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1. Introduction. In a recent paper [3], Mansfield has studied various

topological properties which lie between normality and paracompactness. He

raised several questions concerning equivalence among these properties. Some

of these questions are answered here by proving that the 2-products which I

recently studied in detail furnish counterexamples. I wish to thank Melvin

Henriksen for his suggestion that the 2-products might serve the purpose to

which they are put in these theorems.

Those who are interested in the theory of 2-products will notice that these

results sharpen the known facts, although at the expense of techniques

which are different and more involved. Hence, for simplicity's sake, only 2-

products of copies of the integers will be presented. These methods can be

used to prove analogous theorems where each of the factors is separable

metric and complete; but what is true beyond this is open, except for the

results in [2].

2. Notation and statement of the main theorem. If for each a G A there

is given a copy of the integers /„, then the ~Z-product of the Ja is defined to be

the set of points p in the topological product £ of the Ja such that pa^O

for at most a countable number of coordinates. 2 is given the topology it

inherits from P.

The properties studied by Mansfield are modifications of the concept of

full normality which was introduced by Tukey. Let us define this term first.

A topological space X is fully normal if for each open cover 11 of X there is an

open refinement T) of 11 such that, given any point x(E.X and any sub-

collection VxCV with xGD^x, there is some Z7G11 with \JvxCU. Now,

if m is a cardinal number, m-fully normal is defined similarly with the alter-

ation that Vx has cardinality less than or equal to m. Also, almost m-fully

normal is defined by altering the definition of fully normal to require only

that for each subset M of cardinality m of each Ut)* there is a [/Git such that

M CU. Note that these properties are inherited by closed subspaces [3,

Theorem 4.1].

By the references or theorems in Mansfield's paper one will see that the

following sequence of implications holds for all infinite m. (Some remarks on

the case where m is finite are in the last section.)
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paracompact<=>fully normal=>m-fully normal=>almost m-fully normal

=>countably paracompact and normal.

(Recall that X is paracompact if each open cover has an open, locally finite

refinement. Also, X is countably paracompact if each countable open cover

has an open, locally finite refinement.) Moreover, these are the only valid

implications among these properties, since the following theorem settles the

only case left open by Mansfield.

Theorem 1. Let 2 be the 'S,-product of uncountably many copies of the

integers. Then 2 is almost Ro-fully normal, but not b$o-fully normal.

3. Proof of the positive part of Theorem 1. Before embarking on this

rather involved proof, the reader may appreciate an example of a simple

cover for 2—yet a cover which is very much like the refinement that will be

constructed in this section. For each a£.4, let

W(a) = {xE 2:xa = 0J.

Then V? = { W(a) : aEA } is the cover to which I refer. It is easy to see that

any countable subset of 2 is contained in an appropriate W(a). The general

idea of the following proof is to construct a refinement as much like W as

possible. Furthermore, "W is also used in the next section to prove that 2 is

not No-fully normal.

From the proof that 2 is almost N0-fully normal it is possible to isolate

that part that is similar to those techniques developed in [2], and this is

presented in the proof to Lemma 1. Note that a basic open set U is an open

cylinder in 2 such that Ua consists of one point in Ja for the a where Ua9iJa.

Lemma 1. For each open cover 11 of2 by basic open sets, there is a countable

subset KEA and a subcover V of 11 such that Va = 0 or Jafor each VEV and

aE'K.

Proof. Suppose the lemma is false. Let Ki be a countable subset of A, and

arrange Kx in a simple sequence. Denote by ai the first member of Ki. Let

Hi be the set of £7£11 such that Ua = 0 or Ja if a£'.Ki. For n an integer, define

2(ai, ») = {x E S: *„, = n\.

Since there are only countably many 2(ai, w), and since we have assumed that

the lemma is false, there exists an «i such that 2(ai, Wi) has this property:

For each cover W of 2(ai, ni) by elements of It and each countable KEA,

there is a W£*W such that Wa9£0 or Ja lor at least one aE'K. In particular

one may choose xi£2(«i, «i) such that Xi£'Ulli.

For the next step of the induction, define

K2 = {«£ A:(xi)a9±0\,
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and arrange £2 in a simple sequence. Suppose that ft, r2, r3, rt are integers,

and assume that aj., a2 are the first two elements of Ki while at, at are the first

two elements of K2. Define

2(aia2a-3i*4, fift»^) = {x G 2: xai = ft, * = 1, • • • , 4J.

Let

Hü = { £ G 11: £« = 0 or /„ if a G' £i U £2}.

Since there are only countably many2(ai • • • a4, ft • • « r4), since the lemma

is assumed to be false, and since nx was chosen as above, there are m2, m3, m4

with the property: For each cover V? of 2(aia2a3«4, Mim2m3m4) by elements of 11

and each countable £C-4, there is a IFGW such that Wa7*0 or Ja lor some

a(E'K. In particular one may choose x2G2(ai • • • a4, Mi ■ • • m4) such that

XüG'UUü.
Continue this process, taking the first 5 members of each £,, i^s, at the

5th step. One can prove that x¿ converges to some x0G2 as in [2, Theorem 1 ].

Choose a Í/GH such that x0G U. Let N be an integer such that x,G U if

î = N. Let M he an integer such that Ua = Ja if

«GU{£,:î = jr+i.Jf + 2, •-•},

but aG'£iW • ■ ■ \JKM. Then define £ to be max(M, iV). If llr is the subset

of 11 defined at the £th stage of the induction, one sees that £GlLr for the

following reason: If Ua?¿0 or Ja, then aÇzKAJ ■ ■ ■ VJKm because x0G£

on the one hand, and M was chosen as it was. This gives a contradiction since

XrG £GU.r, and Xr was not supposed to be in Ullr.

Having proved Lemma 1, we now note that in order to prove Theorem 1,

it suffices to show that every cover 11 by basic open sets has a refinement of

the required type. Let V and £ be the sets in the statement of Lemma 1.

Arrange £ in a simple sequence, and let ai • • • a, be the first 5 elements of K.

Let Mi • • • m, be integers. For each FGf such that m,G Vai, i=l • ■ -5, and

such that Va = Ja for aG£\{«i ■ ■ -a,}, define V to be the basic open set

such that

iV')ai = m, i = 1 ■ • • 5

and

(V')a 'Va,        a* ai, i = 1 • • • 5.

Denote by 9, the set of all such V for FG"0 and integers Mi • • • n,.

The following assertion will now be proved: Let 9 = U" 9» and "et 2x

- (xG2: xa = 0 if aG'£}. Then for xG2* and each countable K'DK there

is a Í/G9 such that xG U and Ua = Ja if a£-K'\K.
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For suppose the assertion were false for some x£2x and some K'. Let

x'£2 be defined by

(*%

xa,    if a £ K,

1,     if a £ K'\K,

.0,     otherwise.

Since any t/£9 with x£ U has the property that Ua^Ja for some aEK'\K,

and since 9 has the relation to V that was described above, Ua = 0 for some

aEK'\K. Hence x'£'U9- However, this is a contradiction, since it is easy to

see that 9 is a cover for 2 because V is a cover.

Let fl be the first uncountable ordinal. For x£2x and ß <0, define counta-

ble sets Kß(x) C-4 and Uß(x)EQ inductively so that they have these proper-

ties: First, KEKß(x) ^Ks(x) if ß<5. Second, xEUß(x) and (Uß(x))a = Ja if

aEKß(x)\K. Finally, if (U¡(x))a9*Ja for 5</3, then a£^(x). Since, for

*£2ic, there are Ki of the Uß(x), it follows that there is a subset {ai • • • a,}

EK and integers «i • • • «, (depending on x) with the property: For un-

countably many Uß(x), 0<fl, one has

(Uß(x))ai = ni, i = 1 ■ ■ ■ s,

and

(Uß(x))a = Ja,        for a E K\{ai ■ • • a,}.

Denote this uncountable subset of 9 by 3C(x), where x£2x.

First, 3C = U{3C(x): x£2x} is a cover for 2. To show this, let y£2 and

define

Ky = {a:ya9¿0}\K.

Choose x£2x so that xa = ya if aEK. It follows that y£ Uß(x) for ß suffi-

ciently large, since Kv is countable and since, whenever (Ut(x))a9iJa and

aEKy, one has aEKß(x) for all ß>b.

Second, it is now possible to prove that 3C is the required refinement of It.

Let HiEX-, i= 1, 2, • ■ ■ , let XoEf\"Hi and let y<£/7,-. Assume that so is the

smallest integer with the property that i7<0£9»0 f°r some íz"¿0£3C. Let C be

a countable subset of A\K such that (y,)a = 0 if aE'C and i= 1, 2, ■ •

By the construction of 3C, i7,0£3C(2) for some z£2K. It will be shown

that {y<: *=• 1, 2, • • • } C Uß(z) lor ß large enough, where Uß(z)£3C(z). Note

first that for aEK, Uß(z)E3Q.(z), and i/s(z)£3C(z), one has

(Uß(z))a = (Us(z))a = (Hit)a.

Also, by the minimality of s0 and the construction of 9,

(yi)-i = (xi)ai = (y.,)«,,        if i S so,       for all/.
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Hence, for ß sufficiently large and £/3(2)G3C(2), each y,G £|s(z) because C is

countable and because, whenever iUiiz))aí¿Ja and aÇzC, one has aG£|s(z)

for ß > 5.

4. Completion of the proof of Theorem 1. It is sufficient to prove that a

closed subspace of 2 is not No-fully normal. The space £o will be chosen for

our purposes. Recall that £o is the set of xG2 such that, for any integer

m^O, xa = n for at most one aG-4. Obviously £oG2, and it is also a closed

subspace, as was observed in [4].

Not only will it be possible to prove the announced result, but also the

following stronger statement.

Lemma 2. The space F0 is not 2-fully normal.

Proof. For the cover W defined in the first paragraph of §3, let V be the

trace of W on £0. Suppose S is a refinement of "Ü by basic open sets such that

SiES,Si& andSir\S2?¿0 implySAJSiCVior some V£V. LetXiG£obea
point such that, for some nonempty, finite set £iG-4> (xi)a = 0 if aG-4\£i

and (x^a^O if aG£i-

Now I assert: There is a finite subset £2, £i $£2 QA, and a point x2G£o

such that x2 has the same relation to £2 as xi does to £1, (x2)a = (xi)a if aG£i,

and finally x2GSGS implies that (x2)a = 5a for some a£í¡\5i,

To prove the assertion, let SiGS be a set which contains X\. Let

£2= {aG^:(Si)a= (*i)«} W£i,

and choose any point x2G£o with the required relation to £2 and Xi. It is

easy to see that £2 properly contains £i, since S is a refinement of V. Suppose

x2G52G§. Note that, since 52 is basic, (S^a^ (x2)a implies (52)a = /a for

«G£2\£i. Hence if S2 does not have the required property, XiG52. However,

in this case XiG-Sif^Sü but no VG"0 contains SAJSi, since (5i)a = 0 implies

iSi)a = Ja. This proves the assertion.

It is clear that by replacing xi with x2 and £1 with £2 one may choose x3

and £3 in the above manner, and so on. Now the sequence {x,j which is so

chosen approaches some limit XoG£o, since (x,)a= (x,-4i)a for all aG'£.+i\£.-,

and since £0 is closed in 2. Suppose XoG^GS; then x,G-S for all i sufficiently

large. By the properties of {x,} and {£,}, x.+iG^ implies that 5a = (x,+i)a

for some aG£i+i\£.-. It follows that 5 is restricted simultaneously on in-

finitely many coordinates. Hence 5 is not open, which is a contradiction.

Corollary. £0 ¿5 almost i^o-fully normal and realcompact, but not 2-fully

normal. iSee [2] for the term realcompact.)

Proof. One may conclude that £0 is realcompact from the results in [2].

Note that this corollary improves [2, Theorem 4]. Also, the proof of the

corollary is more direct.
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5. Finite m. The case where m is finite raises several problems, as Mans-

field has observed. None of these are settled by the methods of this paper

except the question concerning equivalence of rrt-full normality and almost

m-full normality, m finite. It is possible to prove that these properties are

not equivalent for finite m by a much simpler argument than that of §3, if

one utilizes the theorems of [2], Lemma 2 of §4 of this paper, and the follow-

ing lemma. (Note that it is an open question whether almost 2-full normality

implies almost m-full normality, m finite, although the corresponding ques-

tion concerning m-full normality has been answered affirmatively by A. J.

Goldman. See [3].)

Lemma 3. Suppose m is finite and X2m is almost 2-fully normal. Then X is

almost (m+l)-fully normal.

Before proving Lemma 3, note that it does imply that 2 is almost m-fully

normal for all finite m. In fact, it was proved in [2] that the collection of all

the neighborhoods of the diagonal is a uniformity for 2* as long as s=fc<o.

Cohen discovered in [l] (see [3] for a proof) that the latter property is

equivalent to almost 2-full normality. Hence 2 is almost m-fully normal for

all finite m, but not m-fully normal because of the results of §4.

Proof of Lemma 3. The lemma is obvious when m = l, since X is horneo-

morphic to a closed subspace of X2, so suppose that it is true for rrt — 1, and

suppose X2m=(Z2)2m_1 is almost 2-fully normal. Then X2 is almost m-fully

normal. Let 11 be an open cover of X. Define

112 = {U2: U E It}.

There is a closed neighborhood ATof A in X2 such that A^CUll2. (A is the di-

agonal in X2. Hence A is closed in X2, and the last statement follows from

that fact that X2 is normal.)

Since X2 (and hence N) is almost m-fully normal, one may choose a re-

finement V of the cover of N by the trace of It2 on N so that 13 has these

properties: If Vi(~\ ■ ■ ■ (~\Vm9¿0, VtEV, and {pi ■ ■ ■ pm\ CU™ Vit then

there is a £/2£1l2 such that {pi ■ ■ • pm} EU2. For each point x£X, let Tx

be an open neighborhood of x such that PfCF for some F£*U. Since X2

(and hence X) is almost 2-fully normal, there exists a refinement 3C of

\Tx:xEX\ such that HiC\H29±0 and Ai£íz\£3C fort= 1 and 2 implies that

{hi, h2) ETX for some xEX.

To show that 3C is the refinement that is required, let |x0 • • • xm) be

m 4-1 points in U™ IL, where ¿7,-£3C and fl™ i/,-^0. By the relation of X

to {Tx:xEX} , there is for each i, 0 = î = m, a TVi such that {x0, x,j CP£-

Notice that (xo, x¿)£P£ and (x0, x0)£P^<, for each i. Hence 0™ 1^.9^0.

Therefore Uf^Xo, xi)} EU2 for some i/2£1l2, since each PfCF,- for some

ViEV. From this one may conclude that {xo • • ■ xm\ EU.
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Remark. I could not find a way to apply this simpler approach to Theo-

rem 1.
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