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1. Introduction. Let y(t) =x(t) +m(t) be a continuous parameter stochastic

process observed for 0 = i=P, the mean value being m(t)=Ey(t), and x(t)

being weakly stationary (see [7, p. 33]) and continuous in the mean, with

Ex(t) =0. The means m(t) are assumed to be of the form

m(t) = yipi(t) + 7î*î(<) 4--h yP<PÁt)

where 7i, • • ■ , 7P are unknown parameters and d>i(t), ■ ■ ■ , <pp(t) are known

continuous functions of /. We want good linear unbiased estimates

c =

Cj

{ cp)

of     7 =

7i

17PJ

One criterion used is the "naive" criterion of "least squares," viz. minimiz-

ing the expression

/.
\y(t) Z   CfPi(t)dt

with respect to c. The integral involving y(t) is here understood to be in the

sense of Cramer [3, Lemma 3]. Another criterion used is that of "minimum

variance," i.e. minimizing the error-covariance matrix E(c—y)(c — y)* with

respect to c.

The object of this paper is to derive, under certain assumptions, asymp-

totic expressions (following Grenander and Rosenblatt) for the error-matrices

of the least-squares and the minimum variance estimates, Cl.t and cm.t,

respectively, i.e. the expressions

(1.1)

(1.2)

lim DtE(cl,t ~ y)(cL,T — y)*DT,

lim DTE(cM,T — y)(cM,T — y)*DT
T->">

where the Dt are suitable non-negative definite norming matrices (see [7,

p. 235]). Following Grenander and Rosenblatt we shall say that cLtT is

asymptotically efficient if (1.1) = (1.2).

Our object is further to investigate whether a necessary and sufficient
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condition for the asymptotic efficiency of Cl.t can be derived, analogous to

one obtained by Grenander and Rosenblatt for the discrete-parameter case

(see [7, pp. 86-88, 233-245]).
The problem can be regarded as purely a problem of approximations. The

plan adopted in this paper is that of approximating by a sequence of discrete

parameter situations to the continuous parameter situation. Let

5= {fi, f2, • • • } be any denumerable dense set of time points in (0, £). Let

Sk={k,ti, ■ • ■ ,tk], and a)* be the set of observations \ytt\, »™1. • • • , *i

k = 1, 2, • • • . So £>kQ$>k+i for all k. For each SD* consider the corresponding

values of the regression functions <pi(t,), i=l, ■ ■ • , p; j=l, ■ ■ ■ , k; as also

the "least squares" and "minimum variance" estimates CL,sk, cM,sk (oí- [1,

pp. 86-88]), their respective error-matrices being denoted by esk, ESk. Also

denote the sample {yt}, 0 = f = £, by £>, the corresponding least squares and

minimum variance estimates by c¿,r, cm.t respectively, and their respective

errors by er, Et. The estimates cl.t, cm,t have yet to be defined. The next

thing to prove is that (at any rate for a suitable choice of the dense denumer-

able set S) Ci,st, CM,sk converge to Cl.t, cm,t respectively (in the mean square),

and their respective errors converge to er, ET.

The error-matrix Et will be shown to be nonsingular and continuous under

certain conditions (Theorem 1, §3).

These conditions will be shown to be satisfied in the case of certain purely

nondeterministic stationary processes (the "THGMn" processes of Doob [5]),

provided the regression functions are sufficiently smooth. It is interesting to

note that in the case of these special processes, one can follow a direct

procedure, mimicking a method due to Mann and Moranda [8], to show that

Et is nonsingular and continuous. However this last computation will be

omitted here.

Our assumptions for the final results are the following: the x(f)-process is

continuous in the mean; the spectral distribution function of the x(f)-process

is absolutely continuous, the spectral density/(X) being positive, continuous

and of bounded variation on (— », oo); the regression functions 0(f) satisfy

certain conditions analogous to those imposed by Grenander and Rosenblatt

in the discrete parameter case (see §5) ; the integral operator £ on £2(0, £)

with the continuous covariance function rit, t) for its kernel has an inverse

£-1 and that each of the regression functions <p is in the domain of £_1.

For convenience, henceforth the assumptions stated in the last paragraph will

be referred to as the conditions A. With these assumptions, we first obtain asymp-

totic expressions (in the sense of GR) for the error-covariance matrices er

and ET (Theorem 2, §6). With the same assumptions A, we next obtain a nec-

essary and sufficient condition for cl.t to be asymptotically efficient (Theo-

rem 3, §7).

The class of regression functions mentioned above includes the following

polynomial, trigonometric, and mixed polynomial-trigonometric regressions:
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(i) P(t) = f,

(ii) d>(t) = re"",

(iii) <K0
(f COS t/J.)

o « \   .    \,
(l" sin tp)

v = 0 an integer;

^ Oan integer; ^ any real no.;

v ^ 0 an integer; ¿i any real no.

2. The least squares estimate. We shall now define the "Least-Squares

Estimate." Clearly

/> T\ p\y(t) -¿Zed*
o   I y-i

if) dt

/> T p /» T_\y(t)\2dl- £cy       <t>i(t)y(t)dt
0 i—1       J 0

P /• r _ p n T_

- E ci I    <Pi(t)y(t)dt     }2 CiCj I    <bi(t)Pi(t)dt.
y-i     •' o >,y-i       «J o

The right side is equal to

/.T
\(y(t)\2 - c*z - z*c + c*Bc

0

where

Cl Zi

[Zp  J

f rT_ 1
<t>i(t)y(t)dt

J 0

\   JpU)y(t)dt
J 0

and B = ((fo<bi(t)<pi(t)dt)). The matrix B is assumed to be strictly positive

definite. Let P1/2 be its positive definite square root. Then (2.1) is equal to

a
/,T

| y(t) |2 + [P1/2c - B-li*z]*[Bli*c - P~1/2z] - z*Br1z.

0

We see that (2.2) is minimized for

£1/2C  =   £-l/2Zj

i.e.,

c = B-H.

Thus we conclude: The least squares estimate =cLit = B~1Z. It is easily seen

that Cl.t is linear and unbiased. Its error
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= eT = EÍcl.t

T

y)icL.T - 7)"

■((a*it)rit - r)Pjir)dtdr
»'

where rit — r) = £x(f)x(r).

Next define the sets 5* as follows. Let m be a fixed positive integer. For

each positive integer k define ek by: 2*-1M€¿fe=£, where (0, T) is the interval

over which the sample is observed. We take 5*= {0, «*, 2e*, •••,£} and the

dense denumerable set 5 is defined to be the union of all the sets Sk,

fe = l,2,
We know that [7, pp. 86-88] for Sk, the least squares estimate and its

error are given by

CL,sk = [*si4>sJ-1-i>SjlySi,

eSk = [Ssi^h^s^s^sJ*«****]-1

where í>st is the ikXp) matrix: <i)st= ((</>,(f.)y, t=l,

Rst is the (kXk) matrix: Rsk=((r(ti — ti); i,j=l, • •

vector of observations:

. *;j-i, P)),
k)), and ySk is the k-

ysk

{y(h))

[y(tk)l

It is easy to see that as ¿—> », cL,sk converges to cl,t in the mean square, and

esk-^eT.

3. The "Markov" or "minimum variance" estimate. Next, we shall con-

sider the minimum variance criterion. The fact that x(f) is continuous in the

mean implies that the covariance function r(t, t) is continuous. Now assume

that for every finite sequence Sn= {h, f2, • • • , t„] of time points, all the in-

verse matrices occurring in the formal definition of the Markov estimate (cf.

[7, pp. 86-88]) : [^¡.R^aJ-^t^VSn. exist- where *s»is *he (*X/0 matrix

((<f>i(ti); i = 1, • • • , h; j = 1, • • • , p)), RSk is the (k X k) matrix

((r(f, — fy); i,j=l, ■ ■ • , k)), and ySh is the ¿-vector

[y(ti)\

y(tk)

For the purposes of the present section, let S= {h, f2, ■ ■ • } be OMy de-

numerable dense set of time points in (0, £). Let Sk= {h, k, ■ • ■ , tk\ and

=D* be the sample {y<J, i=l, ■ • ■ , k; k=l, 2, ■ ■ • . So £>kQ$>k+i for all k.
We then know that (cf. [7, pp. 86-88]) for each £>£ there exists a unique mini-
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mum variance linear unbiased estimate (viz. the "Markov" estimate) cM,sk,

with error

Esk = t*«^*«»]" .

Clearly

ESk = ESk+1 = • • • = 0.

Hence there exists a limit matrix Ps = 0 of the sequence {Pst}.

Next we show : The error covariance matrix of any linear unbiased estimate

is =PS.

Let m* be any linear unbiased estimate based on the sample |y(0}>

0 = ¿=P. Say

*

m* =     •    .
'*

fnp.

Then, because of the continuity in the mean of the process, it is easy to show

that m* is the limit in the mean square of a sequence {¿u*} of linear unbiased

estimates based on finite sets of time-points, and we can assume these finite

sets of time-points to be 5;t, for some increasing sequence of integers {/*}. Let

the error-matrices of ¡jl* and m* be denoted by Sk and S respectively. Then

8k = Esik = Es-

Letting k—* » we obtain

8 = Ea.

From this we conclude: E, is independent of the dense denumerable set S: if

S' is any other dense denumerable set, Es = Es'. For by the preceding result

Ps'=Ps- But by the same argument Ps = Ps-. Hence Ps'=Ps = Pr say.

Next: the estimates {cMiSm} form a Cauchy sequence:

E(cM,sm — cM.sn)(cM,sm — cm,s„)* —» 0

as m, «—»». This is proved by using the matrix parallelogram law:

for all ¿-vectors x and y,
(3.1) *

E(x + y)(x + y)* + E(x - y)(x - y)* = 2Exx* + 2Eyy*.

We have only to take x = wm/2, y = mn/2 where we have set mk = cm,,t — y,

and use the fact that the linear unbiased estimates of 7 form a convex set.

From this it follows next that the sequence {cM,sk} tends to a limit Cm.s

in mean square. Clearly ET is the error-matrix of cM,s-

Furthermore, the limit vector cm,s is independent of the dense denumerable
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set S: Cm,s = Cm,s' where S, S' are any two dense denumerable sets. For, write

m for Cm,s— 7, and m' for Cm,s'— 7- Then using the convexity property of the

set of linear unbiased estimates of 7 and the above parallelogram law (3.1),

we easily obtain

(m + m'\ ( m + m'
—)(—

and

( m — m'\ ( m — m'\*

*'+*(-r-)H-) "£"
Hence

£(mî — m') im — m')* = 0.

This shows that m = m', i.e., cm.s = cm¡S'=cm.t, say.

To sum up, we have proved:

Lemma 1. There exists a unique linear unbiased estimate Cm.t with minimal

error-covariance matrix Et. We shall call Cm.t the Markov estimate based on the

sample {y,}, 0 = f=£

For the final results of this paper it is essential that the error-matrix Et

be nonsingular and continuous. We therefore want a reasonable condition

which will ensure that ET will be nonsingular and continuous in 7". The fol-

lowing theorem is to this end.

Theorem 1. Suppose the conditions stated earlier at the beginning of this

section hold, and suppose, for any £>0 the integral operator R on £2(0, £) with

the continuous covariance function rit, t) for its kernel has an inverse R~l and

that each of the regression functions piit) is in the domain of Rrl. Then the error

matrix ET of the Markov estimate will be nonsingular, and continuous in T.

Proof. Consider the matrix

*    —1       —1

ET =   lim   i^NkRfft^Nk)    .
!fk--

It has been shown that the matrix

(*w»ifo»*w»)

decreases as Nk increases, i.e.,

j   = ET

*     -1

^NkRffk^Nk
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increases as Nk increases. Since these error-matrices for the discrete situations

are nonsingular (by virtue of earlier assumptions in the paper) it is enough

to prove that with the assumptions of the proposition

lim   $NkRifk$Nk is finite.

We shall show that the diagonal terms in this limit matrix are finite.

Consider a partition of [0, P]

0 = to < ti < t2 < ■ ■ • < tNt = T

and suppose the subintervals A, = (/j_1, ti) are of the same length b=T/Nk.

Consider the integral operator P^t with the piecewise constant kernel with

values R(ti, tj) on A.XAy. Clearly RNk-^>R in the norm since

p T   pT
l|P^-P||2= \Rs> - R\2dtdr

/.TpT
|P^-P|

0     •'0

=   £    f f    |P(/i,^)-P(/,r)|Wr
i',y=i  J A.XAy J

< e2  ¿    f f dldr

= e2P2-*0 as A'*-» ».

The operator Pjvt takes a function in P2(0, T) into a step function having con-

stant values on the intervals A,-. In particular a function d>Kk which is piecewise

constant:

<t>Nk = <t>> on A,-, i = 1, ■ ■ • , Nk

is carried over by RN into a step function

Xl*k  =  RNkpNk

and

XNk = xy (constant) on Ay, / = 1, • • • , Nk.

For such a step function, the inverse operator exists (by virtue of our earlier

assumptions) and

where

4>Nk =   P.Vt XNk

^ R*\(.i,j)
<t>ffk = Is -:-Xi on A,-.

y-i

Also
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(RifkpNk, pNk) =   2J -;-#« 'Pi s

Nk

=   2J PiRifk(i,J)Pi-

Now let <p be one of the regression functions in the original problem; let <j>Nk

be the step function obtained from <p as follows:

<pNk = <P(ti) on A,- = iti-i, U),

(i - 1, • • • , Nk).

| A,-|   =di = S,

Then

Nk

iRNkpNk, pNk) =  2J P(ti)RNk(ti, t,)p(t,)&2.
i.i-l

Using the spectral theorem for self-adjoint operators [l, pp. 188-190] we can

write

Xo\((£x     pNk,pNk)
-00

Xy      6j
1

where Xy *' are the eigenvalues of the operator £>t and hf^ are the (positive)

jumps of bounded monotone nondecreasing function iE^k)<ptfk, <t>Nk). Simi-

larly

(RP,P)  =  ZXy5y
i

where Xy, 5y have similar meanings w.r.t. £. Clearly

Xy       5y->   2JhSi.
**—   y

Since R¡ftl, R~l are assumed to exist, and the functions pNk, <f> are, respectively,

in the domain of R^l, Rr1,

,D-i. v       v>     1    tW«>   .
{KNkpNk, pNk) = 2j —rr: °i      < °°,

y   V *'

(£-'0, *) = £—«/<*.
y     Xy
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Since RNk—>R in the norm the set of the eigenvalues of Rn tends to the set

of eigenvalues of P. Therefore

— Si-► 22 — 8i
i     X** y*—      y      Xy

provided the r.h.s. is convergent. But the r.h.s. is actually convergent since

(Ä-V, P) = }2—8i< cc.
X;

Thus

(R~Ñk<Ptfk, 4>nÙ -*(R  P, </>)<» •

This is true for each one of the regression functions. Hence the proposition.

The continuity of ET in T follows.

Example. As an example consider the case of the purely nondeterministic

process with spectral density/(X) = 1/(14-A2), r(t, t) =r(t — r) =e_l<_T|. In

this case the linear integral operator P with continuous kernel r(t — r)

z=e-\t-r\ [s known to have an inverse R~l (see for instance [4, pp. 371-381]),

viz. the differential operator

d2
1-

dt2

plus boundary conditions at the end-points 0 and P. If the function <b(t) is

sufficiently smooth, then

Rr^d) = P(r) = p(r) - p"(r) + {0(0) - *'(0)}r(r - 0)

+ {<b(T) + p'(T)}r(r - T).

To show that Rp(r) =<b(t), we make use of Aronszajn's theory of a "reproduc-

ing kernel" Hubert space [2]; that is, a Hubert space of functions/(x) de-

fined on a set E say, with a kernel K(x, y) which satisfies the "reproducing"

property :

(f(x),K(x,y))x=f(y)

where the inner product on the left hand side is the inner product of the Hu-

bert space, y being kept fixed. The class of functions /(x) having the above

property is generated by all the functions of the form 22"-i akK(x, yk). The

"norm" of such a linear combination is defined bythe quadratic form

J Ê «kK(x, yk)
2 n

=   22 <*iäkK(yj, yk).
i.k-l
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In our example, the kernel is r(t — r) =e~u~T\ the functions are continuous

functions on [0, P], and the inner product is the integral

(<t>, P) =   |    P(r)W)dr.
J o

Now, if q>(t) is sufficiently smooth, then q> has the inverse image under R:

P-VW = P(r) = 4>(r) - P"(r) + {d>(0) - 4>'(0)}r(r - 0)

+ {¿(T) + d,'(T)}r(r - T)

and hence <b is in the range-space of the operator P. It can be shown that a

continuous function which is in the range-space of the operator R has the

"reproducing" property mentioned above. Thus, finally, for sufficiently

smooth functions <f>, p:

(R-lP, P)

/.
[p(r) - p"(r) + {<b(0) - p'(0)}r(r - 0) + {p(T) + <b'(T)}r(r - T)]p(r)dr

o

-   f   P(r)P(r)dr +  f   p'(r)P'(r)dr - <b'(T)P(T) + <p'(0)P(0)
Jo "0

+ {p(0) - p'(0)}   f   r(r - 0)P(r)dr + [*(T) + p'(T)}   f   r(r - T)P(r)dr
Jo Jo

=   f   p(r)P(r)dr +  f   p'(r)P'(r)dr - P'(T)P(T) + P'(0)P(0)
Jo Jo

+ {p(0) - p'(0)}p(0) + {p(T) + P'(T)}P(T)

=   f   P(r)P(r)dr+  f   P'(r)P'(r)dr + 0(0)^(0) + P(T)P(T).
Jo Jo

The error-matrix ET is nonsingular in this case. This result agrees with the

ones obtained by Mann and Moranda (Sankhya [8])' and by Grenander

(Thesis [6]).

In the case of the general "elementary Gaussian" purely nondeterministic

"THGMn" process, we know that the integral operator R has an inverse P_1

(see for instance [4, appendix]). Aronszajn's theory of "reproducing" kernel

Hubert spaces can be used in this case also, and we conclude that in this case

too, the error-matrix ET is nonsingular and continuous in P.

4. The approximation to the spectral density /(A) by spectral densities of

discrete processes. Henceforth we shall use the discrete processes £>m which

are already used in the discussion (§2) of the least squares estimate: Let « be

a fixed positive integer. For each positive integer m, 3)m is defined to be the

process {y<-«„|, k = 0, ±1, ±2, ■ ■ ■ , em being given by: 2m_1«€m=P.
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We now want to consider the procedure of approximation to the given

spectral density/(X) on (— », ») by a sequence of "discrete" spectral densi-

ties /m(X) corresponding to the discrete processes 2Dm.

For a while we shall digress from our present problem and consider an

arbitrary continuous parameter weakly stationary process x(f), — » <f < »,

continuous in the mean. Let £(X) be the spectral distribution function of this

process. Consider a sequence

• • • , z-i, zo, Zi, • ■ •

of independent positive stochastic variables, identically distributed. Although

the discussion of this paragraph and the next two paragraphs is known (cf.

[7, pp. 58-59]) it will be briefly repeated here for convenience. Put

t, = tr-i + z„ v = • ■ ■ , — 1, 0, 1, • • • .

To determine the probability distribution of f„ we can fix f0 as 0 say, or we

can let it have some arbitrary probability distribution. Then

y, = x(f„), v = • • • , -1, 0, 1, • • ■

is also stationary with covariances

Eyyy„ = £x(f„)x(/„) = £[£x(f„)x(f„) | t„ f„ fixed]

= £r(,_,M = £ f    exp{*(/, - f„)x}d£(X)

£exp{î'(f„ - f„)X}d£(X)
-00

[*(±X)]"-"'d£(X)

where 0(X) =EeiU, the + or — sign being taken according as v^u or v<a.

To determine the spectrum of the new y„-process define

rx    1-1 al2
£x(a) = j--{~~ dl

J-r I 1 - ae~ll\2

if \a\ <1, and for |o| =1, P\(a) is defined as the distribution function on

(—r, r) having all its mass at the point \ = d where a = eiS, —r<d^r. Thus

for fixed a (| a\ = l)£x(o) is a distribution function in X ( —7r<X=7r). Also

/ta', v > 0,e"HPM =  {
U', v < 0.

Define the function G(X) as:
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G(X) -   f   Fx[p(x)]dFix).
*J   —CO

G(X) is well-defined since |#(x)| =1. Clearly G(X) is the spectral distribution

junction of the {y,} -process.

Let a = A£, where ££ = 1 and h>0 is a parameter, and consider the limiting

behavior of G(AX) as the parameter A—>0. The characteristic function of

G(ÄX)

»t/A

w/h

Then it is known (cf. [4, p. 59]) that

*lh

= f     e^dxG(h\) =  f  e{*ikdGi\).

/T/A n oo

e^HhGQîK) -* I    ei"Id£(x)
-X/* «^ -00

as h—»0.

Now returning to our original problem of estimation, consider again the

processes {yQ)} and {x(f)}, and specialize the situation of the preceding

paragraphs of this section as follows: The new assumptions (a) and iß) on

the spectral distribution function will be introduced progressively. Choose

fo = 0, and z = A£, h>0 being a parameter and £=1 (or £ = 1 with probability

1). Then

0(x) = Eeixz = Eeizhi = eixh.

Let £x(o) be as before, and consider for fixed X, £\(o) as a function of o.

Now (with a = e{>) for — 7r<X=7r

fO if X < 6,
Pxie") = 4

\l if X = 0.

Therefore lor fixed X (—ir<X = ir) and with <£(x) =efa'1

— 7T + m2it             X + m2it
1, -<x =-,

h h

X + m2t              r + n2w
0, - < x = -

h h

£x [*(«)] =

where m is any integer positive, negative, or zero. The assumption (a) is as

follows.

(a) Now let £(X) the spectral distribution function of the x-process be

absolutely continuous: FiX)=f*„fiu)du, with/(ju)=0 and/££i( — », »).

Thus in this special situation
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G(X) -  f   Px[p(x)]dF(x) =  f   Px[<p(x)]f(x)dx
J -CO J —X

- Z  I        yo)*- I   ^T Z/(——)U

Thus G(X) is seen to be absolutely continuous on ( — r, it) with spectral

density

1     "      /X4-«-27r\

The series clearly converges for almost all A£( — it, w). Now consider G(h\)

with h>0. Clearly

dxG(h\) = hG'(h\)d\ = I    Z /(x + —jIdA

= /»(X)áX

say, with the notation: fh(\) = E"»_M/(A4-«.27r/A). Thus in this special

situation, the relation

/It Ik y» 00
eiy*dxG(h\)-> I    eiyidF(x) for every y,

-t/7i »-«0   «/-oo

which was obtained earlier, becomes

/• Tlh /• oo

I       eivXfh(\)d\-> J    eivxf(x)dX for every y.
J-tlh »-0   •'-oo

Now introduce the further assumption:

(/3) The spectral density /(A) is continuous and of bounded variation on

(- », «)•
The condition (/3) is, if we recall, a condition which ensures the validity

of the Poisson summation formula (cf. Zygmund [9, p. 37]).

With these additional assumptions (a) and (8), the following properties

of the family of functions {/a(A) } are established. (It will be understood that

h>0.)

Lemma 2./a(X) is periodic with period 2ir/h, and further {fhQi)} is a family

of functions of uniformly bounded variation on any finite interval (a, b). More

precisely, given any finite interval (a, b), there exists ho>0 such that for 0<h

= Ao,/a(A) is of uniformly bounded variation on (a, b). Also for fixed h>0,fhQi)

is continuous.

The proof of this is just the proof of the validity of the Poisson summation

formula (cf. Zygmund [9, p. 37]).
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Lemma 3.

iT/»

r/h

This has been established already.

Lemma 4.

,x/A

/rlh n oo

eivXfhi\)d\-> I    eivxfix)dx for every y.
-x/h *—0   J -oo

/.
/x(X)dX < K, K being independent of h.

-T/h

For, taking y = 0 in Lemma 3, we obtain

r M\)d\ = f /(x)dx < k.
J -T/A »'-OO

Lemma 5. £or OMy numbers a, ß ifixed)

f   ]fh(\) - /(X)]dX -► 0 oî h -» 0.

Proof. Since

,ir/A

f      /„(X)dX =  f   /(X)dX
«J -t/A J -00

therefore (remembering that /"M/(X)dX< »)

f      i/*(X) - /(X)]dX =   f /(X)dX -»0 as h -> 0.

Let a, |3 be fixed numbers and h > 0 small enough so that (a, Ö) Ç ( — t/A, 7t/A).

Then

0 =  f  [fhi\) - /(X)]dX =  f      [fhiX) - /(X)]dX ^0       as h -* 0.
Ja J-rlh

Lemma 5 follows.

We now use the following simple result from the theory of Lebesgue

integration : If </>„(X) = 0 for all n, on a measurable set E, and fE <£„(X)dX—>0 as

M—>», then (<f>„(X)} converges in measure to 0 (but it is not true that <pn(\)—>0

a.e.). Making use of this result, we immediately obtain the following.

Lemma 6. With the hypotheses introduced before the last lemma, there exists

a sequence {hk\ converging to 0, such thatfhk(k)-+f(k) as hk—>0,/or almost every

X.
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Next, just as a "collapsing" of/(A) to obtain/j, (A) was done above, so also

a similar "collapsing" of the Z(A)-process can be done. This, however, is not

needed in the present context, and hence will not be discussed here.

5. The regression spectrum. Now it is necessary to state the assumptions

about the regression functions. They are (l)-(5) below.

Assumptions about the <b-functions:

(1) Let

*r    =     I     \pr(l)\2dt, r = 1,2, • ■ • , p.
del.   J 0

Then <p(r—> °° as P—> », r — 1, • • • , p.

(2) ^+h/^Ç-^l as P-+°o, for any fixed h, r= 1, • • • , p.

(3) 5¿m(J* ^ + A)^)á/)/(í)^^))1/2

exists for h>0 and =Rn<-r,*), say; 1 ̂ r, s = £.

Certain consequences will follow from these assumptions, just as in the

discrete case. To deal with negative h, first put <j>T(t)=0 for i<0, and then

define Rh'3 for all real h by (3).

Now for Ä = 0, substituting u for t — h and using the fact that <pr(t) =0 lor

t<0, we have

/> T _ /» T-k_
Pr(l - h)<b.(t) dt I       d>,(u + h)<pr(u)du

0 J -h

CT_
I    d>,(u + h)4>r(u)du

J 0

(4><,r,4>«)1/2

T

/*.(«0

+   h)pr(u)dt
(^T-k^T-H)11*

($«A4.«A)"2 (^^y2

Taking limits as P—>oo and using the "slowly increasing" character of «l^'

(see (2)) we obtain

P_ä    = [Rh '  ]  ; i.e., R-h = Rh (the adjoint).

Next let a be an arbitrary column p-vector, and consider the quadratic form

""* = "**->" = rZ .S (Í^[/o   *Át + *m +**]&$& '

This relation is proved using the slowly increasing character of &$■ Let k be

an w-vector, m an arbitrary integer. Then
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i
df = 0.2~2  ka,-X = lim    I     \2~1        '.',, <K(f + »0

Hence a*£a is a non-negative-definite sequence. It follows that

/oo
eihXdM(\)

-oo

where M(X) is a bounded nondecreasing hermitian matrix-valued function.

Assume that £0 = Af(») — M(— ») = M is nonsingular. The matrix func-

tion M(X) is called the spectral distribution function of the regression functions.

Now we introduce our next assumption about the regression functions.

(4) For any e>0, the corresponding "discrete" regression functions piint),

m = 0, 1, 2, • • • ; i= 1, ■ ■ • , p; satisfy the conditions of GR (see [3, pp. 233-

235]), and the spectral distribution function M«(X) on ( — r/t, r/e) obtained

asymptotically for this discrete situation (see [3]) converges to the spectral

distribution function M(X) on (— », »), which is obtained in the continuous

case (see (l)-(3)). The matrix distribution dM(K) will be assumed to have no

mass outside a finite interval i~A, A), and for r/e=A, the distribution

dMt(K) is assumed to be the same as the distribution dM(K).

Next consider the discrete situations obtained from the continuous param-

eter situation by restricting our consideration to the values of the regression

functions at the time points ke, k = 0, ±1, ±2, • ■ • , where e is chosen to run

through the sequence of values e* (tending to 0) such that/et(X)—>/(X) a.e.

The existence of such a sequence has been established in Lemma 6. The

following lemma is now needed.

Lemma 7. Let the assumptions and the notation be as in the preceding para-

graphs of this section. f(K) is assumed to be positive and continuous and of

bounded variation on (— », »). {e*} tending to 0 is the sequence mentioned in

the last paragraph. The integrals

/rltk /» r/tk J

f.t(\)dM.t(\), ——-dMtki\),
-w/tt J-Tin J'kW

C fi\)dMi\), r —dMÇk),
J -oo J -oo y(X)

all exist. Contention: as e*—»0

(a) fT 'h U\)dM.t(\) -* f   /(X)dM(X).
J -r/n «7-00

/»•/«*      i /* °°    1—-dM(t(X)-+ — dMiX).
-w/n /«i(X) ^ -«o /(A)
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The proof of this lemma will be omitted. The last assumption about the

regression functions is the following.

(5) For any ek as above, and corresponding 2D* (§2), define as in [7,

p. 235]

D.Nk.Sk

(*Nk,Sk)

0

0

(4vt,st)    J

the subscript uSk" having the same meaning as in §2. For 2D define

0

DT =

(¿y12

L   o i*m
We assume that

1/2 -1

(k    DNk.SkDT   ■ I (the identity matrix)

as P—> », uniformly w.r.t. ek.

6. Asymptotic expressions for the error-covariance matrices. We shall

now derive asymptotic expressions (in the sense of Grenander and Rosen-

blatt) for the error-matrices eT and ET, under the conditions A (see Introduc-

tion).

Let (0, P) be the interval over which the process {yt} is observed. Divide

this interval (0, T) into « equal parts. Define the sequence {e*| by: 2*-1«e*

= T ( = Nkek, say where Nk = 2k~1n). Out of this sequence {e*} there exists a

subsequence, which again we shall denote by {«*}, such that/,t(A)—>/(A) a.e.

(§5), and henceforth we shall consider only this subsequence {«*}. Denote by

D¿ the discrete process {x(mefc)}, m = 0, ±1, ±2, • • • . The process D£ has

the spectral density g.t(e*A) on ( —tt/í*, ir/ek). gtt(A) is given by

1     "      /X + «2tt\
<.»(x) = - Z/(-)•

«*  n—oo     \       e*       /

From the spectral density /(A) on (— »,  oo) was also constructed another

spectral density/<t(A) of a distribution on (—w/ek, Tr/tk). This was defined by

fnOO =   22 fU +
(n2ir\

and

í*g.*(«*X) =/«i(X).



1961] A REGRESSION PROBLEM 367

Now/<jt(X) is continuous on i—r/tk, r/ek). Also/€Jfc(X)>0 on i—r/tk, r/tk).

Therefore gtkiekh) is continuous and positive on i—r/tk, r/ek). Thus both the

spectral densities/et(X), g«t(e*X) satisfy the conditions of [7] for the discrete

case. For each ek and corresponding SD* (§2) and "discrete" regression func-

tions (piinek), define Dffk,sk and Dt as in the last section. Clearly e\/2DNk,sk

—>£r as €*—>0. Now for £>k we have the asymptotic relations (cf. [7, pp. 237—

240]).

-i      fT/<* -i
DNk,skekDNki3k ~ M,k 2r I       g<t(-e,fcX)dAflt(X)M«t ;

J -T/«t

ri rTltt     i ~Tl
D„k,SkEkD„k,Sk ~   - I —- ¿if i4(X)      ;

L2fl-»/_r/t4  g«t(—«*X) J

or

1/2, 1/2 -1 f Tltt -1

«*' DNk,3kekDNtt,kek' ~ Af,t2T I        /.»(—X)dAf«t( — X)Af,t ,

1/2 1/2    ri fx/,i     i "|_1
Ct   DNk¡SkEkDNk,Skík    ~   — I ——— dMfJt(-X)       .

L2rJ-r/tk   /«t(—X) J

If we let i*—»0 in each term on the right side, we obtain, respectively:

M~l2r f   f(-\)dM(\)M~l,
J -a,

Now we want to change the order of limits: we want to let' tk—»0 first and then

let £—>», and show that we still obtain the same limit, in each case. The

situation can be essentially explained by considering double sequences of

numbers {amn\ and {bmn\ such that

amnbmn —* cm > 0}
M

for each m,

amn

bmn-

an-

a„ > 0}

bn> 0

oo

and

for each m

0 < cm -* c > 0.
m
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Without loss of generality we can take cm= 1 for all m, and c= 1. The condi-

tion (5) of §5 amounts to the following

a"">      . ...
-> 1        uniformly w.r.t. m.
an   n

amnbmn -* 1       for each m
«

Then

implies that

anbmn —» 1.
«

This means a„~l/om„. However, the rate of growth of a„ does not depend

upon m at all, i.e., is uniform w.r.t. m. Hence ff„~l/ô„, i.e.,

»
anbn —* 1.

This justifies the change in order of limits.

In terms of the matrices Dt, er, Et, the last result amounts to the follow-

ing:

Lemma 8. For any fixed To>0, and the sequence {mTo}Z-i,

lim DmToemTllDmT, = M~l2ir f   f(-\)dM(\)M~\
m->oo J-co

lim DmToEmToDmT„ = 2w\ f    --dM(\)\    .
B1-.00 L J -oo  /(A) J

Here we note that ET, er, DT are continuous functions of T and that DT-+ »

as T—> oo. Again, it is simpler to consider first functions ar and i>r of a variable

P (0<P< oo ), where ar, br are both continuous functions of P, and or| «

as P—> «j. The above lemma can be restated for such ar, or as:

Lemma 8. For any fixed To>0 and the corresponding sequence

{mPo/m-i, lim amT0bmT0 = 1.
m—»oo

ATow we want to prove that the last result implies :

lim arbr — 1.

Now first let { P„} "_ Y be a sequence 3 P„ f «.

Then for any P„, 3 integer m 3
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mTo = T„ < im+ 1)£0.

Let

So

or.

OmTn

mTo + hn = Tn-

amT0      amTç+hn        or„       omr0+m

amT0 OmTo OmT0 Omr0

< 1 + £ say,    where   £ —> 0.

= l + n    where    r¡ —> 0 as m —-> » .

This implies

aTn->  1
omr„

where the positive integer m is as defined above. Or

dmT„ ->1.
«T.

Similarly

Thus

Lemma 9.

O(m+i)r0-► 1.
or„

or
lim - = 1,
r^» a„r„

Or
lim -= 1,
r->« O(„+i)r0

where for any £>0, m£0= £<(m + 1)£0.

Now from Lemmas 8 and 9

Lemma 10. Taking any fixed £o>0,

lim oronr„ = 1,
r->»

where

nToûT < (m+ l)r0.
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Similarly

lim arô(n+i)r„ = 1,

where

nTo^T <(n+ 1)P0.

From this follows

Lemma 11.

lim arbr = 1.

Since arbnTo—»1 therefore ar~l/0n7v However, the rate of growth of aT

is independent of Po, i.e., is uniform w.r.t. P0. Hence ar~l/or, i.e.,

a^Or-» 1.

This proves our contention.

Thus finally we obtain

Theorem 2. Under the conditions A, as T—»°°

/OO

/(X)<Plf (A)Jf-1,
-00

P>rPrP>r-> 2tt     f     -dM(\)
LJ-oo/(X)

7. Elements of the regression spectrum. The notions of "regression spec-

trum S" and "elements of regression spectrum" are defined exactly as in the

discrete case (see [7]), and, by exactly the same arguments as in the discrete

case we obtain the following theorem. Our basic assumptions are the condi-

tions A of the Introduction.

Theorem 3. Let the assumptions be as in the past paragraph. Then the least

squares estimate Cl.t is asymptotically as efficient as the Markov estimate cm.t

iff the spectral density is constant on each of the elements of S.

The class of regression functions mentioned above includes the following:

(i) d>(t) = t", v = 0 an integer;

(ii) <b(t) = t"eu", v = 0 an integer; n any real number;

It' cos tp.
(hi) p(t) = < , v = 0 an integer; \i any real number.

U' sin tu

The calculations are entirely analogous to those in the discrete parameter case

(see [7, pp. 245-247]).
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