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1. Introduction. We are concerned here with a conjecture made by the

author in a previous paper [l ]. We prove this conjecture for real-valued func-

tions and demonstrate its use in the theory of Toeplitz determinants and in

harmonic analysis.

Let/(0) be an integrable function on — 7r=0=7r with Fourier coefficients

Ck, i.e.,

(1.1)

and for every w = 0 let

(1.2)

/(0)~   22 ckeik>,
k-oo

D,(f)

Co      C-l

C\      Co

C-n

C-n+1

Cn-1 • Co

Finally, if Dn(f)^0 lor »£0, let for m = 1

Dn-i(e-»f)
(1.3)

and

(1.4)

«,= (-!)-■
Dn-l(f)

».-(-!)•
Dn-i(eief)

Dn-l(f)

We now state the conjecture.

Conjecture. Let/(0) be a bounded, measurable function on — 7r=0 = 7r

and let Dn(f)9£0 for all » = 0. Then, log/(0) is integrable and has an absolutely

convergent Fourier series if, and only if, 2Z|an| < °° and ]C|/3„| < °°.
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If/(0) is real-valued, then c_fc= ck and p\, = a». We consider only this case

of the conjecture in this paper. However, our proof is more general than this

special case in two ways. In the first place, two steps of our three step proof

are quite general. Only the third step of §7 seems missing from the proof of

the general conjecture. In the second place, the methods show a much

stronger connection between the convergence properties of {«„} and {ßn]

and the Fourier series of log/(0) than is stated above. Let v{n) — 1 he an even

function of the integer n such that vin) =v(mî)î'(m — m) for every n, m and

such that p(m)/mx—»0 for some X = 0. In the notation of (1.1) let

(1.5) Ml»-   Ê v(n)\cn\,
n——co

and set

(1.6) ||«||, = f>(»)|«.|.
n-l

Then, our main theorem is the following:

Theorem 1.1. Let fid) be a real, bounded, measurable function on —r —6 =7r

aMd let D„if)^0 for all n. Then, log/(0) is integrable and ||log/||, is finite if,

and only if, \\a\\, is finite.

According to the Wiener-Lévy Theorem (see §2.c) if /(0) is a positive

continuous function, then ||/||„ is finite if, and only if, ||log/|l, is finite. More-

over, £„(/) >0 if fid) is positive. We can thus state an important corollary to

Theorem 1.1.

Corollary 1.1. Let fid) be a positive, continuous function on — r^d¿r.

Then, ||/||„ is finite if, and only if, \\a\\, is finite.

We turn now to a brief discussion of possible applications of Theorem 1.1.

2. Applications. For convenience we consider in this section only the case

fid) >0. Szegö [3, Chapter II] has defined a set of polynomials #»(z) of degree

m(m = 0) with positive leading coefficients such that

1   c*
(2.1) —       <t>nieie)$mie-«)fie)de = 8n.m.

2rJ _t

It is true that \an\ <1 for all n (see [2, §4]), in case/(0) is positive, and we set

(2.2) kl = f[(l- [«ml2)-1-
171=1

(a) A difference system. Let the polynomial wn(z) of at most degree m in z

be defined by
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(2.3) un(z) = —— z-^z-1),
(co)112

where kn/(co)in is the positive square root of kn/co>0 and where #„(z) is the

polynomial whose coefficients are the conjugates of the coefficients in <pn(z).

In [2] it was shown that un(z) and an are related by the difference system

(2.4) un(z) — un-i(z) = aHznün(s~1), Mo = 1/co.

In fact, since \an\ <1, (2.4) uniquely determines un(z), which in turn deter-

mines the polynomials <pn(z). Thus, we have an alternative approach to poly-

nomials orthogonal on the unit circle using (2.4) and starting with a given

sequence {«„} with \an\ <1. It was also shown in [2] that if {«„} is given

initially with |a„| <1 for all « = 1 and ||a||» finite, then there exists a function

f(0)>0 with respect to which <bn(z) defined by (2.3) and (2.4) are orthonor-

mal. Theorem 1.1 now gives a more or less complete answer to the question:

what convergence properties of f(6) and of {a„} are equivalent under this

correspondence ?

(b) Asymptotic behavior of Dn(f). For the moment all of the functions

f(8) will be such that log/(0) is integrable on — 7r = 0 = 7r. We introduce the

notation

»

log/(0)~  22 dmeim>,

G(f) = expi^-j'T log f(8)dd}

Szegö [3, p. 76] has proved the following theorem concerning the asymp-

totic behavior of Dn(f).

Theorem (Szegö). If f(8)>0 and if f'(8) satisfies the Lipschitz condition

(2.5) \f'(0i)-f(ei)\ <K\Bi-e2\y, 0<rSl,

then there exists a finite limit

D (f) (  °° \

In a subsequent paper Kac [4] proved this theorem in the case that the

Lipschitz condition is replaced by a moment condition 21^*1 < °°. In §9,

we find the exact conditions on the {an} sequence in order that Dn(f)/G(f)n+1

possesses a finite limit. As a corollary we will deduce the best possible theorem

of the Szegö type with a moment condition.

Theorem 2.1. Letf($)>0 be continuous and let
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(2.7) E\k\Ui\ck\<<».
—00

Then, there exists a finite limit

D if) ( °° }
(2.8) lim-^—- = exp\22™\dm\2\.

n->» Lr(J)"'ri l_m_! ;

(c) A connection with the Wiener-Levy Theorem. The proofs given below

will imply certain properties for the polynomials <pn(z) which are interesting

when considered in the light of the following classical Wiener-Lévy Theorem

(see [5, p. 245]).

Theorem (Wiener-Lévy). Let g(d) be such that \\g\\, is finite and let piz)

be an analytic function regular at every point of the range of g(0), — 7T=0=7r.

Then, ||^(g)||, ¿s also finitei2).

In addition to the mild similarity between the above and Corollary 1.1,

there is the following fact which says the Wiener-Lé/y Theorem is only

loosely connected to the use of Fourier series in defining the norm (1.5).

Theorem 2.2. Let fid) >0 be continuous and such that ||/||„ is finite, and let

{cpmiz)} be the Szegö polynomials associated with fid). Let g(0) be an integrable

function with the following expansions in terms of em and cpkieie) :

00 CO

(2.9) g(B) ~ £ Gke™ ~ 22 gkPk(ei6)
—CO —00

with <p-kieie) = c}kie~ie). Then, 22v(n) \Cn\ < °° if, and only if, 22v(n) | g» I < °° •

In particular Theorem 2.2 states that the class Ctv of functions with finite

norm [|/||, can be defined in a variety of ways. It also states that the Wiener-

Lévy Theorem is valid if the norm in (1.5) is replaced by a similar sum using

the coefficients in the expansion in terms of Szegö polynomials 4>m(z) of any

sufficiently nice function /(0).

§§3 and 4 consist primarily of preliminaries, while §§5 through 7 each

contain one step of the proof of Theorem 1.1. Finally, we consider the ap-

plications in §§8 and 9.

3. Properties of polynomials. In this section we summarize some proper-

ties of polynomials associated with/(0). For details the reader is referred to

[2]. We will use the notation introduced already in (1.1)—(1.6).

Every integrable function/(0) with £„(/) ^0 for n = 0 determines uniquely

(to within a plus or a minus sign) two sequences {<pn(z)} and {pn(z)} of poly-

nomials, called Szegö polynomials, such that

(') Actually it is necessary that ^(2) be analytic at every point of the range of the function

defined by the absolutely convergent Fourier series of g(0).
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(i) <bn(z) and ypn(z) are polynomials of degree « in 2 and 1/z, respectively,

with equal leading coefficients,

(3.1) (ii) - ÇTPn(z)pm(z)J(8)dd = 8n,m, (z = e").
2ir J -T

If/(0)èO(^O), then Dn(f)>0 and <p„(z) has no zeros in \z\ =1. Moreover,

the coefficient of z~m in pm(z). for real/(0), is the conjugate of the coefficient

of zm in (pm(z).

For the an and ß„ of (1.3)-(1.4),

(3.2) kl =■ Û (1 - «dS»)"1 = Co °*~f^ >
m-l Dn(f)

and amjSm^l for all w = l. We define polynomials wn(z) and n„(z) by

M"(z) = 7*^2zn^(z)'

(Co) '
(3.3)

Kn

»n(z)   = - 2~n4>n(z),
(Co)1'2

where A„/(c0)1/2 is one of the two square roots of kn/c0. The leading coefficient

of <bn(z) and of \pn(z) is A„/(c0)1/2. It is understood that once kn/(co)in has

been chosen as a particular one of the two square roots of D„_i(/)/£>„(/), it

remains fixed throughout the discussion and is the same A„/(co)1/2 which

appears in (3.3). This means that un(z) and vn(z) are uniquely determined by

f(8). Moreover, for all « = 1

.„  ,. un(z) - u„-i(z) = anznvn(z),

(3.4) «o = Do = 1/co.
Vn(z)   -  »n-l(z)  = ß„Z-nUn(z),

If f(8) is real, an = ßn, the coefficient of z~m in v„(z) is the conjugate of the

coefficient of zm in un(z) and

(3.5) kl= fl(l-  \am\Y\

If /(0)=O (^0), then |«„| <1 for all « = 1 and un(z) has no zeros in \z\ =1.

Moreover, the function /„(0) = A^/1 un(ei>) \ 2ca determines according to (1.3)

the sequence o¡i, a2, • • ■ , an, 0, 0, 0, • • • .

Corresponding to the orthogonality relation (3.1), one has

(3.6)

1 rT
— Un(eiS)f(8)e-<med8 = 8mo, (0 = m = »),
2ir J -T

1 rT
— v„(eie)f(8)eimSd8 = Sm0) (0 = w = «).
27T t/_T
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Relation (3.6) uniquely determines un(z) and v„(z) and is equivalent to (3.1)

using (3.3).

4. Normed spaces. Let ft, denote the space of functions /(0) integrable

over —7r=0 = ir and such that ||/||, as given in (1.5) is finite. Then, ft, is a

Banach algebra with norm ||/||„. If the Fourier coefficients of/(0) in ft, vanish

for negative k, i.e. ck = 0 for k<0, we write/(0) E &Ï. We note that ft^ is also

a Banach algebra with norm ||/||„. Using the Wiener-Lévy Theorem, it can

be shown that if/(0)G ft,+ and

oo

(4.1) 22 m"* 0 in |*|   = 1»
o

then l/f(d)E Git and log/(0)£ ft^". We also use the space ftr of all functions

fid) E ft» whose Fourier coefficients vanish for positive k. Sometimes to

emphasize the manner in which a function g(d) depends on 0 we will write

We return for a moment to the functions w„(z) and z/„(z) determined from

(3.4). Let yk = max{|ak\, \ßk\ }. In terms of yk we can find some useful norm

inequalities for un(eie) and vn(eie).

Lemma 4.1. For every m = 0

(4.2) ||«n(e")||, =

and for every n = k = 0

Co
11(1 + ,(«)?-),

(4.3) \\unie<°) - «*(e")||, =   ¿ v(m)ym\\vmieie)
m-k+l

Similar inequalities hold for vn(eie).

Proof. Relation (3.4) implies that

m„_i(z) + anznvn-i(z)
Un(z)   =-—-

(1   -  Ctnßn)

Thus,

|Mn-l||» + 7n"(M)||»n-l||>.

Un, =
I   1   - anßn |

with a similar inequality for ||»B||». Inequality (4.2) follows by induction. To

prove (4.3), we use (3.4) and write

||«n - «i||» =  llM—1 - M*ll' + Tn»'(M)||»n||»,

and the proof proceeds by induction.

Lemma 4.1 states in particular the following:
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Corollary 4.1. If HtH»— 22m-i v(m)lm is finite, then there exist functions

U(8) E «,+ and V(8) E «¡r so that

||«n(e¿«) - C7(0)||,->O    <wd   ||»n(ei9) - F(0)||,->O.

An important property of these functions U(8) and V(8) was demonstrated

in [2, §4]. We summarize it here in the real case for later reference.

Lemma 4.2. If an = ßn, \an\ <1, and \\a\\r is finite, then u„(eiB) defined by

(3.4) satisfies (3.6) with

(4.4) f(B) = kj\ U(8)\\o,

where k\ = lim k„ and where U(8) is the limit in Corollary 4.1.

In the following sections we will have occasion to use the notation

n 0

Un(z)   =   22 UnmZm, Vn(z)   =   22 VnmZm.
0 -n

5. Step one. In this section we deal with functions f(8) of the form

(i)        /(0) E a„

(5.1) (ii)      Dn(f)9*0 for«^0,

(iii) log/(e) E a,.

Let dk be the Ath Fourier coefficient of log/(0) and let

A(8) = expjJCaV*9} ,

P(0) = expj¿oVM}.

Then, f($)=A(6)B(0), A(8)Ed+ and B(0)EOr. Moreover,  Â(8) = l/A(8)
E air and B(8) = l/B(8) E ar.

Let two functions g(8) = 22*-o í^íM and ÄW = Xt-o hkem be related ac-

cording to the formula

(5.2) — f   h(B)f(e)e-ik*d8 = gk, 0 = A = «.
2ir J -T

Condition (5.Iii) insures that the relationship between g(8) and A(0) just indi-

cated is unique. We now state an important lemma.

Lemma 5.1. Iff(6) satisfies (5.1), there exists an integer Nand a constant M,

both depending only on f(8), such that for any polynomials g(6) and h(8) related

by (5.2)
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(5.3) IIa||, = jf|~y, + Z"(«)|*»|1-
L m=0 J

Proof. We denote the Fourier coefficients of Aid), B(d), Aid), and £(0)

by An, Bn, An, and £„, respectively. Consider first

00

(5.4) ki0)fi6) = m =   22 gmeim\
m=—oo

where gm for m outside Q^m^n is defined by (5.4). Then,

n

(5.5) h(0)B(9) =   Z ™«eM = g(6)M*)-
k=—<x>

Calling the function in (5.5) w(0), we get

n i

INI»   =S      2    "(*)     J2     I  gm M   4*-m|
fc=—oo m=—oo

(5.6)
n

=   IMII»     Z)    "(W) I  gm|   •
ra=—oo

But, if (5.5) is written in the form «(0) =w(0)£(0), then ||Ä||» = ||w||,-p||, so

that by (5.6)

(5.7) ||A||, = ||Í||,||£||,  è yik)\gk\.
i=— x

From (5.4), we find

n

gi = z3 hmck-m,

so that for any A>0

0 n 0

2^    K¿) |  gi I     =   £ "(»») | ^m |       22    v(k   — ™) |  C*-m |
fc=—x m=0 ft=—oo

^11/11» £"(»)| A-1   +   Ê "(»)|*-|   ¿ v(k)\ck\.
m=0 m™W-t-l i=—oo

Now, let N be chosen so large that

-iV-l

(5.8) PII»PII»  E K*)|c*| < 1/2.

From (5.8) and (5.7) we deduce that
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||A||, = ||Í||,||P|| J ¿ v(k) \gk\  + 11/11, 22 "(») I A-|l
(5.9) U-° m'° J

1 "
4— -22 K«) | A« |.

2 m=iV+l

Since the second term on the right in (5.9) is less than or equal to ||a||,/2,

the proof is completed.

It is interesting to consider a simple example to show that condition (iii)

in (5.1) is essential to the truth of Lemma 5.1. Let f(8) = 1— \eiB. Then, the

polynomials g(8) = 1 and h(6) = 22*-o XV*9 are related according to (5.2).

Moreover,
n I \ ln+1 _  1

It II T"^       II **    I A

114 = Zkl =V^—-•

If |X| =1, |[A||, becomes infinite as « becomes infinite and an inequality like

^5.3) with ||g||>. = i'(0) is impossible. On the other hand, |X| <1 is exactly the

condition that log/(0) £ ft,.

The functions m„(z) and vn(z) determined by f(8) by means of (3.6) are

of the type discussed in Lemma 5.1. If dk is (again) the Fourier coefficient

of log/(0) and if we set

P(0) = expj- 22dkeike\ ,

(5.10)

F(0) = expí-   ¿ dkeA ,

then we have the first step of our proof as follows:

Theorem 5.1. Let f(8) satisfy (5.1) and let |wnm— Pm|  and \vnm— Vm\

approach zero for each fixed m, where Um and Vm are the Fourier coefficients of

U(8) and V(8) in (5.10). Then, \\un(eie) - U(8)\\,-*0 and \\v„(ew) - V(o)||,-»0.

Proof. It follows from (5.10) that

1   f
(5.11) —        U(6)f(d)e-ik9d8 = ho, 0 = k < ».

2ir J -r

If we set ûn(8)= 22l-o Umeim\ then from (5.11) and (3.6) for all 0 = A = «

— f   («» - Ûn)f(8)e-ik°d8 = — f   (U - ûn)f(B)e-ik°dd '

00

/ ,.     V m^k—m

m^n+1

= gk(n), 0 = A = n.
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We apply Lemma 5.1 where h = un — ûn to find

(5.12)

|w» - «»||» = M\ \\g(n)\\, + ¿ vim) | unm - Um\

= AfM|/-||,||£-«n||,-r- 22Ám)\unm- Um\\
L ro-0 J

In view of (5.12), we can say ||«»(e'9) — t/(0)||»—>0. The proof for v„(eie) is

similar and so the proof is completed.

6. Step two. In Corollary 4.1 it was noted that «„(e^) and w„(ei9) converge

in norm if ||7||» is finite. We show here that under only mild restrictions on

fid) this condition is also necessary for the strong convergence of u„ie'e) and

Vniew) to functions in ft,.

Lemma 6.1. Let fid) be a bounded, measurable function and let Dnifi^O for

all n. Moreover, let u„ieie) and v„ieiB) converge uniformly in —r=d^r to func-

tions Uid)Ea„and 7(0) G ft,, respectively, where £(0)^0 (or 7(0)^0). Then,

/(0)Gft», log fid) E&,, and \\unieiS)-Uid)\\^0, ||i/„(eiS)-7(0)||,->O. The func-
tions 7J(0) and Vid) are necessarily those given in (5.10).

Proof. We start with

1   rr
— I    Vnieie)fie)eik)de = 8ko, 0 = k = ».
2rJ-T

Passing to the limit as m becomes infinite

(6.1) — f   Vi6)fie)eikede = 8M, 0 = k < <*>.
2r J -T

In particular,

00

(6.2) F(0)/(0) ~2>me-», ao = 1.
m=0

Since un(eie) converges uniformly to £(0), it follows that £(0) = 22m-o Umeim>.

From (6.1) and the preceding remark it follows that

— f u(e)vie)fie)eikede = ¿ um— f vie)fie)ei(-k+m)ide
2ir J _» m=o        2x J _T

= £o«io, 0 = k < oo.

In a similar way we show that

— f vie)uie)fid)e-Mde = v08k0, o = k< ».
2ir J_T
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Thus, V(8)U(8)f(8) = P0= F0. We first eliminate the possibility that P0 = 0.
Using the notation of (6.2)

¿£7»flt_» = — f   U(6)V(8)f(d)e-^dd
(6.3) m-o 2irJ-T

= UoSko, 0 = k < °o.

Now, if Po = 0, then by (6.3), Um = 0 lor all w=0. This contradicts our as-

sumption U(6)fáO. Thus, we have U(6) V(8)f(8) = Uo^O. Moreover, since

U(8) and F(0) are continuous and /(0) is bounded, we can find a bounded

function /(0) =/(0) such that

(6.4) U(8)V(8)f(8) = Uo.

It follows from (6.4) that t/(0) ?¿0 and V(8) ̂ 0 for all -7t=0 = tt. By Wiener's

theorem/(0) = U0/U(8) V(8) E «,. From (6.2), F(0)/(0) £ Ö+, and thus by (6.3)

X oo

22 Umzm- 22 a^zm = Uo in [ z\   g 1.
m=0 m=0

According to (4.1) this means log U(8)E&t. In a similar way we show

log F(0)£ftr. Finally, log/(0)= log P0-log U(8)-\og F(0)£(*,.
To finish the proof let us note that £7(0) and F(0) in (5.10) are the unique

functions in Ü7 and 0,7, respectively, with Uo= F0 and satisfying (6.4). The

uniform convergence of un(eie) to £7(0) implies convergence of each Fourier

coefficient. The proof is completed with an application of Theorem 5.1.

Theorem 6.1. Let f(8) be bounded and measurable with Dn(f) 9^0 for all n.

Then, a necessary and sufficient condition that un(eiS) and vn(eiS) converge in

norm to functions U(6) féO and V(8) yéO in ft„ is that \\y\\, is finite. In either case,

f(8) and log/(0) are in Ct„ and U(8) and V(8) are given by (5.10).

Proof. We prove the sufficiency first. The existence of limits U(8) and

F(0) follows from Corollary 4.1. The constant term of un(eiB) is A^/c0, which

according to (3.2) has a finite nonzero limit if [I7H» is finite. In the proof of

Lemma 6.1 we saw that U(8) was either identically zero or never zero. Thus,

[7(0)^0, etc. This proves sufficiency. According to Lemma 6.1, /(0) and

log/(0) are in ö„ and the limits P(0) and V(8) are given in (5.10).

To prove the necessity, we will show ||a||»= "^/^(m) \am\ is finite. A similar

proof is valid for |||8||F= XMOT)|ßm|, and the desired result follows. Consider

(suppressing functional dependence on 0) from (3.4)

(6.5) un-i = un — anein$vn.

Comparing coefficients of e'"9 on both sides of (6.5), we find that Unn — anvno.

Now, if F(0) = V is given in (5.10), the coefficient of ein> on the right side of
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«n-l
=-/v-/>«"9 ane™ —

is zero. Thus,

(6.6)
Un-l

+ I a„ I v(n) 2v(n) | an |
VnO

Vo

Summing (6.6), we find

^      , , ,   F     I    I'mO I   »mil    "I II Un
6.7 22M) \am     2-—        =   —

Z/o L I Fo       I fIIJ     II F

Now, the term on the right of (6.7) has a finite limit as « becomes infinite and

the coefficient of v(n) \ an\ on the left approaches 1. This completes the proof

of Theoren- 6.1.

7. Step three. We now finish the proof of Theorem 1.1 for the case of

real-valued functions/(0). First, we have a lemma which says that we may

assume /(0) £ ft, and f(8) 9i0 without loss of generality.

Lemma 7.1. Let f(8) be a real, bounded and measurable function on —ir^d

= 7T with Dn(f)9£0. If ||a||„ is finite or if ||log/(0)||, is finite, then /(0)£Ct„ and

f(8) is a.e. of one sign.

Proof. In the real case, a„ = ßn, so that yn= \an\. By Theorem 6.1, log/(0)

£ a, under either hypothesis. Thus, log/(0) is equal a.e. to a continuous func-

tion, which is possible only if f(8) is a.e. of one sign.

As remarked earlier, the proof of the general conjecture stated in the

introduction is out of reach at present. However, in the real case we make use

of two theorems of Szegö to finish the proof.

Proof of Theorem 1.1. According to the proof of Lemma 7.1 we have only

to show that ||log/||„ finite implies ||a[|, is finite. From (3.2) and (3.5) and from

Szegö [3, p. 44]

k\ Dn-l(f)    ̂
hm — = hm- < oo.

n-»oo   Co »-»"      Dn(f)

Moreover, by (3.3) and Szegö [3, p. 51 (4)]

(7.1)
s"fr,(z-i)

hm un(z) = hm —, A„
n-*»    (co)1 /2

exp
{-?*-}'

:|   <1,

where dk is the Fourier coefficient of log/(0) and where the limit in (7.1)

holds uniformly for | z| =p < 1. This means that for every fixed m, \ u„m— Um\

—»0, where Um is the Fourier coefficient of £7(0) in (5.10). By Theorem 5.1,
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\\un(ew)- i/(0)||,->O. Moreover, i/o = lim iin0 = lim kn/c0^0. By Theorem 6.1,

||a||» is finite and Theorem 1.1 is proved.

8. Properties of polynomials. Combining Theorem 1.1 with previous re-

sults of the author [2], we deduce easily the following theorem. We use the

notation of §2a.

Theorem 8.1. Let pn(z) (w = 0) be a polynomial of degree ninz with positive

leading coefficient. Then, {(p„(z)} is orthonormal with respect to a positive, con-

tinuous weight function fid) on — ir = 0=ir with 22\c>\ < °° if, and only if,

there exists a sequence {an} such that \an\ < 1, X/Ia»l < ^and uniz)

= knz"$niz-1)/ici)yn satisfies (2.4).

Proof. In [2] everything except the implication 22|c¿t| < oo implies

22\ an\ < °° was proved. This fact follows directly from Theorem 1.1 taking

vin) = l.

Before proving Theorem 2.2 we make an observation. If ||log/(0)||» is

finite, then ||a||, is finite and according to Corollary 4.1 all terms in the in-

equality

max | Pnieie) | álk-'fc.Or")!!» = (^ J    ||«»(eiS)||»

are uniformly bounded in n. Thus, either series in (2.9) converges absolutely

and uniformly if the coefficients are absolutely convergent.

Proof of Theorem 2.2. It is sufficient to consider the case

00 OO

(8.1) g(d) ~ 22 Gke™ ~ ¿2 gkPk(eie).
0 0

First, let  EK&)|gi| <°°- Then, the series on the right in (8.1) converges

uniformly, and

Gk = — f    E gmpmieie)e-ikede
2lT J —t m=0

00

(8.2) =Xgm0mi

- V -  - »   .- («\2^ gmMm,m—k) gm   ~   I      2    I

m=*k \ •* n /

Thus, from (8.2)

oo oo

IX*)|g*| = EK«)|¿-|-ll«-(í-")ll»,
t—0 m=0

and since lim knr¿0, the desired result follows.

1/2
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Next assume X^(&)|G*| < °°- Then,

(8.3) gk = — f Tg(8)f(d)^k(e-iS)dd = 22 B^km,
2lT J —x m—O

where the Hm in  (8.3) are the Fourier coefficients of g(8)f(8) £ ft,.  If |m

= (AmAo)1/2gm,then

¿ K*) \h\   = Í>M I Pm| • £ KA - m) I «„,*_m| .
jfc=0 m—0 k—m

To finish the proof we must show that

00

am = 22 "(A — m) | w*,jt_m |
k-=m

is bounded in w. Equating coefficients of ei(n~m)s on both sides of (2.4), we

find  Mn,n_m = «n-l,n-m4-0!nMn,m.  ThuS,

00 00

am   =   22  V(n — m) I  M»-l,n-m |    4"   22  K» — ™) |  <*n |    |  «»,m \

(8.4)
GO

= am-i + X) v(n — m) I a* I  I ̂ «.« I •

Summing (8.4) on m

00 CO

aro  ̂    22 22 "(n — k) I  a" I    I  "».* I
it—0 n=t

^ ei-(»)i«»i-ii«.(¿-")ii..
This completes the proof of Theorem 2.2.

9. Asymptotic behavior of Dn(f). In this section we consider the asymp-

totic behavior of Dn(f) for/(0)=O in terms of the sequence {an}. This se-

quence seems ideally suited for this investigation in view of (3.2) and (3.5),

which state

(9. 1) Dn(f)   =  cT1   IT  (1   -    I «m I2)-«-".
n+1

m-1

Theorem 9.1. Let f(6)—0 be such that f (6) and log/(0) are integrable on

— ir^d^Bir. Then, a necessary and sufficient condition that there exist a finite

limit for Dn(f)/G(f)n+1 or for Dn(f)/[Dn(f)/Dn-.i(f)Y+1 is that Z«|a„|2 be
finite. Also
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(9.2) lim_MLÄn(1_  I «!*)-= lim
~- Gif)*»   m_! «^. r z>.(/)_-|-+i

(/)-

r ^»(/) T
L £»-i(/)J

Proof. The proof follows more or less directly from the two equalities

Dnif)/[Dnif)/Dn-lif)]»+l   =   \J  (1   -    |  am\2)^,
m-1

and

(9.3)   Dn(f)/G(f)^ = n(i - i «-h-/ n (i -1 «mi2)"+i.
m=l '      m=n-+l

In (9.3) we have used the fact that G(f) = lim £„(/)/£„_i(/).

Before proving Theorem 2.1, we present a useful lemma.

Lemma 9.1. If fid) is a positive continuous function, and if u„ieiS) is asso-

ciated with fid) according to (2.1)—(2.3), then for any vin) of the type in (1.5),

11log Mn(ei9)||» is finite. Moreover, if

(9.4) log unie») = 22 d^e™,
,(»)

c
m=0

then

(9.5) fid- |«m|2)-m=exp{¿Mí|¿n>|2}.

Proof. Under the hypotheses on/(0) it is true that m„(z) = fcnZ"#n(z-1)/(co)1/2

is not zero in |z| =1 (see Szegö [3, p. 40]). Since, ||M»(ei9)||» is finite, the

Wiener-Lévy Theorem implies that |jlog M„(ei9)||» is finite. Now, as remarked

in §3, /»(0) =^„/|«»(ei9)| 2Co determines according to (1.3) the sequence

«i, a2, • • • , a„, 0, 0, 0, • • ■ . We apply the Szegö Theorem to/„(0), which

has any number of derivatives. That is,

Il (1 -  I am\2) m =   hm
G(fn)N+1

= exp< 2^ m\ dm   \2> .

The lemma is proved.

Proof of Theorem 2.1. Taking v(n) = l + \n\1/2, we see from Corollary 1.1

that 2wl/2|a''| <°°- Thus, X)"!0»]2 ¡s finite and (9.2) applies. Moreover,

by Corollary 4.1 ||w„(ei9) - r/(0)||,-»O, where  77(0) is given in (5.10), which in
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turn implies that ||log un(eie) — log Í7(0)||,,—>0. This latter fact can equally

well be written

(9.6) ¿m'Vm'-^l    -»0.
m=0

Relation (9.6) implies that

El j(n)l2      V1     I j   I2
m\dm   \   —» 2-, m I dm | ,

0 0

and the proof is completed by taking limits on both sides of (9.5).

We can show by example that Theorem 2.1 is precise in the sense that

condition (2.7) cannot in general be replaced by a moment condition

£ | A H Ck\   < =o, 7 < 1/2.

For if 7 < 1/2, we can take TV so large that 7V(1-27)>1, and let

1
if « = m2N, m = 1,2,

2mN

0 otherwise

Then,

(9.7) 22 I * M at |   = (1/2) 22 «iAr(2l'-1) < *,
*-l m-l

but

(9.8) 22k\ak\2= (1/4) ¿1 =  ».
*=1 ifc-I

According to Lemma 4.2 we can construct a function /(0)=A2,/| £7(0)|2co

which yields this particular ¡a„j sequence according to (1.3). By Corollary

1.1 and (9.7), £NTM < °° for this function/(0). On the other hand, (9.8)
and Theorem 9.1 deny the existence of a finite limit for Dn(f)/G(f)n+1.

Although we cannot find exact conditions on /(0) so that £«|a„|2 is

finite, we can show the following theorem which points out one other amusing

possibility.

Theorem 9.2. Letf(8) >0 be continuous with £| c*\ < °° and let kn be con-

cave, i.e., 2k\~=kn+i+kn-i. Then,

G(/)"+l UJJ U.W I    /

where both sides of (9.9) have finite limits and where the integration on the right
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is with respect to two-dimensional Lebesgue measure extended over the circle

H si.
Proof. Taking vin) = l in Corollary 1.1, we see that 22 \an | is finite.

Moreover, kn— &n-is=?fc»+i — &»> which means that |a„|2¿„ = ¿2 — kn^l is a de-

creasing sequence. Since kn has a finite limit, 2w|a„&»| is finite and the

terms of this sequence are decreasing. This means | Ma»| —>0 as n becomes in-

finite, so that 22n\ an\2 is finite. Theorem 9.1 insures the existence of a finite

limit on the left in (9.9). To complete the proof we note that

1   r Ç j «»'
r J J   I «„

uJ(z) (»)|2
m\ a,

m—0

da = 22m\dm
»(*)

where d„' is defined in (9.4). Finally, we apply (9.5).
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