial of degree r.

As in the proof of Theorem V when £(z) is polynomial, there are polynomials

Ciz) and 7>(z) of degree at most r such that Miz) so defined satisfies (2), and

(4) for m = 0, 0= 1, and M(0) = 1. Furthermore, Miz) = Mia, z) for some a>0,

where Mit, z) is defined by (13) for some choice of mit) satisfying (7), (8),

and (9). Since the values of mit) for t = a do not affect the definition of Mia, z),

mit) may be chosen so that a is a regular point with respect to mit), and

there are no regular points greater than a, and mit) satisfies (10). To do this,

let m and 0 be complex numbers, not both zero, which satisfy (3), and define

mit) and Mia, t, z) so that (28) holds for t = a. The choice of u and 0 must be

such that Giz), defined by (5) for £(z) =£(0, z), does not belong to 3C(£(a)).

For the right choice of u and 0, note by Theorem V of [8] that (35) must hold

with b replaced by a and A(a)=0, since 3C(£(a)) is contained isometrically

in £2(/¿) and £(a, z) has no real zeros. Since 3C(£) fills £2(¿¿) by construction,

IF(a, z) is a constant of absolute value 1 because of the orthogonal sets of [6].

Let m and 0 be chosen so that
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W(a, z) = — (« — iv)/(u + iv).

As in the proof of Theorem XI, (37) holds. It is easily verified that m(t) so

constructed has the required properties.

Proof of Theorem XII. Let (ju„) be a sequence of nonnegative measures on

the Borel sets of the real line, satisfying the hypotheses of the theorem and

for which the conclusion has already been obtained, such that

(38) ^f Mt)        -lim-If        M)
w J    (t-x)2 + y2 t J    (t-x)2 + y2

for y>0. This approximation is possible because the theorem has been estab-

lished for measures supported on finite sets. For each «, let mn(t) and Mn(t, z)

be constructed for pn as the theorem states. By altering mn(f) by a constant,

we may suppose it chosen so that mn(0) =0. By a reparametrization, we may

suppose that

an(t) + yn(t) = I

for every «. Then, (7) implies that (an), (ßn), (yn) are uniformly bounded,

equicontinuous sequences of functions for t in any bounded set. We may sup-

pose by passing to a subsequence that m(t) =lim mn(t) converges uniformly

on bounded sets. Therefore, m(t) satisfies (7), (8), (9) with m(0) =0, and (10)

with

«(<) + y(f) = <•

Let M(t, z) be defined by (13) for this choice of m(t). Since m„(f)—>m(t) uni-

formly on bounded sets, Mn(t, z)—j>M(t, z) in the formal sense. That is, when

these analytic functions are expanded in Taylor series about the origin and

t is held fixed, the rth coefficient of the series on the left converges to the rth

coefficient of the series on the right for every r. This follows inductively from

(36). As a result of Theorem IX, the convergence is now uniform on bounded

subsets of the complex plane, for each fixed t. But for each o>0, (37) holds

for y>0, with p = pn, M(a, z) = Mn(a, z), W(a, z) = Wn(a, z). Because of (38),

W(a, z) = lim Wn(a, z)

exists for y>0 and (37) holds. By the Lebesgue dominated convergence theo-

rem, the right-hand side of (37) iso(y) when z = iy and y—*+ oo. By Lemma 9,

the right-hand side of (37) belongs to 3D(a, z); the same is true for the right-

hand side of (33) when a is replaced by 0 and b by a. The radius of SD(a, iy) re-

mains bounded as y—»4- co with a held fixed, by Lemma 4. It follows that

M(a, z) satisfies (4) with m = 0, v—1. By Lemma 10, a(t)>a(0) for i>0.

Formula (17) now follows from Lemma 9 since the radius of S)(a, z) goes to

zero as a—»co, by Theorem VIII.
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