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1. Introduction. The purpose of this paper is to show that for most cases

the only automorphisms of a certain group of formal power series are what

might be called the obvious ones. The power series to be considered will be

of the form 22? a<x' where ai^O and the coefficients are all members of a

given field. The composition to be considered is that of substitution or func-

tional composition. Given the series /= 22? aixi and g = 22? °'xi> tnen

fg= 22? ß»(g)i = fli0ix4-(ai024-a20i)x24- ■ • • . Given a field, the series of this

type clearly form a group with this law of composition. Furthermore, besides

the inner automorphisms it is clear that any field automorphism a—>d induces

an automorphism 22? &&*—* 22? á»x< °f the group. Such automorphisms of

the group will be called simply field automorphisms. Showing that combina-

tions of these and inner automorphisms are the only automorphisms of the

group of power series for most base fields is the main part of this paper.

The original interest in this subject stemmed from the hope that auto-

morphisms other than the obvious ones might be found and that they might

have applications to the theory of iteration of analytic functions. The usual

way of solving, for example, the functional equation g[g(z)] =f(z) where/(z)

= 22? a>2' an<3 |ai| 5^1 is to find an inner automorphism that simplifies/(z).

The solution h of hr1(f[h(z)\) =a& is found and then g(z) =h[(a/)ll2h~1(z)\.

Proving that h exists and is analytic is not difficult. The method was origi-

nally used by Schroeder(l). If the first coefficient of f(z) is 1, however, no such

simple automorphism gives results. No other automorphisms are suggested

by this paper, but the present results do have independent interest.

In §2 some useful lemmas and definitions will be given.

In §3 the following will be proved.

Theorem 1. Over a field of characteristic 0 every automorphism of the group

of formal power series under substitution can be written as the succession of an

inner automorphism and a field automorphism (2).
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(') See E. Schroeder, Über iterierte Functionen, Math. Ann. vol. 3 (1871) pp. 296-322. For a

simpler presentation see H. Kneser, Reele analytischer Lösungen der Gleichung (j>[(j>(z)] =e! und

verwandter funklionalgleichungen, J. Reine Angew. Math. vol. 187 (1949) pp. 56-67; see p. 58.

(2) This result was announced for the case when the base field is the complex numbers by

N. J. Fine and Bertram Kostant in an abstract, The group of formal power series under iteration,

Bull. Amer. Math. Soc. vol. 61 (1955) pp. 36-37. Their proof has not yet appeared.
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The method of proof will be to consider an arbitrary automorphism and

to reduce it by stages to the desired form.

In §§4 to 6 the case for fields of characteristic p^O will be considered.

The principal result is the following.

Theorem 2. Over an infinite field of characteristic not 2, every automorphism

of the group of formal power series under substitution can be written as the suc-

cession of an inner automorphism and a field automorphism.

Whether this can be extended to the case of finite fields or fields of char-

acteristic 2 remains an open question. However, the following partial results

can be proved for more general cases.

Theorem 3. // a series has first coefficient 1, then under any automorphism

the transformed series has first coefficient 1. Hence the first coefficient of a series

determines the first coefficient of the transformed series.

Theorem 4. Any automorphism of a group of formal power series can be

written as the succession of an inner automorphism and one that takes series of

the form ax into series of the same type.

Theorem 5. Over a field of characteristic not 2 the first k coefficients of a

series determine the first k coefficients of the transformed series under an auto-

morphism. In addition, the relation between first coefficients is a field automor-

phism.

These results will be proved by methods similar to those of §3.

2. Basic lemmas and definitions. Throughout this paper the basic form

of composition by substitution will be used. If /= ^"o.x'and g = 2~lî biX\

then

fg = aibix + • • • + [oion + • • ■ + a¡ijb\   bn-i+y + terms of lower o.'s)

n-i   n

+   • ■ • + a„0ijx  + • • •.

Lemma 1. ///= 2~lî a*xi an^ ai nas imultiplicative) order q, f may be writ-

ten in the form A_1[oiX + 2~L?-i bqi+ixqi+x]h.

Let h= 2~lî dx* and g = OiX + 2f" i bqi+ixqi+1 where the bqi+i and c¿ are to

be determined. I n the series hf the coefficient of x" is : cna"+ (terms in lower c,'s),

m not of the form qj+1, cg,+iOi +(terms in lower c/s), n = qj+l, j an integer.

In the series gh the coefficient of xn is: aiCn + (terms in lower Cj's and o/s), n not

of the form qj+1, oicgy+i + ô,y+iOÏ +(terms in lower o/s and e<'s), n = qj+l.

From these it is clear that the c„ may be chosen successively to make the Mth

terms of hf and gh equal provided that n is not of the form qj+1. These latter

terms may be made equal by proper successive choice of the bqj+i's. Thus, by

proper choice of the 6,y+i's and the c„'s the equation hf = gh can be obtained.

Multiplying this by A-1 gives the desired result.
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The following special case is the one usually needed.

Lemma 2. If f= 22? a«xi and »i is not a root of unity, then f may be written

in the form ä_1[öix]ä.

Lemma 3. ///= 22? a<xi< Oi"■ 1, ay is the second nonzero term and p is the

characteristic of the field, then by proper choice of h, h~rfh may be given arbitrary

terms from the (2j)th on except possibly for the (2j—l +kp)th ones, k an integer.

Let g= 22Tlciix'+22?i b>xi and h = x+ 22? *&'• Then for « = 2/, the
«th coefficient of fh has the form c„4-/ayc„_y+i4-(terms in lower e/s). Again,

for « = 2/, the «th coefficient of hg has the form cn+(n — /4-l)ayC„_y+i4-o„

4-(terms in lower eis and bis). From these it is clear that for n?£2j—l+kp

the «th terms may be made equal by proper successive choice of the c„_y+i

regardless of the choice of the b„. For n = 2j—l+kp proper choice of 6„ can

make the terms equal. This gives the asserted arbitrariness.

Definition. For characteristic pj¿2 let

Pi(x, r) = 22 rixi+I ( =-for the real field and x small ),
o \    1 - rx J

E—i    2i  i   2¿+l /                       X \
2   Ci r x      I =-for the reals and x small ),

o \    (1 — 2rx2)"2 /

Pn(x,r) = Pi(^x,j^)Pn-i(x,l)P?(x,^—\p:li(x, 1)

for « > 2 and not of the form 2 4- kp,

Pn(x,r) = P2(x,—— )P„-2(x, l)P?(x,—— )P;l2(x, 1)
\    4 — «/ \    4 — «/

for « > 2 and of the form 2 4- kp.

The binomial coefficient Cf being an integer is defined for any field.

The reason for considering these particular series is that Pi(x, r) and

P2(x, r) have the properties of Lemma 5. These properties are essentially pre-

served under automorphisms so that these series are essentially transformed

into themselves under any automorphism. Knowing the images of Pi(x, r)

and P2(x, r), of course, determines the images of the other P„(x, r). However,

because of the form of the P„'s shown in Lemma 4, any series can be written

in some sense as the product of these series and one of the form ax. The pre-

cise statement of these ideas will be the main part of the proofs.

Lemma 4. P„(x, r) has the form x4-rx"+14- • • • .

This is clearly true for «= 1 and ra = 2. It follows in general by induction

with a simple calculation.
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Lemma 5. £i(x, r)" = £i(x, Mr), ^(x, r)£i(x, 5)=£i(x, r+s), £x(x, r)

= (rx)"1£i(x, l)(rx), £2(x, r)" = £2(x, nr), £2(x, r)£2(x, s)=£2(x, r+s), OMd

£2(x, r2) = (rx)-!£2(x, l)(rx).

With base field the real numbers and x sufficiently small, induction shows

that [£i(x, r)]n = x/(l— rnx) =£i(x, nr). The identity of the two outer ex-

pressions does not depend on the field so that it holds generally. The other

expressions are proved in a similar manner.

Lemma 6. Given an integer m > 2 OMd a series f over a field of characteristic

p9¿2, f can be written in the form Hiax) XI™—î Pi(x, a,), H having the form

SRS~lTPm(x, 1)£_1 where m is greater than n—1 and R is a finite product of

Pi's with subscripts greater than n — 1.

First choose a to be the first coefficient of /. Choose the Oy's so that

g=iax) Y\j-i Pi(x, a,) has the same first n coefficients as/. This is possible

by choosing the Oy's successively, for since the £y's have the form of Lemma 4,

proper choice of an Oy will give the (j + l)st coefficient of the product any de-

sired value while the previous coefficients are not affected. Now if fg~l is

the identity, the proof is finished. Otherwise/g-1 has a second nonzero term,

cm, where m>n. There is a product £= ü^-i1 Pi(x, o.) and series 5 and £

such that (S£5-1)(££m(x, l)T~l)=fg-\ This follows from the fact that by

proper choice of the o,-, £ can be given arbitrary coefficients from order m to

order 2mî, and by Lemma 3 proper choice of 5 will give arbitrary coefficients

to SRS~l from order 2m on except possibly for the L2m—1 + A^)th ones. Again

byLemma3, ££m(x,l)£_1canbe given arbitrary terms from the (2MZ + 2)nd on

except for the i/2m + l+kp)Úi ones. Since the characteristic is not 2, one or the

other of these series can adjust any term.

3. The characteristic 0 case; proof of Theorem 1. Given an arbitrary

automorphism, A, denote the image of a series/ under the automorphism as

fA. The proof will proceed in steps as indicated.

A. If / has first coefficient 1, fA does also.

The series (2x)/ may be written in the form g~li2x)g by Lemma 2. Con-

sequently, /= (2x)_1g_1(2x)g. Then fA is of the form h~1k~lhk, and therefore

will have first coefficient 1.

B. There exists A such that A_1(2x)AA = ox where b is the first coefficient

in (2x)A.

Let (2x)A = ox+ • • • . Now suppose that some power of b, the Mth, were

such that oB = l. Then (2nx)A= [(2x)A]n = (ox+ • • • )" = x+ • • • . Since the

inverse of A is also an automorphism, 2"= 1 by part A. This is impossible since

the base field is of characteristic 0. Therefore, 6 is not a root of 1 and Lemma 2

gives the desired result.

C. Now define an automorphism £ by fB = h~~lfAh, A the series of part B.

Then (2x)B = ox.
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D. A series of the form ox is transformed by £ into one of the form ox.

Clearly (2x)(ox) = (ox)(2x). Applying £ gives (£>x)(ox)B= (ox)B(ôx). Let

(ox)B = ax+X^2° o,x*. Then comparing Mth terms of the last equality gives

banXn = anbnxn. Now as shown in part B, b is not a root of unity. Therefore,

o„ = 0 for m>1.
E. (2x)B = 2x, [Piix, a)]B = x + a*x2 + • • ■ , and [£2(x, c)]B

= x+c*Xi+ ■ • ■ , where o* and à are not 0 provided that o and c are not 0.

By the definition of £i and Lemma 5, (2x)_1£i(x, o)(2x)=£x(x, 2o)

= [£i(x, a)]2. Applying B to the outer terms gives (6x)-1[£i(x, a)]Bibx)

= ([£i(x, o)]B)2. Now if [£i(x, a)]B has the form x+o„xB+ • • • , o„^0, then

([£i(x, a)]B)2 has the form x + 2o„x"+ • • • . Then comparing Mth terms in

the above equation gives on6B_1xn = 2o„xB so that oB_1 = 2. Since the field has

characteristic 0, n must be a constant independent of a.

Again, by the definition of £2and Lemma 5, (2x)_1£2(x, c)(2x) = [£2(x, c)]4.

Applying £ gives ibx)~l[Piix, c)]B(ox) = ([£2(x, c)]B)4. [£2(x, c)]B has the

form x+cmxm+ ■ • • , Cm^O, so that ([£2(x, c)]B)4 has the form x+4cmxm

+ • • • . Comparing Mith terms in the preceding equation shows that om_1 = 4.

Since the field has characteristic 0, this shows that w = 2m —1.

Using their definition it is now clear that [£*(x, d) ]B has second coefficient

0 for k = 2. Now if m^2, all the [£¡t(x, d)]B for k = l have second coefficient 0.

Using Lemma 6, this would show that no series is transformed into one with

second coefficient not 0. This is impossible since B is an automorphism; there-

fore m = 2. This immediately gives the conclusions of this section.

F. Now if [£i(x, l)]B = x+ox2+ • • • , define an automorphism C by

fc = iax)fBiax)~\
G. [£x(x, l)]c = Pi(x, 1).

Apply C to the equation (2x) [£i(x, l)]2=[£i(x, l)](2x) to obtain

(2x) [x+x2+ 2~2â o„xB]2= [x+x2+ 2Z*3 o„xB](2x). Comparing Mth coefficients

of this equality gives 4o„ + (terms in lower a,-) = 2noB+(terms in lower a,-). For

m = 3 the coefficients are uniquely determined. However, £i(x, 1) satisfies the

above equation. Therefore, [£i(x, l)]c = £i(x, 1).

H. Denote (ox)c = ox. Then [£i(x, o)]c = £i(x, a) and the transformation

a—>d is a field automorphism.

Since   £i(x, a) = (ox)_1£i(x, l)(ox),_applying    C   gives    [£i(x, a)]c

= [(ô)-1x]£i(x, l)(ôx)=£i(x, à). Now (ôï)x=(o6x)c=(ox)C7(ox)c= (ôx)(5x)

= ô5x and Pi(x, a+b) = [Pi(x, a+b)]c= [£i(x, a)]c[Piix, b)]c = Pi(x, â+l).

Since the transformation has an inverse, it is a field automorphism.

I. Let D denote the power series automorphism induced by the inverse

of the field automorphism obtained in H, and letfE= [fc]D.

J. The second nonzero term of [£t(x, a)]E is of order not less than k + 1.

This follows from the definition of £* and the forms of [Pi]E and [£2]B.

K. The first p terms of a series / determine the first p terms of fE.

Apply Lemma 6 with n = p. The product HE will have first coefficient 1
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and the next « — 1 coefficients zero since the [Pk]B in it will contribute noth-

ing to these terms by part J and the other functions have their terms of order

less than £4-1 canceled by their inverses. Therefore, the first p terms of fE

are determined by the other product which in turn is determined by the first

p terms of /.
L. [P2(x, 1)]E has the form x4-cx34- 22? c"Xn where c?=0 by part E. Then

applying E to the equation (2x) [P2(x, l)]4 = [P2(x, l)](2x) gives

(2x)[x+cxz+22*cnxn]i=[x+cxi+22?CnXn](2x). Comparing «th coeffi-

cients gives 8c„ + (terms in lower ci) = 2"cn +(terms in lower ci). Thus for

»>3, cn is uniquely determined. Since P2(x, c) satisfies the above equation,

[P2(x, l)]* = P2(x,c).

Now computation shows that [Pz(x, l)]B = x4-cx44-cx64-(c —(l/2)c2)x6

4- • • • , and [Ps(x, l)]K = x4-cx64- • • • . It may also be verified that

P2(x, l)Pä(x, l)Pi(x, 1) has the same first six terms as P3(x, l)P2(x, 1). Apply-

ing E to both, the sixth terms must be equal by part K. This gives 2c+(5/2)c2

= c4-(7/2)c2 whence c= 1 since c?*0.

M.  [P2(x, a)]s = P2(x, a).

First, [P2(x, o2)]£=[(ox)-1P2(x, l)(bx)]e=(bx)-1Pi(x, l)(6x)=P2(x, b2).

For the case when a is not a square observe the fact that

*<*.«>-ft«^)) ¡>(«. (rrf)Y-
N. E is the identity.
E is certainly the identity on the series ox and P*(x, c) by the previous

sections and the definitions. By part K it is the identity on the first p ele-

ments of any series. Since p is arbitrary, the conclusion follows.

This completes the proof of Theorem 1 since the given automorphism, A,

was reduced to the identity by use of inner automorphisms and field auto-

morphism.

4. Results valid for any field of finite characteristic ; proof of Theorems

3 and 4. Let/A denote the image of a series/ under an arbitrary automorphism

A. Let pT^O be the characteristic of the base field.

Lemma 7. For a series /= 22? aixi with ai = 1, and for an integer n not divisi-

ble by p, there exists one and only one nth root off with first coefficient 1.

Let the second nonzero term of / be the feth. Consider g = x + 22? °ixi-

Then gn = x4- 22? («Ot+terms in lower Oy's)x\ From this it is clear that the

bi may be determined successively to make gn =/ since « is not divisible^by p.

If hn = gn, the above form shows that the second nonzero term of h must be

the ¿th. Thereafter, h must have the same terms as g since the equations for

the terms are linear and have unique solutions.
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Lemma 8. Given a series f= 22? a«x* w^h fli^l, then

i 2n       n\
n        n        a2(ai   — ai)   2

/   = aix 4-x  + ■ ■ ■ .
a{ — ai

This follows immediately by induction.

Lemma 9. ///= 22? *<**- cli — 1, and a29£0, then for all n not divisible by p
there exists one and only one nth root of f.

There is one and only one starting with x as shown in Lemma 7. Suppose

there were another «th root of/, g= 22? °>xi with bi?*l. Now

n n 62(Ôl     —   bl)      2 2
g   — bix H-x + • • • = x + Ox 4- • • •

bi2 — bi

since b\= 1. However, the coefficient of x2 in /is not zero by hypothesis. There-

fore, the only «th root of / is the one starting with x.

Now to prove Theorem 3 let /= 22? a.x', ai = 1, and fA= 22? °iXf and
consider three separate cases.

Case 1. There exists a field element, b, of infinite order. Then by Lemma 2,

(bx)f may be written as h~1(bx)h so that f= (bx)~lh~1(bx)h. As in the char-

acteristic 0 case/A has the form g~xk~lgk so that/x has first coefficient 1.

Case 2. All the field elements are of finite order and a29£0. Suppose 6i

is of order q j^l. The characteristic p does not divide q for if it did (bi)tlp

would satisfy yp=l. This, however, has only the solution 1 and would con-

tradict the fact that q is the order of 6i. Now

r/i«      .«    ,   b2(biq - b\)   2 iaJ_l
1/ J   = 6ix 4-—-— x + ■ ■ ■ = x + Ox 4-.-.,

or — bi

and /s = x4-oa2x24- • • • . The first series has at least two gth roots, the one

starting with x given by Lemma 7 and fA. The second can have only one qth

root by Lemma 9 since its second coefficient is not zero. Since the series cor-

respond under the automorphism, this is a contradiction. Therefore q= 1 and

Oi=l.

Case 3. All of the field elements are of finite order and a2 = 0. Now if

g=/(x4-x2), g has first coefficient 1 and second coefficient 1. Therefore gA has

first coefficient 1 by Case 2 and so does (x 4- x2)A. Consequently, fA

= gA[(x+x2)~1\A also has first coefficient 1.

To prove Theorem 4, again consider three cases.

Case 1. There is a field element, b, of infinite order. As in part 3B for the
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characteristic 0 case it follows easily that if (ox)A = cx + • • • , then c is of

infinite order. Then there is a series A such that A_1(»x)AA = cx by Lemma 2.

The reasoning of part 3D then gives the result.

Case 2. The field is infinite but has no element of infinite order. Choose

an infinite sequence of field elements o,- with orders ç< so that g!+i>g,-. Now if

ibix)A = CiX+ • ■ ■ , bi and c< have the same orders, for if one were of lower

order, s, the sth iterates of these series would violate Theorem 3. Then by

Lemma 1 there exist series A,- with first coefficient 1 such that Af-1(o,x)AA,-

= CiX+ 2^i?-1 di,jXiqi+l. As shown by the proof of Lemma 1 these A,- are

uniquely determined up to the g.th term. Now for any constant c, hi has

the property that Ar'(cx)AA,- has zero coefficients from the second to the o,th.

This follows from the fact that [hr\cx)Ahi] [hTlibix)Ahi] = [Ar1(6,-x)AA,-]

• [hTlicx)Ahi]. If hjxicx)Ahi had the form dix+dkxk+ ■ • • with dk^O and

k^qi, a comparison of Ath terms in the above equation would yield dkc\xk

= Cidkxk. This is impossible since c, has order q¡.

Now for i <j, h,- has the same terms of order less than qt as A< since the

terms of A¿ are uniquely determined for order less than qit and Ay"1(o¿x)AAy

has the same terms as hrlibix)Ahi for orders up to o,-. Therefore, it is possible

to define a series h which coincides with each hi up to the Ojth term. Since the

<7< are arbitrarily large, A is defined and clearly has the desired property.

Case 3. The field is a finite field. Let the field be of order o+l and let b

be a generator of the field. Then if (6x)A= 2~Lî c&*, it follows as in Case 2

that d has order q. By Lemma 1 there is a series A such that hrlibx)Ah

= Cix+ 2^,î diXqi+1. If the di are not all zero call the first nonzero one dk. Then

[A"1(ox)AA]<! = A-,(&5x)AA = A-1A = x. Therefore

r    d» T
x = [cix + dix*«-*-1 +•••]«= (cix)«   x 4-x*«+1 + • • •

qdk
= x H-x*«+l + • • • .

Cl

This is impossible since q is not divisible by the characteristic. Therefore, the

di are all zero and A-1(ox)AA = ciX. Since for any a in the field, (ox)A may be

written as a power of (6x)A, it is clear that A_1(ox)AA has all coefficients be-

yond the first equal to zero.

5. Results valid when the base field has finite characteristic p not equal

to 2; proof of Theorem 5. Because of §4 only automorphisms that take series

of the form ox into series of the form âx need be considered. Let/B denote the

image of a series/ under such an automorphism B.

Lemma 10. [£2(x, a)]B does not have the form x+bx2+ • ■ • where 6^0,

provided that the base field characteristic, p, is not 2.

Suppose that [£2(x, a)]B had the given form. Let c be a generator of the

prime field of the given field. Then if (cx)B = dx, d also has order p—l. Then



1961] AUTOMORPHISMS OF FORMAL POWER SERIES UNDER SUBSTITUTION 381

applying B to (cx)_1P2(x, a)(ex) = [P2(x, a)]°*gives (a"x)-1(x4-6x24- ■ • -)(dx)

= (x4-0x24- • ■ • )c =x+bc2x2+ ■ ■ ■ . Comparing second coefficients of these

expressions gives bd = bc2 whence d = c2. This is impossible for since c is of

order p — 1, this shows that d has order (p —1)/2.

Lemma 11. Pi(x, a) has the form x4-ox24- • • • where by^O, provided that

a¿¿0 and the base field characteristic, p, is not 2.

Since for a^O, Pi(x, a) = (ax)~1Pi(x, l)(ax), the lemma must be true for

all of these series or none. If it were true for none, Lemma 10 would show

that no series [P*(x, a)]B has second coefficient not equal to zero. Then using

Lemma 6 with « = 3 and applying B would show that no series would be trans-

formed into one with nonzero second coefficient. This contradiction proves

the lemma.

Now the reasoning of §3 parts J and K proves the first part of Theorem 5.

Letting (ax)B = dx and [Pi(x, l)]s = x4-ôx24- • • • , the fact that Pi(x, a)

= (ax)~1Pi(x, l)(ax) implies that [Pi(x, ß)]B = x4-öäx24- • • • . Now (ac)x

= (acx)B = (ax)B(cx)B=(äx)(cx) = (äcx), and [Pi(x, a4-c)]B = x4-6(a-f-c)x24-

• • ■ = [Pi(x, a)]B[Pi(x, c)}B = x+b(d + c)x2+ •••.

Since 0 5^0 and the field transformation has an inverse, these equations

show that a—»a is a field automorphism. This completes the proof of Theo-

rem 5.

6. Results valid when the base field is infinite and has finite characteristic

p not equal to 2 ; proof of Theorem 2. Because of §§4 and 5, any automorphism

can be reduced by use of inner automorphisms and a field automorphism to an

automorphism Csuch that (ax)c = ax and [Pi(x, a)]c = x+abx2 + • • • , b^O.

Nowlet/D = (öx)/c(öx)-1.

Lemma 12. [Pi(x, a)]ß = Pi(x, a).

Let [Pi(x, 1)]D= 22? aixi- Since Pi(x, a) = (ax)~1Pi(x, l)(ax), it will be

sufficient to show that for any k the first k a/s are equal to one. In any case

ai = a2=l. Now choose c so that c is not the root of any polynomial with

integral coefficients of degree less than k. This is possible since there are only

a finite number of such polynomials and there are an infinite number of field

elements. Then applying D to the equation (cx)_1Pi(x, l)(cx)Pi(x, 1)

= [(c4-l)_Ix]Pi(x, l)[(c + l)x] shows that the same equation holds with

Pi(x, 1) replaced by 22? a'xi- Comparing «th terms yields cn~1an+a„

+ (terms in lower ai)=an(c + l)n~1. Because of the way c was chosen, this

equation successively determines an if « = & and n¿¿l+pm, m = 0, 1,2, • •

Now it is also true that

(cx^Pifr, l)(cx)Pi(x, 1) = Pi(x, l)(cx)-lPi(x, l)(cx).

Again, an application of D gives an equation for 22? a«x\ Comparing («4-l)st

terms gives
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cBon+i + cb_1o„m + 2ca„_i + a„+i + (terms in lower a.'s)

= a„+i + ca„n + 2o„cB~1 + cBo„+i + (terms in lower o/s).

This determines a„ successively if m<A —2 and n¿¿2+mp, m = 0, 1, 2, • • • .

This and the preceding paragraph show that o„ is uniquely determined for

3=m<A — 2. Since £i(x, 1) satisfies the given equations, this shows that the

o„ are all 1 for 3=n<k — 2. Since k is arbitrary, this completes the proof.

Lemma 13. [£2(x, o)]D = £2(x, a).

Since

£2(x,o) = [(^i)xP2(x,l)[(î±i)x][(^)x]"1

•[£2(x,l)]-i[(^)x],

it is sufficient to prove that [£2(x, l)]D=£2(x, 1). By Lemma 10 [£2(x, l)]D

has a second coefficient of zero. If its third term were also zero, the second

and third terms of all the [£t(x, a) ]D for k = 2 would be zero. Using Lemma 6,

all series with first coefficient one would be transformed by D into ones with

their third coefficient equal to the square of their second coefficient. No series

would be transformed into x+x3. This contradiction shows that the third

coefficient of [£2(x, a)]D is not zero.

Choose an arbitrary integer k = 2 and c in the field such that c is not the

root of any polynomial with integral coefficients of degree less than 2A. Let

[£2(x, 1)]B= 2~lî biX\ It is already known that 0i= 1, o2 = 0, and ô3^0. The

equation (cx)~'£2(x, l)(cx)£2(x, l)=£2(x, l)(cx)-1£2(x, l)(cx) when trans-

formed by D gives the following equation when (M + 2)nd coefficients are com-

pared :

cn+1bn+i + cn~lbnnb3 + 3c2b3bn + bn+i + (terms in lower 6.)

= 6„+2 + nb„c2b3 + 3ô3cB-16„ + cB+1ôn+2.

These determine o„ successively for3<M = 2A + 3andM5¿3+w£,7M= 1, 2, ■ • -. <

It is also true that

[(i!¿Í)*P,(*'1)[(£27i)*]í,(s',)

-[(^>p.<, «[(^)4
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Applying D and comparing Mth terms gives

Tc2 - 1"1"-1 [ c2 + l-]"-1
-       bn + bn+ (terms in lower 6¿) = bn   -

L    2c     J L    2c     J

For 3<n — k and nj± \+2pm, m = 1, 2, ■ • -, these equations determine the b„

successively.

Combining the last two results and the fact that k is arbitrary shows

that all the o„ are determined except the third. Since £2(x, o3) satisfies the

given equations, [£2(x, l)]D = £2(x, b3). Now the reasoning of the second

paragraph of §3 part L and §3 part M completes the proof of the lemma.

The reasoning of §2 part N shows that D is the identity. Since D was ob-

tained from an arbitrary automorphism by inner automorphisms and a field

automorphism, this completes the proof of Theorem 2.
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