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Introduction. The purpose of this paper is to clarify the structure of finite

groups satisfying the following condition:

(CN) : the centralizer of any nonidentity element is nilpotent.

Throughout this investigation we consider only groups of finite order. A

group is called a (P)-group if it satisfies a group theoretical property (P). In

this paper we shall clarify the structure of nonsolvable (CN)-groups and

classify them as far as possible. This goal has been attained in a sense which

we shall explain later.

If we replace in (CN) the assumption of nilpotency by being abelian we

get a stronger condition (CA). The structure of (CA)-groups has been known.

In fact after an initial attempt by K. A. Fowler in his thesis [8], Wall and

the author have shown that a nonsolvable (CA)-group of even order is iso-

morphic with LF(2, q) lor some q = 2n>2. A few years later the author [12]

has succeeded in proving a particular case of Burnside's conjecture for (CA)-

groups, namely a nonsolvable (CA)-group has an even order. Quite recently

Feit, M. Hall and Thompson [7] have proved the Burnside's conjecture for

(CN)-groups. We can therefore consider groups of even order and focus our

attention to the centralizers of involutions.

We consider the condition (CIT):

(CIT) : a group is of even order and the centralizer of any involution is a

2-group.

There is no apparent connection between the class of (CN)-groups and

the class of (CIT)-groups. But a nonsolvable (CN)-group is a (CIT)-group

(Theorem 4 in Part I). This theorem reduces the study of nonsolvable (CN)-

groups to that of (CIT)-groups. Both properties (CN) and (CIT) are obviously

hereditary to subgroups (provided that we consider only subgroups of even

order in the case of (CIT)). Although it is true that a homomorphic image

of a (CN)-group is also a (CN)-group (this statement is false for infinite

groups), it is not an obvious statement. On the other hand it is not difficult to

show that a factor group of a (CIT)-group is a (CIT)-group, provided that

the order is even. This is due to the following characterization of (CIT)-groups :

namely a (CIT)-group is a group of even order containing no element of order

2p with p>2 and vice versa. This makes the study of (CIT)-groups some-

what easier. The large part of this paper concerns the structure of (CIT)-

groups.
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There is an important subclass of (CIT)-groups. Zassenhaus [18] has con-

sidered a group G satisfying the following condition:

(Z) : G is faithfully represented as a doubly transitive permutation group

in which only the identity leaves three distinct letters invariant.

The degree of this permutation group is called the degree of a (Z)-group

G. If we denote this degree as 1+N, the number N is a power of a prime num-

ber unless G contains a normal subgroup of order N+l (cf. Feit [5]). We

shall denote by (ZT) the following conditions on G:

(ZT) : G is a (Z)-group of odd degree and G is not a Frobenius group.

It is not too difficult to see that a (ZT)-group is a simple (CIT)-group

(Theorem 1 in Part I). One of the main results in this investigation is that

the class of simple (CIT)-groups consists of (ZT)-groups and some classical

linear fractional groups (see Part III). Precisely we have

Theorem. Let G be a simple nonabelian iClT)-group. Then G is one of the

following types:

(i) a iZT)-group,

(ii) LF(2, p) with a Fermât prime or a Mersenne prime p,

(iii) LF( 2, 9) or

(iv) LF(3, 4).

Conversely any one of the above types of groups is a simple iClT)-group.

Thus the study of simple (CIT)-groups is reduced completely to the study

of (ZT)-groups. If q = 2n> 2, the group LF(2, q) is an example of (ZT)-groups.

In fact until quite recently this family of groups was the only example of

(ZT)-groups. Recently the author [15] has given another infinite family of

(ZT)-groups Giq) for a = 22n+1>2. The author has been unable to decide

whether there would be more (ZT)-groups. Only fragmental results are known

for the general (ZT)-groups. The author hopes to return to this subject in

the future and would like to remark here that a (ZT)-group is isomorphic with

LF(2, q) if and only if the order is divisible by 3. Hence the orders of groups

Giq) and all the remaining (ZT)-groups, if any, are prime to 3. Moreover a

simple (CIT)-group is one of linear fractional groups if (and of course only

if) the order is divisible by 3.

The above theorem solves the problem we had at the beginning. If G is a

simple nonabelian (CN)-group, then G is one of the groups mentioned above.

Here again the classification would not be complete unless we know the struc-

ture of general (ZT)-groups which remain to be investigated.

The author has also been unable to decide whether a nonsolvable (CIT)-

group is a (CN)-group or not. So far all the known nonsolvable (CIT)-groups

are (CN)-groups. As a matter of fact if every (ZT)-group is a (CN)-group,

then all the nonsolvable (CIT)-groups would be (CN)-groups.

Part I discusses a characterization of (ZT)-groups which may be con-

sidered as a generalization of the result of Wall and the author. The second
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part is a study of general (CIT)-groups. More detailed study of semi-simple

(CIT)-groups occupies the long third part, where the theorem stated before

is proved in a more general form. The main results of this paper have been

published in a short note [16].

We use standard notations throughout. For a subset X of a group G let

Na(X) denote the normalizer of X in G. The centralizer of X is denoted by

Cg(X). Theorems or lemmas of the same part are quoted just by numbers.

On the other hand quotations from other parts are indicated by inserting

the number of the part from which quotation is made. For instance Lemma 5

means the fifth lemma of the same part, but Lemma 1.2 indicates it is the

second lemma of Part I.

Part I. A characterization of (ZT)-groups

1. Preliminary remarks on (ZT)-groups. Let G be a (ZT)-group of degree

q+1. Then g is a power of 2 by a theorem of Feit [5]. Let P denote the sub-

group of G which leaves one letter invariant. Then P is a Frobenius group of

order qd where d is a divisor of q— 1. Let Q he the Sylow 2-group of P and K

be a subgroup of order d. Then P is a semi-direct product of Q and K, and

coincides with NG(Q).

Lemma 1. If r is an involution of Q, then Cg(r) is contained in Q.

In general we denote by 1(a) the set of letters left invariant by a. Then

I(pap~x) consists of the letters of the form p(a) with aEI(a). Hence if p com-

mutes with a, then p leaves the set 1(a) fixed. If r is an involution of Q, I(t)

consists of a single letter so that Cg(t) must be contained in Q. Incidentally

Lemma 1 proves that the group P is a Frobenius group since every non-

identity element of K induces an automorphism of Q which leaves only the

identity invariant.

Lemma 2. If N is a normal subgroup of G containing Q, then two involutions

of N are conjugate in N.

Proof. First of all remark that any involution of G is contained in N since

A7 is a normal subgroup containing a Sylow 2-group. Since Q is not normal in

N, there is a conjugate subgroup Q' of Q which is different from Q. Take in-

volutions tEQ and t'EQ'. If the order of tt' is even, there is an involution

t" commuting with both r and r'. By Lemma 1, r and t' would be in the

same Sylow 2-group of G. This contradicts the choice of t and t'. Hence the

order of tt' is odd and t is conjugate to r' in the group generated by r and

r'. If ir is another involution of Q, r is conjugate to t' in N. Hence it is con-

jugate to t in N, proving the assertion.

If for two involutions r and w of Q we have 7r = p_1Tp, then p~lQp(~\Q con-

tains it. Hence p-1C?p coincides with Q, that is, pEF. Hence the index d is

equal to the number of involutions in Q. This implies in particular that the
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normal subgroup N oí Lemma 2 contains £. Since Q is a Sylow 2-group, we

must have NGiQ)N = G. We conclude therefore that G is the only normal sub-

group of G containing Q.

Theorem 1. A iZT)-group G is a nonabelian simple iCIT)-group.

Proof. By Lemma 1 G is a (CIT)-group. We need only to show its sim-

plicity. Assume the contrary. Let £f be the smallest proper normal subgroup

of G. By the preceding argument H does not contain the subgroup Q. Let £

be the intersection QC\H. The group HC\F is a normal subgroup of £. Since

£ is a Frobenius group, HC\F is contained in Q. Hence we have HP\F

= Hr\Fr\Q = R. Suppose that R^e. Then H contains all the involutions of

G. If £ contains more than one involution, we have NHiR)^R since involu-

tions of £ are conjugate in A/#(£). This is not the case because

£ * NH(R) Q NaiQ) H H = H H £.

Hence £ contains only one involution. £ is therefore either cyclic or a gen-

eralized quaternion group. If £ is cyclic, a theorem of Burnside [4, §243]

shows the existence of a normal subgroup Hi of H such that II = RHi. This

contradicts the minimum choice of H. If £ is a generalized quaternion group,

£fis not simple by a theorem of Brauer and Suzuki [3]. Since £7 is minimum,

H is characteristic simple. If H is not simple, it is a direct product of iso-

morphic simple groups. Such a group has more than one involution in a

Sylow 2-group. This is a contradiction. Hence we must have R = e. Then the

group Q induces fixed-point-free automorphisms in II by Lemma 1. Q is again

either cyclic or a generalized quaternion group. Let N be the maximal normal

subgroup of odd order. A theorem of Burnside or a theorem of Brauer and

Suzuki [3] can be applied to show that G/N contains a central involution.

Since G is a (CIT)-group the quotient group G/N is also a (CIT)-group. This

implies that G/N is a 2-group and that G = QN. The group G is therefore a

Frobenius group contrary to the definition of a (ZT)-group.

2. A characterization of (ZT)-groups. In this section we shall characterize

(ZT)-groups by some group theoretical properties. For aEG we denote by

CqÍct) the totality of elements of G which transform a into <r or cr~1.

Theorem 2. £ef G be a group and H a subgroup of G. Let Ho denote the sub-

group of H generated by involutions of H. Suppose that the following two condi-

tions are satisfied :

(1) Caia)QHfor any a^l of H, and
(2) the center of Ho is not trivial.

Then we have one of the following four cases:

(i) H0 is a normal subgroup of G,

(ii) a Sylow 2-group of G is cyclic,

(iii) a Sylow 2-group of G is a generalized quaternion group, or

(iv) G is a (ZT) -group and H is a Sylow 2-group of G.
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Proof of this theorem requires a few lemmas of which the first is the

following:

Lemma 3. Under the assumptions of Theorem 2, H is a group of even order

containing a Sylow 2-group of G.

Proof. By the assumption (2) the group H0 contains more than one ele-

ment. Hence there is at least one involution in H. The order of H is obviously

even. The last assertion is a particular case of the next lemma.

Lemma 4. Let H be a subgroup of G satisfying the condition

(1') : Ca(a) Ç H       for any a ^ 1 of H.

Then H is a Hall subgroup of G.

Proof. It suffices to show that a Sylow group of H is a Sylow subgroup

of G. Let S be a Sylow subgroup of H. By way of contradiction suppose that

5 is not a Sylow subgroup of G. By a theorem of Sylow 5 is contained in a

Sylow group S' of G. There is a subgroup P of S' containing S as a proper

normal subgroup. By a property of /»-groups 5 contains a central element

a 7^1 of P. Hence we have

C0(a) ^T^S.

Since S was a Sylow group of H, H can not contain P. Hence Ca(o) is not a

part of H violating the condition (1').

Lemma 5. PAe condition (1) in Theorem 2 implies the condition (V) of

Lemma 4 and the condition

(I")    if a j^l of H is a product of two involutions r and t' of G, then r is con-

tained in H.

Proof. From the definition it is clear that Cg(o)QCq(o-). Hence the condi-

tion (1') is a consequence of the condition (1). Suppose that (T = tt'. Then t

transforms a into a~x. Hence tECq^^H.

For any group G let «(G) denote the number of involutions in G.

Lemma 6. Let H be a subgroup of G satisfying the condition (1") of Lemma 5-

PAe« we have

«(G) = n(H) + [G: H] - 1.

Proof. Consider any coset X modulo H. If X = H, X contains exactly

n(H) involutions. Suppose X¿¿H. If X contains two different involutions r

and r', then the product tt' is an element of H and tt' 9^ 1. By the condition

(1") t is an element of H. This is not the case. Hence any coset ¿¿H contains

at most one involution. The inequality follows immediately.
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We shall return to the proof of Theorem 2 and assume the conditions (1'),

(1"), (2). Let us assume that H0 is not a normal subgroup of G. Remark that

we have m(ÍT) =m(íIo) by definition. Since H0 is not normal in G, there is a

conjugate subgroup Hi of Ho different from Ho. We want to show that Hi(~\H

contains no involution. Suppose that it does. Take one, say r, of involutions

in Hii~\H. By (2) there is an element ry^l which is in the center of Hi. Then

T commutes with r, since tEHi. By the condition (1') we conclude that r

belongs to H since rECoir)QH. Again by (1') Cg(t) is contained in H.

Cair) certainly contains Hi. Therefore Hi is a subgroup of H and is generatpd

by involutions. By definition £fi coincides with H0. Hence HiC\H contains no

involution. Thus we have

m(£i) + n(H) = n(G).

On the other hand we get m(G)^m(£î) + [G: H] — ! by Lemma 6. Hence we

have

n(B) = n(Hi) = [G: H] - 1.

It follows from Lemma 3 that every involution of G is conjugate to an in-

volution of H. If t is an involution of H, the number of involutions conjugate

to t is the index [G: Cc(t)] which is a multiple of [G: H], since by (1') Cair)

is a subgroup of H. Hence if there are more than one conjugate class of in-

volutions, or there is an involution not contained in the center of II, then we

have m(G) = 2 [G: H], Then we get

2[G: H] = n(H) + [G: H] - 1,    or    [G: H] + 1 = n(B).

This contradicts the inequality M(£f) = [G: H] — 1. Hence there is exactly one

class of involutions in G, and H contains a central involution r. If t' is another

involution of H, CgÍt') is a subgroup of H by (1') and has the same order as

Coir) =H. Hence every involution of H lies in the center of H. The group

Ho is an elementary abelian subgroup of the center of H and CgÍH0) =H.

Let £ be the normalizer NaiHo) of H0. Since H=CgÍHo), H is a normal

subgroup of £. Burnside's argument shows that two involutions of H are

conjugate in £. Hence f = [£: H] =m(í7). Since f is odd, no coset ¿¿H modulo

H in £ contains any involution. We have therefore

[G: H] = m(G) = n(B) + [G: H] - [L: H].

This implies that every coset modulo H outside of £ contains exactly one in-

volution.

If F is a coset modulo £ and if Y^L, Y consists of f cosets modulo H and

all those cosets are outside of £. Hence F contains exactly f involutions

ti, • ■ • , Tt. Then r,T¡(l=^<f) are f —1 elements of £. If Z is another coset

7±L modulo £, Z contains f involutions n, • • • , rt. Suppose that we have

TiT< = 7Ti7r,. Then p = tit< is an element of £ and commutes with ti7Ti. We want
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to conclude that titti is an element of L and hence the coset Z coincides with

Y. We need a lemma.

Lemma 7. Suppose an element pj¿l of L is a product of two involutions.

Then Ca(p) is contained in L.

Proof. Suppose that an element cr outside of P commutes with p. The cosets

modulo H outside of P contain exactly one involution. Hence we may write

<r as a product ryr where vEH and r is an involution. Since a EL, r is not con-

tained in H. The equation pa = ap implies that n~1pr)=Tpr. Hence we get

p~1t)~1pn=p~1Tpr. It is clear that the group {H, p} contains H as a normal

subgroup. Hence the commutator p~1rj~ipr] is an element of H. H contains

therefore the product of two involutions r and p~xrp. The condition (1") says

that tEH. This is not the case.

This lemma and the argument of this part are essentially ideas of Feit

[6]. Returning to the proof of Theorem 2, we see that each coset j^L modulo

P contributes exactly t—1 elements of P and there is no coincidence. Hence

by counting the number of elements of P we get an inequality

[L:e] = [H:e] + (t-l)([G:L]-l).

Denote by A the order of H and by m the index [G: P]. Since t=[L: H] we

have an inequality

(/ - 1)(A - m + 1) = 0,

which implies that either /=1 or h + l=m.

Since t = n(H), the equality t= 1 occurs only when H contains exactly one

involution. This is the case only if a Sylow 2-group of H is either a cyclic

group or a generalized quaternion group. By Lemma 3, we have the case (ii)

or (iii) accordingly.

If G is a (Z)-group of odd degree 1+q but not a (ZT)-group, then G con-

tains a normal subgroup Gi of order 1 +q. Then a Sylow group Q of G induces

fixed-point-free automorphisms of Gi and hence Q is either cyclic or a gen-

eralized quaternion group. Hence in order to finish the proof of Theorem 2 it

suffices to show that G is a (Z)-group, assuming t>l.

Suppose that a conjugate subgroup p~YHp intersects with P nontrivially.

By Lemma 4 H is a Hall subgroup of P and is normal in P by definition.

Hence the intersection Li^p^Hp is a part of H. If 0-^1 is an element of

Li^p^Hp, CG(v) contains both H0 and p_1P/oP and is contained in H. We

have therefore p~1H0p = Ho and hence p_1Hp = H. We have assumed that H0,

and hence H, is not normal in G. There must be a conjugate subgroup Hi of

H different from H. Then HiC\L = e, which means two distinct elements of

Hi belong to different cosets modulo P. Hence we obtain an inequality

[G:L] = 1 4- [Hi-.e],   or   m = 1 + A.
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Combined with the reverse inequality m— 1+ ft we get an equality m= 1+h.

We shall represent G as a permutation group Y on the cosets modulo £.

The degree of this representation is m = l+h and is odd. £ is the subgroup

consisting of elements leaving one symbol invariant. We claim that the group

II is transitive on cosets Lut^L so that the group is at least doubly transitive.

Take a coset La and suppose an element 0-7^ 1 of H leaves Lu invariant. Then

we have Lua = Lu, which implies that p.apr^EL. As shown before this is pos-

sible only when ¡xo-pr1 belongs to H. Hence uENg(Ho)—L. Since Mî = l+ft,

II is transitive on cosets ^L.

Let <p be the character of the representation Y. Since Y is doubly transitive,

<p is decomposed as a sum of two irreducible characters over the complex num-

ber field: <p= 1+x (cf. [4, §207]). For any element a of G the value of <p is the

number of symbols left invariant by a. Suppose that &, • • • , C* are the

totality of conjugate classes of G containing no element of H. Let gi be the

number of elements in C¿ and x¿ the value of <p °n C<- If x,>0, then x, is at

least 2. The identity leaves exactly m = 1 +h symbols invariant and each non-

identity of II leaves exactly one symbol fixed. The orthogonality relations

yield two equations:

2g = E «¿W2    and    g =22 *(<0-
<reff ceG

Using the values of <p we obtain '

2 ^—<   2

2g = m  + mih — 1) + 2-, *•£•
i

and

g = m + mih — 1) + 22 *<«*■
i

Hence by subtracting twice the second equation from the first one we have

E Xiixi - 2)gt = 0.

Since x, = 0 or x, = 2, x<(x, —2) is non-negative. Hence for any i, either

x, = 0 or x» = 2. This shows that the identity is the only element which leaves

three different symbols invariant. G is a (Z)-group by definition and the

assertion of Theorem 2 is proved.

Corollary. Let H be a nilpotent subgroup of even order in G. Assume that

H satisfies the condition (1') of Lemma 4. Then we have one of the four cases:

(i) II is a normal subgroup of G,

(ii) a Sylow 2-group of G is cyclic,

(iii) a Sylow 2-group of G is a generalized quaternion group or

(iv) G is a (ZT)-group and H is a Sylow 2-group of G.
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Proof. Let Pp be the subgroup of H generated by involutions of H. Since

H is nilpotent, the center of P/o is not trivial. This proves the second condition

(2) for H. By Lemma 4, H is a Hall subgroup of G. Suppose an element a ¿¿I

of Pi is a product of two involutions t and r'. Then r is contained in Cg(cr).

If the order of a is odd, then Cg(o) contains a Sylow 2-group of H. Since H is

a Hall subgroup we have Cg(<t) = Cq(o) and hence Ca(a) is contained in H

by (1'). Hence tEH. On the other hand if the order of a is even, a power of

a commutes with r. By (1') r must be an element of H. Thus the condition

(1") of Lemma 5 is satisfied. Hence Theorem 2 can be applied. We need only

to show the first case of Theorem 2 implies the normality of H. Suppose that

H is not normal. Then there is a conjugate subgroup Hi of H and Hi?±H.

Since Ho is normal, PTi contains Ho. By a property of nilpotent groups Ho con-

tains a central element of Hi. By (1') we get a contradiction.

We remark that the assumption of the nilpotency of H can be replaced by

the following one. Pi is a direct product of a 2-group and any group of odd

order.

The next theorem is a particular case of Theorem 2 and characterizes

(ZT)-groups among simple groups of composite order.

Theorem 3. Let G be a group and II a subgroup of G satisfying the condi-

tions (1) and (2) (or (V), (1") and (2)) of Theorem 2. If G is a simple group of

order greater than 2, then G is a (ZT)-group. Conversely any (ZT)-group con-

tains a subgroup satisfying the conditions (1) and (2).

Proof. By Theorem 2 we have one of four cases for G. Suppose that H0 is

normal in G. Then being a characteristic subgroup of H0, the center C of H0

is a normal subgroup of G. Obviously C is an abelian group of even order.

Hence if G is simple, C coincides with G and is a group of order 2.

If a Sylow 2-group S is cyclic, G contains by a theorem of Burnside [4]

a normal subgroup N such that G = NS and NC\S = e. If G is simple we have

N = e so that G = S. Again the order of G must be 2.

If G is simple its Sylow 2-group can not be a generalized quaternion group

by a theorem of Brauer and the author [3]. Hence the only possibility remain-

ing is the last case (iv).

If conversely G is a (ZT)-group, its Sylow 2-group H satisfies the condi-

tion (1) (cf. the proof of Lemma 1). The condition (2) is trivial since H is a

2-group.

3. Applications. The next two theorems are also corollaries to Theorem 2.

Theorem 4. A nonsolvable (CN)-group is a (ClT)-group.

Proof. Let G be a nonsolvable (CN)-group. By a theorem of Feit, M.

Hall and Thompson [7], the order of G is even. By way of contradiction sup-

pose that G is not a (CIT)-group. Then there are nilpotent subgroups of even
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order which are not a 2-group. Among them choose one, say M, with the

largest possible order. Since M is nilpotent if is a direct product of a 2-group

M0 and a group of odd order. Consider a Sylow 2-group Q containing Mo- If

Qj¿Mo, there is a subgroup T of Q containing M0 as a proper normal sub-

group. Then Af0 contains a central element a^l of £. The centralizer CgÍc)

contains £ as well as M and by assumption Coia) is nilpotent. This contra-

dicts the definition of M. Hence M contains a Sylow 2-group Q. If M=QXK,

K contains at least two elements by definition. Let p be an element 9^1 of

the center of K. It is clear that CgÍp) is a nilpotent subgroup containing M.

From the maximal choice CgÍp) = M. Similarly if r is a nonidentity element

of the center of Q, we have Cair) = M. We want to show that the group M

satisfies the condition (1'). Let a he any element 7^1 oi M. If aEK, Cc(<r)

is by definition a nilpotent group containing Q. Since Q is a Sylow 2-group Q

is a direct factor of Ca(a). Hence Co(a)QCo(r) = M. If aEK, a power r oí

a is a nonidentity element of Q. Cg{t) is a nilpotent group containing Cg(o~)

and K. If CG(r) =RXS where £ is a 2-group and 5 is of odd order, £ is a

part of S. If S^K, there is a subgroup of 5 containing K as a proper normal

subgroup. Then there is an element s^l of K whose centralizer contains M

as a proper subgroup. This is not the case. Hence we have

Cc(tt) = £ X K C Caip) = M.

By the above corollary we have one of the four cases. If the group M is

normal G/M is a solvable group, since all the Sylow groups are cyclic (cf.

Zassenhaus [19]). If a Sylow group of G is either a cyclic group or a general-

ized quaternion group, then the factor group G/N by the maximal normal

subgroup N of odd order contains a central involution (cf. the last part of the

proof of Theorem 1). If t is an involution of G, rN is the central involution of

G/N and G = NCg(t). By assumption CgÍt) is nilpotent. Since G/N

=Cg(t)/NC^Cg(t), G/N is also nilpotent. Since the order of AT is odd, N is

solvable by a theorem of Feit, M. Hall and Thompson [7]. Hence in both

cases G is a solvable group contrary to the assumption. Since M is not a

Sylow 2-group, the last case (iv) can not happen either. Hence G is a (CIT)-

group.

Theorem 5. Let G be a (CYY)-group and S a Sylow 2-group of G. Assume

that Sylow 2-groups of G are independent. Then we have one of the following :

(i) 5 is normal,

(ii) 5 is cyclic,

(iii) S is a generalized quaternion group or

(iv) G is a (ZT) -group.

Proof. If o- r= 1 is an element of 5 and if pa = ap, then a is contained in both

5 and p~lSp. Since Sylow 2-groups are independent by assumption, p~rSp

coincides with 5. This means that p is an element of NgÍS). Since G is a
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(CIT)-group the order of p is a power of 2. Since pENo(S), p must be an

element of 5. Therefore the group 5 satisfies the condition (1') of Lemma 4.

The corollary of Theorem 2 proves the assertion of Theorem 5.

Part II. Properties of general (CIT)-groups

1. The structure of solvable (CIT)-groups. In this section we shall study

the structure of solvable (CIT)-groups. The first theorem is however proved

in a slightly more general form.

Theorem 1. Let G be a (ClT)-group. Assume that G contains a proper nor-

mal subgroup of odd order. Then G is a solvable group. In this case G contains

an abelian normal subgroup A of odd order such that G = AS for a Sylow 2-group

S of G and no element 9il of A commutes with an element 9il of S.

Proof. By assumption G contains proper normal subgroups of odd order.

Let N be one of them. Since the order of G is even there is a Sylow 2-group

5 of G such that S(~\N = e. If r is a central involution of S, t induces an auto-

morphism of order 2 in N, which leaves only the identity invariant. Hence

by a result of Burnside N is abelian and r maps any element of N into its

inverse. If S contains another involution t', t' would also map every element

of N into its inverse. Then the product tt' would be an involution of S which

commutes with every element of N. This is a contradiction to the condition

(CIT). Hence S contains only one involution. Such a 2-group is either a

cyclic group or a generalized quaternion group. Thus the proof of Theorem 1

is reduced to the proof of the following proposition.

Proposition 1. Suppose that a Sylow 2-group S of a (ClT)-group G is

either a cyclic group or a generalized quaternion group. Then G contains an

abelian normal subgroup A of odd order such that G = AS and no element 9i 1

of S commutes with an element 9*1 of A. In particular G is a Frobenius group.

Proof. Let A be the normal subgroup of G with the greatest possible odd

order. As before A is abelian. If 5 is cyclic, A satisfies the condition G = AS

by a theorem of Burnside [4, §243]. On the other hand if 5 is a generalized

quaternion group, the group G/.4 contains a central involution by a theorem

of Brauer and Suzuki [3]. There is an involution r of 5 such that the coset

tA is in the center of G/A. If a is any element of G, the element <r_1TO- gener-

ates a Sylow 2-group of the subgroup (.4, t}. Hence by a Sylow's theorem

there is an element p of A such that a~1TO~ = p~1rp. Then the element op~x be-

longs to the centralizer of t in G which is by assumption the group S. Hence

op-1£.Sand so we have G = SA. Since every element 9±l of S induces a fixed-

point-free automorphism of A, the group G is a Frobenius group and the

proposition follows immediately.

The solvability of G in Theorem 1 follows from the condition G = AS. The

above theorem is supplemented by the next theorem.
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Theorem 2. Let G be a solvable iClT)-group. If G contains no proper normal

subgroup of odd order, G has a series of normal subgroups

GDLDNDe

such that G/L and L/N are cyclic groups of relatively prime orders, N is a 2-

group and the extension of G over N splits. If moreover the order G/N is even,

the group G/L is a 2-group and induces fixed-point-free automorphisms of L/N,

Proof. Since G is solvable, G contains a proper normal subgroup of prime

power order. By assumption all proper normal subgroups are of even order.

Hence G contains a normal subgroup which is a 2-group. Let N he the normal

subgroup of the greatest possible 2-power order. Then N^e.

Suppose that the group G/N is of odd order. If £ is a Sylow />-group for

some odd prime p, the group iV^is a Frobenius group by the condition (CIT).

Hence £ is a cyclic group. By a result of Zassenhaus [19] there is a normal

subgroup £ of G such that both G/L and L/N are cyclic and the orders are

relatively prime. The splitting of the extension of G over N is proved by a

theorem of Schur [20, p. 125].

Assume that the order of G/N is even. Then the group G/N is a (CIT)-

group containing a proper normal subgroup of odd order. By Theorem 1 there

is a normal subgroup £ of G such that G^)L^)N, G/L is a 2-group and £/A7

is an abelian group of odd order. As shown before every Sylow group belong-

ing to an odd prime is cyclic. This implies that L/N is cyclic. The group G/L

is isomorphic with a Sylow 2-group of G/N which is either a cyclic group or a

generalized quaternion group. On the other hand the group G/N is a Frobe-

nius group. Hence the group G/L is isomorphic with a subgroup of the group of

automorphisms of L/N. Since L/N is cyclic, G/L must be abelian. Hence the

group G/L is also cyclic.

The only thing left is to show that the extension of G over N splits. By

the splitting theorem of Schur [20] £ contains a subgroup H such that

L = NH   and    N f\ H = e.

Since £ is solvable, the subgroup o-~xHa for aEG is conjugate to H in £. This

implies that G = LK with K = NGiH). Since L = NH and HÇZK, we have

G = NK. On the other hand KC\L is the normalizer of H in £ and hence

£ C\ L = (£ r\ N) X H.

From the condition (CIT) it follows that Kf~\N = e. Therefore the subgroup

£ is a complement of N in G.

2. Remarks on general (CIT)-groups. Using Proposition 1 the theorem at

the end of Part I may be stated in the following form.

Theorem 3. Let G be a iClT)-group. If Sylow 2-groups are independent,

then G is either a solvable Frobenius group or a (ZT) -group.
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Proof. Let 5 be a Sylow 2-group of G. If G is not a (ZT)-group, we have

one of the following two cases: (1) 5 is normal or (2) 5 is either cyclic or a

generalized quaternion group. In the first case all Sylow groups of G/S are

cyclic. Hence by a theorem of Burnside G is solvable. The solvability in the

case (2) is shown in Proposition 1.

Theorem 4. Let G be a nonsolvable (ClT)-group. Then the maximal solvable

normal subgroup of G is a 2-group.

Proof. Let N be the maximal solvable normal subgroup of G. Suppose that

N^e. Since N is solvable, N contains a characteristic subgroup M^e of

prime power order. Then M is a normal subgroup of G. Since G is assumed to

be nonsolvable M is a 2-group by Theorem 1. We may assume that M has the

greatest possible order.

By way of contradiction suppose that N is larger than M, and consider

the group G/M. If the group G/M is of odd order all Sylow groups of G/M

are cyclic, since G is a (CIT)-group. This would imply the solvability of G/M

and hence of G. This contradicts the assumption. If the group G/M is of even

order G/M is a (CIT)-group. Since Nj^M, G/M would contain a normal sub-

group of odd order. This would imply again the solvability of G/M by Theo-

rem 1. Hence we must have M=N.

3. The family £> of 2-subgroups of G. In the following discussion on the

structure of general (CIT)-groups a family of 2-subgroups of G attracts our

attention.

Let § be the collection of 2-subgroups of G defined by the following prop-

erties: HE& if (1) Hy^e, (2) Ng(H) contains at least two Sylow 2-groups

and (3) H is the maximal normal 2-subgroup of Ng(H).

Lemma 1. The family fè of 2-subgroups of G is empty if and only if Sylow

2-groups of G are independent.

Proof. If § is not empty we can take a subgroup H which belongs to ^V

Then by (2) the normalizer N=Ng(H) contains at least two Sylow 2-groups-

If Q and Q' are Sylow 2-groups of N, QC\Q' contains H and H^e by (1). By

a theorem of Sylow Q and Q' are contained in Sylow 2-groups P and P' of G

respectively. Since Q^Q', P is different from P'. Thus Pj^P' and

P r\ P' ^ H 9± e.

Sylow 2-groups are therefore not independent.

Conversely assume that Sylow 2-groups are not independent. Let D be a

maximal intersection of Sylow 2-groups. Then Dj^e by assumption. If

D=PiC\P2 for Sylow 2-groups Pi and P2, the normalizers of D in Pi and P2

are larger than D by a property of 2-groups. Hence the normalizer N of D

contains at least two Sylow 2-groups. Since D is a maximal intersection, D

must be the maximal normal 2-group of N. Hence D is in !q.
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Sometimes the following lemma is useful.

Lemma 2. If D^e is a 2-subgroup of G such that NgÍD) contains at least

two Sylow 2-groups, then there exists a subgroup H in § such that

H 3 D   and   Na(B) 2 Na(D).

Proof. Let £i be the maximal normal 2-subgroup of NGiD). Then

£i 3 D   and   NGiDi) 3 NoiD).

Hence NgÍDi) contains at least two Sylow 2-groups. We shall define a se-

quence of subgroups Di by induction. Suppose D¡ for j<i have been defined

and satisfy the properties

£i-i 2 Di-i 3 • • • 3 D   and   N{-i 3 A\-_2 3 • • • 3 NGiD)

where Ni = NG(Dj). Let £,■ be the maximal normal 2-subgroup of Ar,_i. Then

clearly we have

Di 3 D^i    and    Ni 3 tf^.

Since G is a finite group the sequence {Di} must terminate after a finite num-

ber of steps. If £f=U£„ H = Dn for large values of n. By definition H is the

maximal normal 2-group of 7Vg(£„) = NGiH). This is the third requirement

for H to be a member of §. The first two are also satisfied as is seen from the

construction. Hence H is in §.

The family £> is a partly ordered set by the usual order relation defined by

inclusion. Thompson [17] has introduced another order in £> so as to make

another partly ordered set. We define a relation » in § in the following way.

Let HiEÍQ for »=*1, 2. Denote by Ni the normalizer of Hi in G, by m,- the

order of A7,- and by 2e» the order of a 2-Sylow subgroup of Ni. We define

£i » Hi   if    (1) ei > e2,    or    (2) ei = e2, Mi > m2,    or    (3) £x = H2.

It is easy to see that the relation defined above satisfies the usual three

axioms for an order and the set § becomes a partly ordered set. In the follow-

ing we shall refer to this order as the Thompson order in order to distinguish

it from the usual one.

4. Conjugacy of involutions in (CIT)-groups. This section is devoted to

the proof of the following theorem.

Theorem 5. £ef G be a iClT)-group and N the maximal normal 2-subgroup

of G. If the order of G/N is even, G contains an involution outside of N and any

two involutions not contained in N are conjugate to each other.

Before entering the proof which is quite involved, we remark that if G

is nonsolvable the order of G/N is by Theorem 4 automatically even. We

need a few lemmas, of which the first is the following.

i
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Lemma 3. Assume that a (ClT)-group G contains two Sylow 2-groups S

and S' such that Si\S' =e. Then all the involutions form a single conjugate class.

Proof. By assumption S^e, so that we can take an involution t0 in the

center of 5. By way of contradiction suppose that there exists an involution

t which is not conjugate to to. By assumption the centralizer Cg(t) is a 2-

group. By a theorem of Sylow Cg(t) is conjugate to a subgroup of S. We may

therefore assume that 5 contains Cg(t). Take an arbitrary Sylow 2-group P

of G. Then there is a central involution r' of P such that r' is not conjugate

to t. Then there is another involution t of G which commutes with both t

and t'. Hence we have

t e c0(t) r\ Cg(t') qsc\t.

This implies in particular that Si~\T9ie. Since T was arbitrary we get a

contradiction to the assumption. Therefore involutions form a single con-

jugate class.

Lemma 4. Let G and N be as stated in Theorem 5. Assume that the order of

G/N is even. If there are two Sylow 2-groups S and S' of G such that Si\S' = N,

then the conclusions of Theorem 5 hold.

Proof. Consider the natural homomorphism (p of G onto G/N. Then the

groups (p(S) and <b(S') are Sylow 2-groups of G/N satisfying the condition

<j>(S)is\p(S')=e. We apply Lemma 3 to the group G/N and conclude that

involutions of G/N form a single conjugate class. Let t and ir' be central in-

volutions of d>(S) and 4>(S') respectively. The subgroup {ir, ir'} generated by

it and ir' is a dihedral group containing {ir} as a Sylow 2-group. Let H be the

subgroup of G containing N such that <b(H) = {ir, t'}. Then H is a solvable

(CIT)-group. If H contains a normal subgroup Pof odd order, every element

of P must commute with any element of N. By the condition (CIT) P must

be trivial. Hence H satisfies the assumption of Theorem 2. Since N is clearly

the maximal normal 2-group of H, the extension of H over N splits. This

means that there is a subgroup D of H isomorphic with the dihedral group

{w, it'}. Hence D contains involutions r such that 0(r)=7r. Since ríJA7' we

have proved the first assertion of existence. If a is any involution of G outside

of N, the element <f>(o) is an involution of G/N and is conjugate to ir'. We

may therefore assume that 0(c) =v'. If a is not conjugate to r the order of

or=p must be even. Hence by assumption it is a power of 2. Then the same

is true for <b(p) =inr'. This is, however, not the case since no element except

the identity commutes with both ir and ir'. Hence a is conjugate to t in G

as claimed.

The next lemma is more complicated to prove, but this is the final step

in the proof of Theorem 5.
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Lemma 5. Let G and N be as stated before. If the order of G/N is even, G con-

tains Sylow 2-groups S and S' satisfying

SC\S' = N.

Proof. We use the inductive argument on the order of G.

Suppose N^e. The group G/N is by assumption a (CIT)-group of order

less than that of G. Since N is the maximal normal 2-subgroup of G, the group

G/N does not contain any proper normal 2-group. By inductive hypothesis

there are Sylow groups T and V of G/N such that T(~\ V = e. We take sub-

groups S and S' of G such that S/N= T and S'/N= V. Then we have SC\S'

= N and both S and S' are Sylow 2-groups of G.

Assume that N=e. If Sylow 2-groups are independent, Lemma 5 is

trivially true. We assume that Sylow 2-groups are not independent. Let ^>

be the family of 2-subgroups of G defined in the previous section. By Lemma 1

and by the assumption just made the family ¿p is not empty. We remark that

for any IIEfe the normalizer NgÍH) is a proper subgroup of G so that we may

apply inductive hypothesis to NoiH), since we have assumed that N = e.

For each HE& let OiH) denote the set of elements of NGiH) outside of

H : OLH) = NgÍH)—H. Let Z be the subgroup of the center of a Sylow 2-group

generated by involutions. For any subgroup £ of G let F(£) denote the sub-

group of K generated by subgroups of K which are conjugate to Z in G.

Clearly the subgroup ViK) is a normal subgroup of A (?(£).

Assume that there is a subgroup H in § satisfying the condition that

OiH) contains an involution conjugate to some element of Z. By inductive

hypothesis NGiH) contains two Sylow 2-groups £ and £' such that PC\P'

= H. By Lemma 4 involutions in OiH) are conjugate to each other. We can

take two involutions r and r' of NgÍH) in such a way that tHÍt'H) belongs

to the center of P/HiP'/H). Since we assumed that 0(£f) contains an involu-

tion conjugate to an element of Z, r must belong to the center of some Sylow

2-group and the same is true for r'. Hence both S=CgÍt) and S' = Coir') are

Sylow 2-groups of G. Suppose that Sr\S'?¿e. Then there exists an involution

r in Si\S' and CgM contains t and t'. By assumption Ccir) is a 2-group.

Hence t and t' generate a 2-group Q. The group QH/H contains both tH and

t'H, and has a nontrivial center because it is a 2-group. Hence the centralizer

of tH in Arc(£f)/£f contains at least two elements of the centralizer of t'H.

This is, however, impossible since the centralizer of tH is P/H and that of

t'H is P'/H. Hence Sf~\S' = e as was to be shown.

We want to derive a contradiction out of the assumption that for any

HE&, OiH) contains no involution conjugate to an element of Z. By way of

contradiction suppose that OiH)C\a~xZa= 0 for any aEG and HE&- This

assumption implies that ViH) = ViNGiH)) for all HE&- In particular we

have ViH) T^e.

Let Ho be a subgroup of § which is maximal in the Thompson order.
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Let P be a Sylow 2-group of M = Nq(Ho). Consider the subgroup V= V(Ho).

F is a normal subgroup of M. Hence Ng(V) contains M. If P is not a Sylow

2-group of G, P is contained in a 2-group P as a proper normal subgroup.

Since V= V(P), NG(V) contains P. By Lemma 2 there is a subgroup H of

$ such that HD V and NG(H)^NG(V). Since iVG(P/)3P$P, the subgroup

H would be larger than H0 in the Thompson order. This is impossible since

we took Ho to be maximal. Hence P is a Sylow subgroup of G. Similarly we

see that Na(V) = M. It fol'ows now that the subgroup Pío is uniquely de-

termined by P. Namely Hv is the maximal normal 2-group of Nß( V) where

V= V(P). We denote H0 = H(P).

We shall show that if P and P' are two Sylow 2-groups of G and if P(~\P'

9±e, then Pi\P'^H(P).

First of all we remark that the relation P(~\P''DH(P) implies that H(P')

= H(P). In fact if a Sylow 2-group P contains PT(P), P contains V(P) = V.

Hence V(T) = V. This implies that H(T) =H(P). In order to prove the above

statement we suppose, by way of contradiction, that there is a pair of

Sylow 2-groups P and P' such that PfYPVe and PC\P'^H(P). Denote by

D the intersection PC\P' and assume that we have chosen a pair P and P'

so as to make the order of D as large as possible under the two restrictions.

Suppose that NG(D) contains only one Sylow 2-group Q. Let P" he a Sy-

low 2-group of G containing Q. by a property of 2-groups D is different from

Np(D) and also from NP.(D). Hence P"r\P^NP(D)9^D. Since D has a

maximal order, we conclude that

P" r\P^H(P).

Similarly we get P"C\P''Q.H(P'). But as remarked before these relations

yield equations

H(P) = H(P") = H(P')    and    D = P i\ P' 2 P H P' t~\ P" 2 P(P).

This is not the case. Thus NG(D) contains at least two Sylow groups.

Suppose that D is not the maximal normal 2-group of NG(D). By Lemma

2 there is a subgroup D' of £ such that D'^D and NG(D')~DNa(D). Since P

does not belong to £, P' is larger than D. The group P(~\Na(D) contains D

properly. We take a Sylow 2-group Pi of G containing (Pr\NG(D))D'. Then

the intersection PC\Pi contains P(~\Ng(D) and hence larger than D. From

the maximal choice we get

PHPi2P(P) = P(Pi).

Similarly if Pi is a Sylow 2-group of G containing (P'C\NG(D))D', we have

P' C\P{ ^H(P') = P(Pi').

On the other hand we see that PiC\Pl contains D'. In the same way as above

we get PiC\Pi ^H(Pi) = H(P{). Hence we conclude that
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£ = £ n £' 3 £ n £1 n £' n £1' 2 £(£).

This is a contradiction. Hence D must be a subgroup of §.

In general we remark that a subgroup H of § is an intersection of Sylow

subgroups of G. In fact let Qi, ■ ■ • , Qi, • • • be Sylow groups of A0(£f).

Then the intersection fl,- Qi is the maximal normal 2-group of NaiH) and

hence H= D,- Qi. By a theorem of Sylow each Qi is contained in a Sylow group

Pi of G. Let D denote the intersection H,- £,. By definition £ contains H. If £f

is a proper subgroup of £, there is a subgroup K oí D which contains H as a

proper normal subgroup. Hence DÍ\NGiH)'DK7íH. On the other hand for

each i, PíÍ^NgÍH) is a 2-group containing Qi. Since Q< is a Sylow group of

NgÍH), we must have £<HNGiH) = Ç,, Hence DÍ\NaiH) = n,£<nA0(¿7)
= nÇj = £f, which is a contradiction. Hence .77=0, £, is an intersection of

Sylow groups of G. As a consequence we remark that if a subgroup K of G

contains NGiH), then the maximal normal 2-subgroup of £ is contained in H.

We have shown that if there is a pair of Sylow 2-groups £ and £' such that

£f\£Ve and PC\P'^HiP), then there is an intersection £ = £iH • • • H£*

of Sylow subgroups of G such that DE& and £35i£(£i). Consider such a

subgroup £ which is maximal with respect to the Thompson order. Let Q

be a Sylow 2-group of AG(£). Suppose that Q is not a Sylow group of G.

Then there is a 2-group £ containing Q asa proper normal subgroup. The

subgroup Vo= ViD) is normal in Ac(£) and at the same time normal in T

since

Vo = ViNaiD)) = ViQ).

Hence there is a subgroup £i of § such that

£1 2 Vo,       N0(Di) 2 NaiVo) 2 tf0(Z>)

and £1 is larger than D in the Thompson order. Since £i£¿p, £1 is the max-

imal normal 2-group of 7V<j(£i) and hence by a remark at the end of the

preceding paragraph we conclude that DiQD. Since we have assumed that

D^HiPi), £1 does not contain i?(£) for any Sylow 2-group £ containing Dx.

This contradicts the maximal choice of D. Hence Q is a Sylow 2-group of G.

If so, by assumption

ViD) = ViNaiD)) = ViQ)

and hence ViQ) is a part of £. Since £1 is another Sylow 2-group containing

D, ViPi) coincides with ViQ) and is also contained in D. By definition i/(£i)

is the maximal normal 2-subgroup of Ac(F(£i)). On the other hand since

F(£i) is a part of D, we see that N0iViPi))^NGiD). It follows that D con-

tains HiPi). This is a contradiction to our assumption. Hence if two Sylow

2-groups P and £' intersect nontrivially, then PC\P' contains £f(£).

Incidentally this part of the argument proves a more general proposition.
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Let p be an arbitrary prime number and §p be the family of /»-subgroups de-

fined in a similar way as £> in the third section. For subgroups X and U of G,

let V(X: U) denote the subgroup of X generated by conjugate subgroups of U

contained in X.

Proposition 2. Suppose that the family §P is not empty and that there exists

a subgroup U of G such that

V(H: U) * e   and   V(H: U) = V(N0(H): U)

for all HE CV PAew a Sylow p-subgroup S of G contains a subgroup K satisfying

the following properties: (1) KE&P, (2) K= V(S: K) and (3) if T is another

Sylow p-subgroup of G and if Si^T^e, then Sr\T~OK.

The subgroup H(S) defined in the above proof satisfies the required prop-

erties. The first and the last properties are obvious. As for the second property

we can prove a stronger result, that K is strongly closed in 5. In fact if a con-

jugate subgroup K' of K intersects nontrivially with S, then K' is contained

in a subgroup S' conjugate to S. Then SC\S' j^e and this implies, by (3), that

SnS'^K'. Since K = H(S) and K' = H(S') we conclude that K = K'.
In this formulation the actual meaning of V(X: U) is not essential. We

can replace V(X: U) by a function V defined on p-subgroups satisfying cer-

tain conditions. If p = 2 we can say something about the involutions of G.

Assume moreover that G contains no proper normal 2-subgroup. Then the

subgroup K of Proposition 2 is not normal. There is a subgroup K'^K,

which is conjugate to K. Let P be a Sylow 2-group containing K'. We take

two involutions r and t' such that tEK and t'EP. Let D denote the sub-

group generated by r and t'. If the order of D is divisible by 4, there are

Sylow 2-groups Q and Q' of D such that Q3t, Q/Bt' and QHQ'^e. Q and
Q' are contained in Sylow 2-groups 5 and S' of G respectively: QQS and

Q'ÇZS'. Since tEK, Si\K^e and we conclude that S^K. The involution

t' is an element of P(~\S' and P=>P'. Hence by (3) of Proposition 2 we have

S'=?P'. Since Sr\S'^Qr\Q'^e, we have again by (3) S~DK' which implies
that K = K'. This contradiction proves that the order of D is not divisible by

4. Hence t and r' are conjugate in D and a fortiori in G. It follows therefore

that involutions of G form a single conjugate class. Moreover we conclude

that there is no involution in S — K, since K is strongly closed in S. As a

matter of fact every involution of 5 is contained in the center of K. This last

situation is however impossible in our case of Lemma 5, since there is an

involution in S—K by inductive hypothesis. Thus we have proved Lemma 5

and at the same time the proof of Theorem 5 is finished. Moreover we have

the following corollary to Proposition 2.

Corollary. Let G be a (ClT)-group having no proper normal 2-group. As-

sume that the family !q of 2-subgroups defined in the third section is not empty.
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£fteM there is no subgroup U of G for which the conditions

viH: U) t* e   and    V(H: U) = ViNaiH): U)

are satisfied for all HE&-

5. Intersections of Sylow groups. In the following we assume always that

G is a (CIT)-group, G contains no proper solvable normal subgroup and

Sylow 2-groups are not independent. Theorems 4 and 5 show that G contains

one and only one class of conjugate elements containing involutions. If §

is the family of 2-subgroups defined in the third section, this set § is not

empty.

Lemma 6. // HE¡Q, there is a pair of Sylow 2-groups T and V of G such

thatH=TC\T'.

Proof. Let A denote the normalizer NGiH). By Lemma 5 there are Sylow

2-groups Q and Q' of N such that QC\Q' = H. Then Q and Q' are contained

in Sylow groups £ and £' of G. We have

Q= T(~\N   and   Q' = V C\N.

If Tf\T' contains H properly, there is a subgroup U of Tf~\T' which con-

tains H as a proper normal subgroup. Hence

Tr\TT\N^U?¿H.

On the other hand Tr\TT\N=Qr\Q' = H. Hence we must have TC\T' = H.

Lemma 7. Let Z be a subgroup of the center of a Sylow 2-group of G. If a

Sylow 2-group P contains an involution of Z, then P contains Z.

Proof. Let t be the involution of Z contained in £. If C is the center of £,

every element of C commutes with t. Hence CÇZCc(t). On the other hand by

assumption CgÍt)=S is a Sylow 2-group of G containing Z. Hence CQS

and this implies that ZÇ.CaiC) =P.

In the rest of this section we consider a fixed subgroup Z of the center of

some Sylow 2-group of G. As before the subgroup ViU) = F(£: Z) is the sub-

group of U generated by all the conjugate subgroups of Z which are contained

in U.

Lemma 8. There are subgroups H and W of G satisfying the conditions

HE&, W is conjugate to Z, A0(7J)3 W and WC\H= e.

Proof. Since Z is a subgroup j¿e of the center of some Sylow 2-group of

G, VÍNgÍH)) is not trivial. Hence by the corollary to Proposition 2, there is

a subgroup H oí ^ such that ViNaiH)) j± ViH). This means that there is a

conjugate subgroup W of Z contained in NaiH) but not in H. We need only
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to show that W(~\H=e. By Lemma 6, there is a pair of Sylow 2-groups P

and V of G satisfying TC\T'= H. If WC\H*e, we have

Wr\T^Wr\H * e   and    Wr\T'^Wr\H^e.

Hence by Lemma 7 we conclude that W is contained in both P and T'. This

is a contradiction since TC\T'=H does not contain W.

Lemma 9. Let $>i be the family of 2-subgroups of G defined by the conditions :

A subgroup H is in §i if and only if HE& and there is a conjugate subgroup

W of Z such that

W Q Na(B)    and   W C\ H = e.

If a subgroup H of &i is maximal in $i in the usual inclusion, then Sylow 2-

subgroups of NG(H)/H are independent.

Proof. Let G' denote the factor group Ng(H)/H. In G' we denote the

normalizer of X simply by N(X). Let ¿p' be the family of 2-subgroups of G'

defined in a similar way as ¿p. It is necessary to show that §' is empty. By

way of contradiction suppose that §' is not empty.

The group WH/H is a subgroup of G'. Let W denote the subgroup of

WH/H generated by involutions. First of all suppose that there is a subgroup

K' of £>' such that

V(K':W') * V(N(K'):W).

Take a subgroup K of G such that K/H = K'. Elements of G in N(K') form

a subgroup N which is the normalizer of K in Ng(H). Since K'E!q', Ng(K)

contains at least two Sylow 2-groups. Hence by Lemma 2, there is a subgroup

Hi of ^> such that

Hi D K   and   NG(Hi) D NG(K) D N.

By definition of K, there is a subgroup U such that U is conjugate to W in

No(H) and the subgroup of U generated by involutions is contained in N

but not in K. Lemma 5 applied to N(K') shows that there is a pair of Sylow

2-groups Qi and Q2 of N such that Qi(~\Q2 = K. Q( is contained in a Sylow

2-group Pi of NG(Hi). Then we have PiCsP^Hi. Hence

Hi r\ n c px r\ p2 r\ n = Qi r\ q2 = k.

This implies that there is an involution in U which is not contained in Hi.

If HiCMIy^e, any Sylow group of G containing Pfi contains U by Lemma 7.

Hence U would be a subgroup of Hi. We conclude therefore Hi(~\U=e. This

is a contradiction, since UQNg(Hí), Hi~DK*H and H was chosen to be

maximal subject to those restrictions.

Suppose that there are subgroups of £>' containing W. Among them pick

one, say P', maximal with respect to the Thompson order. Then we have

V(L':W') = V(N(L'):W')



446 MICHIO SUZUKI [June

and this group is not equal to e since £'3 IF'. In a similar way as before A(£')

contains a Sylow 2-group Q' of G'. Consider subgroups £, N and Q such that

L/H=L', N/H=NiL') and Q/H=Q'. Q is a Sylow 2-group of NaiH) and
is contained in a Sylow 2-group S of G. By Theorem 5 0; contains an involu-

tion outside of £ which is conjugate in NaiH) to an element of W. Hence

there is a subgroup F such that Fis conjugate to IF in Na(H) but V(~\Q%L.

Then we have VC^S^e, which implies by Lemma 7 that VQS. This means

that VQSr\NG(H) = Q. Hence VH/H is a subgroup of N(L') but F£f/£7
contains an involution outside of £'. Hence F(£': PF') is smaller than

F(A(£'): IF'); a contradiction.

Hence there is no subgroup of £>' containing W'. By Theorem 5 involu-

tions form a single conjugate class of G'. Hence each involution of W' is in

the center of some Sylow 2-group of G' containing W. There is however only

one Sylow 2-group containing W'. In fact if there are more than one, there

would be a member of !q' containing IF'. Hence W' is contained in the center

of a Sylow 2-group, which implies that F(A(£') : W) ¥^e for any 2-subgroup

£' of G'. This is however a contradiction to the corollary of Proposition 2,

since

ViL':W) = ViNiL'):W')

for all £'£§'. This finishes the proof of Lemma 9.

Proposition 3. £ef G be a (CIT)-group containing no proper solvable nor-

mal subgroup, and Z be a subgroup of the center of a Sylow 2-group of G. Then

there is a maximal intersection D of Sylow 2-groups of G satisfying the following

property: the group AG(£) contains a conjugate subgroup W of Z such that

WC\D = e.

Proof. This proposition is trivial if Sylow 2-groups of G are independent.

Hence we assume the contrary throughout the proof.

Let ^2 be the family of 2-subgroups of G which is defined as follows. A

subgroup H is in §2 if and only if HE&i (see Lemma 9 for the definition)

and the Sylow 2-groups of NaiH)/H are independent. Lemma 9 says that

§2 is a nonempty subfamily of £>. We shall prove that if £ is a subgroup of

^2 containing the largest number of involutions, then £ is a maximal inter-

section of Sylow 2-groups of G.

First of all we remark that the subgroup ViH: Z) = ViH) contains all the

involutions of H. In fact since HEÍQ there is by Lemma 6 a pair of Sylow

2-groups T and V of G such that TC\T' = H. If t is an involution of H, r is

in £ and £'. By Theorem 5 r is contained in a conjugate subgroup U of Z.

By Lemma 7 £is contained in both £and £' and hence in H = TC\T'. Defini-

tion of ViH) implies that F(i7)3[/. This proves the remark.

Suppose, by way of contradiction, that the subgroup D is not a maximal
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intersection. Then there are Sylow 2-groups Q and Q' of G such that I = Qi\Q'

is a maximal intersection containing D. Being a maximal intersection, I is

a member of ¡Q. Since / contains D properly, Ii~\NG(D) contains D properly.

Hence by Theorem 5 I contains an involution which is not contained in D.

Thus the number of involutions of I is larger than that of D.

For each HEÍQ let n(H) denote the number of involutions in H. Let £>*

denote the subfamily of § consisting of II with n(H) >«(P). Then §* is not

empty as is seen from the preceding argument.

We want to show that V(H) = V(NG(H)) lor all HE$*. Again suppose

the contrary. Take one of the groups in !q*, say H, such that

V(H) * V(No(H)).

The last part of the proof of Lemma 8 shows that such an H belongs to Jpi.

Let Pfi be a group containing Hand maximal in ip/ (with respect to the usual

order). Then n(Hi)^n(H) and so iPi£§*. By Lemma 9 Sylow 2-groups of

NG(Hi)/Hi are independent. This contradicts the definition of D since

n(Hi)>n(D) and PPG§2.

Consider a group K which belongs to §* and is maximal in the Thompson

order. Let P be a Sylow 2-group of Ng(K). Then we have

V = V(K) = V(NG(K))

and V contains as many involutions as K. From the definition Na(V) con-

tains NG(K). Suppose that P is not a Sylow 2-group of G. Then as before P

is not a Sylow 2-group of Ng(V). By Lemma 2 there is a subgroup Pi of ^

such that Ki'DVand Ng(Ki)^Ng(V). Since Ki^V, we have

«(Pi) ^ n(K) > »(D),

which means Pi£§*. The second relation implies that Pi is larger than K

in the Thompson order. This is a contradiction to the definition of K. On

the other hand if P is a Sylow 2-group of G, Ng(K) contains an involution

outside of K by Theorem 5. By Lemma 7, we get V(NG(K)) 9^ V(K) which is

again a contradiction. This proves that D is a maximal intersection of Sylow

groups.

Part III. Structure of semi-simple (CIT)-groups

1. Preliminary remarks. Throughout this third part we consider only a

(CIT)-group G containing no proper solvable normal subgroup, namely we

assume that G is semi-simple. If Sylow 2-groups are independent, G is a

(ZT)-group (Theorem II.3). The purpose of this part is to determine the

structure of G when Sylow 2-groups are not independent. Theorem 11.5 and

Proposition II.3 are essential in this study. By Proposition II.3, we know

the existence of a 2-group H satisfying the following properties; H is a max-
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imal intersection of Sylow 2-groups of G and the group NaiH) contains a

conjugate subgroup W oí Z such that W(~\H = e. Here Z is a fixed subgroup

of the center of some Sylow 2-group. The first part of the discussion is to de-

termine the structure of NaiH). Throughout this part the letter H is reserved

for one of the subgroups satisfying the above conditions, on which we focus

our attention. Let N denote the group NgÍH).

Lemma 1. £ef P be a Sylow 2-group of N and S a Sylow 2-group of G con-

taining P. If Zo is the part of the center of P generated by involutions, then Z0 is

contained in the center of S.

Proof. By definition Z0 is a part of CaiH) which is a normal subgroup of

N. Since H is a maximal intersection, H is the maximal normal 2-subgroup

of N. Hence ZoQCgÍH) -HÇ.H. If t is an involution of Z0, Cair) is a Sylow

2-group of G by Theorem II. 5. Since if is a maximal intersection, Cair) must

be equal to 5. Hence Zo is in the center of 5.

Lemma 2. If r is an involution of the center of H, then r is contained in the

center of some Sylow 2-group of N and this Sylow group is uniquely determined.

Proof. By assumption S=Coir) contains H. By Theorem II.5 S is a

Sylow 2-group of G. Hence there is a subgroup Q of S which contains if as a

proper normal subgroup. Then Q is in N. There is a Sylow 2-group £ of N

containing Q and a Sylow 2-group Toi G containing £. Then TC\Scontains Q.

Since His a maximal intersection of Sylow groups we must have T=S. Then

P= Ti^\N = Si\N contains r in the center.

2. The structure of G when the center of a Sylow 2-group is cyclic. This

section is devoted to the study of semi-simple (CIT)-groups in which the

center of Sylow 2-groups is cyclic.

Lemma 3. If the center of a Sylow 2-group is cyclic, then N/H is a dihedral

group of order 6.

Proof. As before let £ denote a Sylow 2-group of N and .S be a Sylow 2-

group of G containing P. By assumption the center of S is cyclic. It follows

from Lemma 1 that the center of £ is also a cyclic group.

By Theorem 11.5 there is an involution r of £ not contained in H. Let

£' be another Sylow 2-group of N. Take involutions r and r' in the center

of £ and £' respectively. Since PC\P' = H, both r and r' belong to the center

of H. Consider the conjugate element 7t" = t-Vt of r'. This is another ele-

ment of the center of H. Hence r' and r" commute. The product r'r" of

r' and r" is an involution and commutes with r. Since we took r outside of

H, t is not an element of £' and does not commute with r'. Hence r'r" ^ 1

and it is an element of the center of £ (see Lemma 2). Hence r = r'r" and r

leaves the subgroup U={r, r'} generated by r and r' invariant. Similarly

if r' is an involution of £' not contained in H, t' leaves U invariant. The
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group U is an abelian group of order 4 and clearly in the center of H. On the

other hand

Ca(U) = C0(tt) r\ Cg(tt') = H.

Since Ng(U) contains t and r- we conclude that the group Ng(U)/H is a

group of order 6 isomorphic to the symmetric group of three letters. In the

preceding argument the choices of P, P', r or t' are arbitrary. Hence any

pair of involutions in N/H generates a group of order 6, provided that those

involutions are not in the same Sylow 2-groups. If however r and ti are two

involutions in P, then both r and ti transform ir' into 7T7t'. Hence tti commutes

with ir'. This means ttiEH. Hence the group P/H contains only one involu-

tion. By Proposition 11.1, N/H contains an abelian normal subgroup A/H

and N = PA. Since N/H is a (CIT)-group every element of A/H is a product

of involutions. Hence the order of any element of A/H is 3. Since the group

N is solvable, the group A/H must be cyclic. Hence A/H is a cyclic group of

order 3 and at the same time N/H is a group of order 6 which is a dihedral

group.

Proposition 1. Let G be a semi-simple (ClT)-group. Assume that the center

of a Sylow 2-group is cyclic. Then this center is actually a group of order 2. If

D is any maximal intersection of Sylow 2-groups, then the group Ng(D)/D is a

dihedral group of order 6 and the center of D is of rank 2.

Proof. Apply Proposition II.3 taking Z to be the center of a Sylow 2-group.

Then there is a maximal intersection H of Sylow 2-groups such that Ng(H)

contains a conjugate subgroup W of Z and WC\H =e. Then WH/H is a part

of a Sylow group of NG(H)/H. By Lemma 3 NG(H)/H is a group of order 6.

This proves the first assertion. The second part can be proved in a similar

way as before.

Lemma 4. Let A be a direct product of two cyclic 2-groups of the same order.

If A admits an automorphism 8 of order 2 which leaves exactly two elements fixed,

then the order of A is 4.

Proof. We shall use additive notations. Let A = {u} +{v} with nu = nv = 0

and n = 2m. We may assume that «0 = ku (k = 2m~1) is the only fixed element

besides the identity by 6. Write down 0 explicitly by

8(u) = au + bv   and   8(v) = cu + dv.

Since ku is fixed, we get

a = 1    and    ô = 0 (mod 2).

Since kv is not invariant but is mapped to k(u+v), we get

c = d = 1 (mod 2).

We have
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0(xw + yv) = iax + cy)u + ibx + dy)v.

Hence 6 leaves xu+yv invariant if and only if we have

ax + cy = x,       bx + dy = y (mod n).

Hence if b = 0 (mod 4), then the element 2m~2u or 2m~2u + 2m~lv would be in-

variant by 6 according as a = 1 (mod 4) or a = 3 (mod 4). Suppose the order of

A is greater than 4. Then m = 2 and the assumption b = 0 (mod 4) produces an

invariant element besides ku. On the other hand if b is not divisible by 4,

the order of 6 can not be 2. If so, we would have a2 + £>c=l (mod n). Since

a2=l (mod 4) we would get be = 0 (mod 4), a contradiction. Hence the order

of A must be 4.

Lemma 5. Under the same assumptions as in Proposition 1, a Sylow 2-group

S contains an involution r such that the order of Csir) is 4.

Proof. Consider maximal intersections of Sylow 2-groups contained in 5.

Assume that none of those maximal intersections is a maximal subgroup of 5.

Let II be one of the maximal intersections in 5 which has the maximal possible

order. Let F denote the center of H. By Proposition 1 the group NgÍH)/H is

a dihedral group of order 6. By assumption the group P = Sr\NciII) is a

proper subgroup of S. Hence there is a subgroup T of 5 containing £ as a

proper normal subgroup of index 2. Since £is not a part of NaiH), £ contains

an element a which transforms H onto a subgroup IV of £ where H'y^H.

Let V be the center of H'. Again by Proposition 1 F is an abelian group of

rank 2. VCW is contained in the center of P. By Lemma 1, VC\V is cyclic.

Hence there is an involution r of V which is not contained in VC\V. We

may assume that V— UX W where £3 VC\ V and W3>r. Suppose that two

elements r and a~lra commute. Then p = ra~1ra is an involution of £ which is

not contained in VC\V'. From the choice of a, a~2ra2 is an involution of F.

Hence a~lpo- is either p itself or p times the involution t of VC\ V. Hence a

leaves the subgroup X generated by p and r invariant. If a is any element

of £, a leaves both H and H' invariant. Hence a leaves the groups {t, r\ and

{t, <j~xra\ invariant. This means arlra = r or 7tt, and

a~1ia~lrcr)a = a~1ra    or    o~~lro~r.

Hence a~lpa = p or pr. Since r is in the center of 5 we conclude that a~lXa = X.

Therefore NG(X)~D {P, a} =T. Since X is a noncyclic abelian group of order

4, No(X) contains a normal 2-group F of larger order than H. Y is contained

in a maximal intersection. This contradicts the definition of II. Hence r does

not commute with cr~1ra. Hence r is not contained in H'. This implies that

H'C\W=e and W^P/H'. The group IF is a group of order 2. At the same

time we see that {r\ is a maximal cyclic group of F. Since NG(H)/H is a

dihedral group of order 6, there is an automorphism of H of order 3 which
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leaves only the identity invariant. Hence {t} is also a maximal cyclic group

of V. This implies that F is a group of order 4. By a theorem of Neumann

[lO], the central quotient group H/V is abelian. Since H'C\W=e, we get

HT\V = U. Hence we get

H/U = (V/U)X(Hr\H')/U   and    HC\H'/U ^H/V.

Thus we conclude that the group H/U is abelian. Hence the commutator

subgroup of H is contained in U. Since H admits an automorphism which

maps U onto W, the commutator subgroup of II must be in U(~~\W=e. The

group PT itself is therefore abelian. Hence Pi coincides with the center F which

is as shown above a group of order 4. Clearly H is the centralizer of ir in 5

and this proves our assertion.

Suppose that there is a maximal intersection D which is a maximal sub-

group of 5. By Proposition 1 Na(D)/D is again of order 6. Let V be the center

of D. Since D admits an automorphism of order 3 which leaves only the

identity fixed, by a theorem of Neumann the group D/ V is abelian. Moreover

we see that F is a direct product of two cyclic 2-groups of the same order. By

Theorem II.5, S contains an involution w which is not contained in D. The

element ir induces an automorphism of V which leaves exactly two elements,

since the center of 5 is of order 2. By Lemma 4 the order of V is 4. The group

T=Cg(it) is a Sylow 2-group of G by assumption, and H=SC\T is the cen-

tralizer of ir in 5. If H is a maximal subgroup of 5 we can apply the similar

argument as before, and conclude that the order of H is 4. Suppose that H

is not a maximal subgroup of 5. Let r denote the central involution of 5. V

contains another involution p. Since p leaves the group K=\t, ir} invariant,

p leaves H=CG(K) invariant. Let P be the group generated by H and p.

Since H$)p, we get H(~\V = U= {t}. Since D is a maximal subgroup, D(~\H

is maximal in H. Hence we get

(DC\H)r\V=U    and    V\J (D f\ H) = P C\ D.

Hence we get H(~\D/ U=PC\D/ V. The last group is abelian since it is a sub-

group of D/ V. Since D does not contain w, we get

H = (HC\D)KJW

where W= {it}. Hence we get

H/U = (HC\D)/U X UW/U.

The group HC\D/U is abelian as shown before. Therefore H/U must be

abelian. There is an automorphism of H which maps U onto W. It follows

that H itself is abelian. Then the group PP\D is also abelian since it is a direct

product of {p} and HC\D. Therefore HC\D is contained in the center of P.

A similar consideration on P (instead of S) shows that H contains a maximal

subgroup Y which is the center of a subgroup of P covering H. The inter-
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section D(~\Hr\ Y consists of elements which commute with some element of

order 3. Hence we have DC\H(~\Y=e, which means the order of H is 4.

Proposition 2. Let G be a semi-simple (ClT)-group. Assume that the center

of a Sylow 2-group is cyclic. Then the structure of Sylow 2-groups is as follows.

A Sylow group S is generated by two elements a and r satisfying conditions

v» = T2 = i    and    T-iair = a-i    or    ,-i+J«-!

This is a direct consequence of Lemma 5 and Lemma 4 of [ll]. One of

the above types is a dihedral group. The other one contains a dihedral group

as a maximal subgroup. This dihedral group is generated by all the involu-

tions. Another noncyclic maximal subgroup is a generalized quaternion group.

Theorem 1. Let G be a semi-simple (ClT)-group. If a Sylow 2-group is a

dihedral group, then G is one of the linear fractional groups LF(2, q).

Proof. By Theorem 11.5 involutions of G form a single conjugate class.

Hence G does not contain a normal subgroup of index 2. If X is a cyclic sub-

group of even order of G the order of X is a power of 2. If Y is another cyclic

subgroup of G and if XC\Yj¿e, then XC\ Y contains an involution r. Hence

both X and F are contained in the centralizer of r which is by the condition

(CIT) a Sylow 2-group. Therefore XU Y is contained in a cyclic group. We

can apply a theorem of Brauer, Suzuki and Wall [2]. It follows that G is iso-

morphic with LF(2, g) for some prime power q.

More precisely we have

Theorem 2. Only the following values of q are possible in Theorem 1.

q = p = 2n + 1,       a Fermât prime,

q = p = 2n — 1,       a M er senne prime,

q = 9 or 0 = 4.

Proof. If q is even, Sylow 2-groups of LF(2, q) are elementary abelian

groups of order q. They are of dihedral type only if q = 4. Assume that q is

odd. Then it is known (cf. Burnside [4, Chapter 20]) that the centralizer of

an involution is a dihedral group of order q + 1 or q — 1 according as q= — 1 or

+ 1 (mod 4). Hence by assumption q+1 is a power of 2.

Let q = pm and q + 1 = 2". Then m = 2. If mí is even,

q + 1 = pm + 1 = 2 (mod 4).

This is impossible, li m = 2k + l, then

q+1 = ip+l)l   where   I = p2k - p2h~l + • ■ ■ + 1.

Hence l=2k + l = l (mod 2). On the other hand / is a power of 2. Hence 1=1

and q=p = 2n— 1 is a Mersenne prime.
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Let q — 1 = 2". If m is odd, the same method as above shows that q = p is a

Fermât prime. If m is even, then q = r2 and

g-l = (r+ l)(r- 1) = 2».

Since the greatest common divisor of r4-1 and r—1 is 2, we must have

r-l = 2 and g = 9.

Theorem 3. Let G be a semi-simple (ClT)-group. Assume that a Sylow 2-

group is not a dihedral group but the center is cyclic. Then G is the group Mo, in

the notation of Zassenhaus [18], of order 720, which is the projective group of one

variable over the near-field of 9 elements.

Proof. By assumptions the structure of a Sylow group S is the second one

given in Proposition 2. Since the center of S contains only one involution, the

normalizer of 5 in G coincides with S. From the defining relations it follows

that the commutator subgroup P of S is a cyclic group. Consider the inter-

section D = Sr\a~1Ta for oEG. If D is not contained in P, then the order of

D is either 4 or 2. If the order is 4, D and P contain the central involution in

common. Hence a commutes with the central involution of S. Then D would

be a subgroup of P. Hence for all <rEG, D = Si^<x~1Ta is either a group of

order 2 or a part of P. Hence the maximal dihedral subgroup P of 5 contains

all those intersections and actually is generated by them. By a theorem of

Grün [9], G contains a normal subgroup H of index 2 such that HC\S = P.

The group H is a semi-simple (CIT)-group with dihedral Sylow 2-groups.

Hence by Theorem 1 Pi is one of linear fractional groups. Let Q be a Sylow

3-group of H. Then [NG(Q) : NH(Q) ] = 2. If Ç is cyclic, Q contains a character-

istic subgroup Qo of order 3. Then Cg(Qo) is a group of odd order by assump-

tion and

[Ng(Qo):Cg(Qo)] = 2.

Since Ng(Qo)'^Ng(Q), Nh(Q) would be a group of odd order. This is not the

case since H is one of linear groups. Hence Q is not cyclic. By Theorem 2 and

the subgroup theorem of Gierster (cf. [4]), H is isomorphic with LF(2, 9).

G is then isomorphically represented by a permutation group on Sylow 3-

groups. The degree is 10 and this permutation group is at least doubly transi-

tive. Since the subgroup leaving one object fixed is a Frobenius group of order

72, it is triply transitive. A theorem of Zassenhaus [l8] may be applied to

conclude that G is isomorphic with M9.

3. The structure of a Sylow 2-group whose center is not cyclic. In this

section we shall assume that G is a semi-simple (CIT)-group, S is a Sylow 2-

group of G, the center Z of S is not cyclic and Sylow 2-groups are not inde-

pendent. The purpose is to determine the structure of 5. Again Theorem 11.5

and Proposition 11.3 are prominent.
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Proposition 3. Under the above assumptions the center Z is elementary

abelian. There exists a maximal intersection H of Sylow 2-groups such that

NaiH) contains a subgroup W which is conjugate to Z and WC\H = e, and

NGiH)/H is isomorphic with LF(2, q) for some q.

Proof. Apply Proposition II.3 taking Z to be the center. There exists a

maximal intersection H of Sylow 2-groups such that N=NciH) contains a

conjugate subgroup W oí Z and W(~\H = e. Since H is a maximal intersection,

Sylow 2-groups of N/H are independent. By assumption a Sylow group of

N/H contains a subgroup isomorphic with Z. Since Z is assumed to be non-

cyclic, Sylow groups of N/H are neither cyclic nor generalized quaternion

groups. By Theorem II.3 the group N/H is a (ZT)-group.

Let Ho be the subgroup of the center of H generated by involutions. If

rEHo, t is contained in the center of a Sylow 2-group of N by Lemma 2. If

£ is a Sylow 2-group of N, we denote by /(£) the set of involutions in the

center of P. Then /(£) is a subset of Ho and every involution of H0 is con-

tained in some /(£). If £' is another Sylow 2-group of N, /(£') has no element

in common with /(£). Let /(£) contain q— 1 involutions. If N/H contains

exactly m + 1 Sylow 2-groups, n being the order of Sylow groups of N/H,

then Ho contains exactly (g— 1)(m + 1) involutions. The order m of £f0 is then

iq — 1)(m + 1) + 1 = qn — n + q = m.

All the numbers q, n and m are powers of 2 (cf. Feit's theorem in [5]). Since

£(£) is contained in the center of a Sylow 2-group by Lemma 1 and since £

contains a subgroup W which is conjugate to the center Z, q is a divisor of n.

Suppose g<M. Clearly we have m = g2. Hence m = 0 (mod 2g). But

m = qn — n + q = q (mod 2q).

This contradiction proves that q = n. This implies many things. First of all

the order of W is q, since it is a multiple of q and is a divisor of n. Secondly the

group IF contains at least q—1 involutions and so IF is an elementary abelian

group of order q. Finally IF is isomorphic with a Sylow 2-group of N/H, since

P/H ^ WH/H S W.

N/H is a (ZT)-group with abelian Sylow 2-groups so that by a theorem of

Zassenhaus it is isomorphic with LF(2, q). Thus Proposition 3 has been

proved completely.

Proposition 4. £ef IF be the subgroup of N = NaiH) in Proposition 3. N

contains a cyclic group U of order q—1 such that CaiW) U is the normalizer of

Ca(W).

Proof. The subgroup W is conjugate to Z so that CaiW) =5 is a Sylow

2-group of G. By Theorem II.5 any two involutions of PF are conjugate in G.
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If ti and T2 are involutions of W, there exists an element a of G such that

t2 = o-~1tio-. Then Cg(t2)=o-~1Cg(ti)o. Since Cg(tí) = Cg(tí)=S, the element

a is in the normalizer Ng(S) of 5. By Proposition 3 the group N/H is iso-

morphic with LF(2, q). Hence there is an element p of order q — 1 which trans-

forms the Sylow 2-group P oí N containing W into itself. If tEW is an in-

volution, p transforms the group {r, H} into another subgroup which is gen-

erated by H and an involution ir oí W. There is an element o of N which trans-

forms t into w. The element o~xp leaves the subgroup {t, H} invariant. Hence

a~xpEP. This implies that a is an element of JP, p} and has an order q — 1.

The subgroup U generated by a satisfies the conditions of Proposition 4.

Lemma 6. In the notation of Proposition 4 the extension of N over H splits.

Proof. Let cr be a generator of the subgroup U in Proposition 4. Since

AVP=LF(2, q), there is a dihedral group of order 2(q— 1) of N/H containing

HU/H. If this dihedral group is D/H, D is a solvable subgroup of N with H

as a maximal normal 2-group. By Theorem 11.2 the extension of D over H

splits. Hence N contains an involution r such that T~1oT = a~1. Again since

N/H is LF(2, q), there is an involution ir in W such that the coset irrPf is of

order 3 in N/H. This implies that the order of irr is actually 3. We want to

show that the group P generated by W, a and t is isomorphic with LF(2, q).

If this has been done, P is a complement of H in N.

Since (ttt)3 = 1 we have t7Tt = 7mr. If w' is any element of W, ir' =p~1irp lor

some power p of a. Hence we have

rir'r = rp~lrpr = prirrp-1 = pirp"1- pVpjrp-1.

This means that every element of P can be written as either w'p or tt'ptt"

with it', it"E W and pE U. This expression is unique because tWtC~\{ W, U}

= e. Hence the order of P is q(q2 — l). Since P is a (CIT)-group with abelian

Sylow 2-groups, P must be isomorphic with LF(2, q) (cf. [13] or [6]).

Lemma 7. The group N/H in the notation of Proposition 4 is isomprphic with

LF(2, 4).

Proof. Let P be a complement of H in N. Lemma 6 shows that there exists

such a complement. Let Ho be the subgroup of the center of H generated by

involutions. In the proof of Proposition 3 we have shown that the order of

Ho is q2. Let P be the Sylow 2-group of N containing W. Then using the same

notation as in Lemma 6 the group t~1Pt is another Sylow 2-group of N. Since

t~xUt= U, U is contained in the normalizer of t~xPt. Let X be the part of

center of P generated by involutions and Y the same of t_1Pt. Since t~xPt

9±P, we have XC\Y=e and Ho = XX Y as is seen from the proof of Proposi-

tion 3. We remark that both X and Y are invariant by cr. Let a be an involu-

tion of X. Since the order of X is q every involution of X is conjugate to a by
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some element of U. Moreover every involution of Ho is in the center of some

Sylow 2-group of N. Hence H0 is a minimum normal subgroup of 7i0£.

We shall obtain the explicit forms of automorphisms of H0 induced by ele-

ments a, t, and r (the notations being the same as in the proof of Lemma 6).

The groups XU and YU are the Frobenius groups of order qiq — 1). Here X

and F are considered as the additive group of the field £ of q elements, and

the element a induces a scalar multiplication (cf. Zassenhaus [18]) by a gen-

erator of its multiplicative group. The element t exchanges X and Y. The

element r is in PF. Hence r commutes with every element of X. Let n be any

involution of Y. Then % = r¡r~xr)r is an element of Ho, which commutes with r.

Hence £ is an involution of X. Thus we have

r~1t]ir = £17 with {£ I.

Since   Y = t~1Xt we may write r¡ = T~rkr for \EX.  In this case we have

£=X: that is

r~lir-l\r)r = \t~1\t.

To show this equation we use the equation (t7t)3=1 or rrr = rrr. We have

t-1(£?j)t = r~x^r\ = r~xr~xr\rr = rrrkrrr = %r\.

Since£fo = XXFwe getX = £.

Let A be the totality of endomorphisms of Ho which commute with auto-

morphisms induced by £. Since £fo is a minimum normal subgroup of K = HoL,

the set A is a (skew) field by Schur's lemma. Since X is the totality of ele-

ments of Ho left invariant by r, A must leave X invariant. Since r exchanges

X and Y, Y is also left invariant by A. On X every element of A commutes

with p which induces a scalar multiplication. Hence elements of A are also

scalar multiplications by elements of £ on X. The same is true on Y. Since

r exchanges X and F, the multipliers in X and Y must coincide. If O^aEF,

the scalar multiplication in X is defined by

£a = a~^a,

where a in the right side is considered as an element of U. The scalar multi-

plication in Y is however defined by

■n" = T^ar if ri = rt-r.

Let d be the mapping on £70 defined by

»({•?) = FV for £ E X, v E Y.

We shall show that 0£A and hence A is isomorphic with £. We have

O(o-K£n)<r) = e(a-^o-a-lV<r) = (<r-1£<7)'',(<7"V)a.

From the definition
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(<r_1£cr)a = a~1a^1^o-a = o-~la~x^aa = <T~1£ao-.

Suppose t) = t^t (XEX). Then

o~~xr\o = a~xr^Ttj = TaÇo~xr.

Hence by definition

(o--V)a = r(o-f<r-1)ar = r<rt;a<rlT = a^r^rc = <j-xr\ao-.

Hence d commutes with the automorphism induced by o\ From the definition

it follows that 6 commutes with the automorphism induced by r. As for r

we have

8iri^r)r) = 0(£frfr) = Ff-rf-T

= ri^T^ar)r = rd^r^r.

Thus we have shown that 0£A. Since A=£, the group K is isomorphic with

a group of matrices over £. The correspondence is given by

rx
x-1

i i

i

i   i

and the group £70 corresponds to the totality of matrices

il

It
1

v   i

The subgroup PF is the totality of conjugate elements of r by elements of

U. We see that the subgroups { PF, U\ and {X, U] are isomorphic under the

following isomorphism <f>:

P:

X

x-V

1

ÍX2

\M 1

The group PF is the center of some Sylow 2-group of G. Hence there is an ele-

ment ß of G which transforms X onto PF. The element ß transforms U into

a group ß~xUß which is a subgroup of AG(PF). Since U and ß~xUß are two

subgroups of order q — 1 in AG(PF), they are conjugate in AG(PF). We may

therefore assume that ß~xUß coincides with U:

ß~lUß = U,    or   ß-xo-ß = <r*.
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Moreover we may assume that ß maps the element ti onto ir, where

1

r, = 1

1 1

The groupNg(U) is a group of even order since it contains the involution r.

Since G is a (CIT)-group, the group Cg(U) is of odd order. Hence the group

Ng(U)/Cg(U) is a group of even order and is abelian, since U is a cyclic

group. From the condition (CIT) it follows that the order of Nq(U)/Cg(U)

and in particular the order of ß is a power of 2. Again by (CIT) the involution

which is a power of ß maps every element of U into its inverse. If ß' is the

involution we have

ß-'aß' = a» = a-1.

On the other hand ß induces an isomorphism yp of {X, a} onto {W, a}. The

mapping (boy// is an isomorphism of {X, a} which maps ti into itself and

sends a into a2k. From the property of {X, a} it follows that 2k is a power

of 2. (The mapping o—*a2k is an automorphism of G¥(q)i) Hence A = 2". If

2 = 2", we have a congruence

2" m - 1 (mod 2" - 1).

Let us choose two integers x and y in such a way that

vz = xu + y   and    0 = y < p,

Then we have

2« = 2*m+v as 2» » - 1 (mod 2" - 1).

Hence we have

2" 4- 1 > 2» + 1 = 2"- 1.

This implies either 2"4-l = 2" or 2"4-l = 2"— 1. The first case happens only

when y = 0 and p.= l> while the second case is possible only when y=l and

p, = 2. Since we have assumed that the center of Sylow 2-groups is not cyclic,

2 = 2" must be more than 2. We have therefore p = 2 and g = 4.

Proposition 5. Under the assumptions of Proposition 3, Sylow 2-groups

of G are isomorphic with the group of matrices

il 1

a    1

ß  y   L

a,ß,yEGF(A).
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Proof. In the proof of Lemma 7 we have shown that the group K = HoL is

isomorphic with a group of matrices over GF(4). The structure of Sylow 2-

groups of K is the one given above.

Consider the group N of Proposition 3. If P is one of the Sylow 2-groups of

A^, P admits an automorphism of order 3 which leaves only the identity in-

variant. Hence by a theorem of Neumann [10] the quotient group of P by

its center is abelian. If Z is the center of P, Z is contained in H and the group

H/Z is abelian since it is a subgroup of P/Z. If Z' is the center of another

Sylow 2-group P'. H/Z' is also abelian. Since ZC\Z' = e we conclude that H is

abelian. Let 5 be a Sylow 2-group of G containing P. Then 5 admits an auto-

morphism of order 3 which leaves only the identity element invariant. By a

theorem of Neumann [lO] the central quotient group of S is abelian. On the

other hand the center of 5 is contained in H. Hence S is contained in the nor-

malizer of H. This means that P is identical with 5.

Set P= Cg(W), the notation W being the same as in Proposition 4. Then

the group P is a Sylow 2-group of G containing Z, the center of 5. Let D de-

note the intersection SC\T. Since P2Z, D is a normal subgroup of 5. At

the same time it is a normal subgroup of P, since the center of T is W. Con-

sider the subgroup F defined in Lemma 7: i.e. the subgroup of the center of

Sylow 2-group P' of N generated by involutions. Then we have YC\D = e as

is seen from the proof of Lemma 7. Hence the group D is in the family §i of

Part II. Since Sylow 2-groups of NG(D)/D are abelian, D is a maximal inter-

section of Sylow groups because NG(D)/D is a (CIT)-group. We can apply

the consideration of this section to D instead of H. In particular Proposition

3 and Lemma 7 applied to D show that the group Ng(D)/D is isomorphic with

LF(2, 4). Hence the index [5: D] is 4. Since DC\ Y=e we conclude that

H = (HC\D)\J Y,   or   H = (HC\D)XY.

This means that F is a direct factor of H. Since there is an automorphism of

H which exchanges Y and X, X is another direct factor of H. It is easily seen

that Ho = XVJY is a direct factor of H. The definition of H0 is however the

subgroup of the center of H generated by involutions. Since H is abelian, Ha

contains all the involutions of H. No direct factor except the group itself can

contain all the involutions. Hence we get Ho = H. The group N coincides

with K and the assertion has been proved.

4. Distribution of real elements.

Lemma 8. If a product o=tt' of two involutions t and t' has an odd order

>1, the centralizer Cg(o) is an abelian group and every element of Cg(o) is a

product of two involutions. Moreover Cg(v) is the centralizer of any nonidentity

element in it.

Proof. Let A denote the centralizer Cg(o). Since r transforms <r into its
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inverse, r transforms A into itself. By assumption G is a (CIT)-group and

hence every element of A has an odd order. Therefore r commutes with no

element of A except the identity. By a result of Burnside r transforms every

element of A into its inverse. This implies that A is abelian and that every

element of A is a product of two involutions. If l^pEA, p is a product of

two involutions. Hence as shown before Ca(p) is abelian. Clearly Ca(p) con-

tains A and hence Caifi) coincides with A.

Lemma 9. If an element ay^l of G is a product of two involutions, a is con-

tained in a unique maximal abelian Hall subgroup A of G and the index

[AG(^4): A] is a power of 2 not more than 8.

Proof. The group A = CG(<r) is a maximal abelian group so that the unique-

ness is trivial. By Lemma 1.4 and by the last assertion of Lemma 8, A is a

Hall subgroup of G. The group B = Ng(A)/A induces automorphisms of A

which are fixed-point-free. Hence Sylow groups of £ are either cyclic or a gen-

eralized quaternion group. Since the index [AG(v4):^4] is even, £ contains

a central involution. By the condition (CIT) £ must be a 2-group. From the

structure of Sylow 2-groups given in Proposition 5, the order of £ is at most 8.

We remark that the index [A7G(.4): .4] divides the order of A minus 1.

Let A\, • • • , A, he a system of maximal abelian subgroups of G containing

products of two involutions. We may assume that any such maximal abelian

subgroup of G is conjugate to one and only one of the A, (i=l, 2, ■ • ■ , s).

Let M,- denote the order of Ai and /,• be the index [Na(A¿) : Ai]. Let m be

defined by the equation:

m = 22 (»t - !)/'<•
i

Proposition 6. The order g of G is equal to

7872 + 4096m?.

Proof. By Proposition 5, we know the structure of Sylow 2-groups of G.

From the proof we see that each involution of G is contained in exactly 9

Sylow 2-groups. One of them is the centralizer of the involution. Let it be S.

S contains two elementary abelian subgroups of order 16, which intersect in

a group of order 4. Hence 5 contains 27 involutions. There are four more

Sylow 2-groups containing each elementary abelian subgroup of order 16.

Hence in these 9 Sylow 2-groups there are exactly 27 + 8-12 = 123 involutions.

Let t he an involution of G. If r' is another involution, the product tt'

has an odd order if r' is not one of those 123 involutions. By Lemma 9, the

products tt' are distributed in conjugate subgroups of Ai. Suppose that tt'

is conjugate to another product tt" of involutions. Then there is an element

p of G such that p~1(tt')p = tt". Since r transforms tt' and tt" into their in-

verses, p~lrp is conjugate to t in the group [r, r"}. Hence we may assume
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that p commutes with r. This implies that there are exactly 64 products tt"

conjugate to the given tt'. Each maximal abelian subgroup Ai contributes

(«, — l)/h classes. There are exactly m classes containing products of two

involutions whose orders are odd. G contains g/64 involutions. Hence there

are g/64—123 products tt' of odd order. Each conjugate class contains ex-

actly 64 such products. Hence we have

(g/64) - 123 = 64w.

The following lemma is used in order to reduce the number of cases which

we have to analyze in the later part of proof (cf. §7).

Lemma 10. If for some i, «< —1 =/,- or 2lit then «,• is either 3, 5 or 9.

Proof. By Lemma 9, /, is a power of 2 not more than 8. Hence in the first

case «< is 3, 5 or 9, while in the second case «< is 5, 9 or 17. The value 17 is

eliminated because if /, = 8, the group NG(A,)/Ai is a quaternion group which

cannot act on cyclic groups without fixed points.

5. Characters of NG(S). Let 5 be a Sylow 2-group of G. We can determine

the irreducible characters of M=N0(S) without difficulty. First of all we

prove the following lemma.

Lemma 11. G has three classes containing elements of order 4.

Proof. Consider an element ir of order 4. The element ir is contained in the

Sylow 2-group S=Cg(it2). S contains three classes of elements of order 4

whose squares are ir2. If ir' is another element of order 4, ir' is conjugate to

it" such that ir"2 = ir2. The element ir" is conjugate to ir in G if and only if

they are conjugate in S. Therefore G has three classes containing elements of

order 4.

This lemma is true for all subgroups containing M. In particular M itself

has three classes of elements of order 4.

Lemma 12. M has three linear characters, 5 characters of degree 3 and a char-

acter of degree 12.

Proof. From the structure of 5 given in Proposition 5, we see that the

center Z of S is the commutator subgroup of 5. Hence 5 has 16 linear char-

acters and 3 characters of degree 4. The 3 characters of degree 4 are conjugate

in M, giving a character of degree 12 of M. Fifteen nonprincipal linear char-

acters are distributed into 5 classes of conjugate characters, each class con-

taining 3 conjugate characters. Thus M has 5 characters of degree 3.

The group 5 contains two elementary abelian subgroups H and H' of

order 16. Hi~\H' is the center Z of S. There are three classes G, C2 and C3 of

involutions in M. G consists of central involutions of S, C2 is the set of in-

volutions in H not contained in Z and Ci is the similar set of H'. Characters

of degree 3 are given in the following table:
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In the table the class C contains elements of order 4. All characters take the

value 3 on C\. The last character 0O is the sum of three linear characters of M.

6. Decomposition of induced characters. As usual 0* means the character

of G induced by a character 0. If <p is a character (irreducible or not), we de-

note by wip) the norm of <p, i.e., the average of the absolute value squared:

»(*) = (i/g)ZUwl2-
tea

Proposition 7. PF have 0* = 05* and for i, j=l, 2, 3

w(e* - of) = 2,  w(et - et) = 5,  w(do* - et) = 7,  wiOo* - e*) = 18.

This is proved by a straightforward computation of induced characters.

The same result may be obtained if we consider the decomposition in the group

N first and apply the method described in [14], The first equation implies

that the decomposition of 0* (¿=1, 2, 3) takes the form

et = t<èi + A (e- ± 1).

The characters @i, 02 and @3 have the same degree and take the same value

everywhere except on classes containing elements of order 4.

Lemma 13. If a character <pofG takes the constant value on classes of elements

of order 4, then <p contains the characters ©,- with the same multiplicity.

Proof. The character ©<—©,- (*#j; i,j=l, 2, 3) vanishes everywhere ex-

cept on classes of elements of order 4. If <p takes the value c on these classes,

we have

E^Or-mto - ®Â°)) = £c(e.4» - &i(o-)) = o.
cc.0 ceo

The orthogonality relation yields the assertion.

As a special case of this lemma we conclude that 0* contains the characters

0, with the same multiplicity. The decomposition of 0* is of the following

form:

et = a 22 ©< + 22 a*X», a, <h ̂  0,
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where the characters Xß are not the principal character 1. We shall denote

further

Of - 04* = (®i + x22 ®k + 22 «Ä (i = 1, 2, 3)

e»* - 04* = 1 4- y 22 ©* + E y*x*-

Then

9? 9,* = 1 - e@i +(y-x)22®*+22(yl>- x*)X>

It follows from Proposition 7 that

(1) (x+e)*+2x*+ 22xl= 5,

(2) 1 + 3y2 + 22 y\ = 7,

l + 2(y-xY+(y-x- e)2 + 22 (ft - *,)2 - 18.

Under the above two equations the last one is equivalent to

(3) 3xy + ty +22 *m3V = — 3.

If do is the character of M with degree 12, we have

06*   =  Of + 02* 4- 03* + 04*.

Using the reciprocity law of Frobenius we can compute the values of each

irreducible character on 2-singular classes in terms of the coefficients of de-

compositions. We shall state the result in the following table.

©*: 45« 4- y 4- 15« 4- 64a;       y — 3x - e;       x + y + ék,
(4)

Xß: 45xß + y„ 4- 64a; yß — 3xß; xß + yM.

In the above table the first number is the degree, the second is the value on

the class of involutions and the last one is the value on classes containing ele-

ments of order 4. The orthogonality relations together with (1), (2) and (3)

yield

(5) 3ay 4- 22 W* = 2>

and

(6) a(3z 4- «) 4- 22 "-^ß = — 3.

7. Exceptional characters. Consider a maximal abelian group A=A{ of

the fourth section. If «/,-=(«<—1)//¿>1, then we can associate to A w¡ ir-

reducible characters of G as exceptional characters (cf. [l] or [12]). These

exceptional characters satisfy various properties. First of all the exceptional

characters have the same degree and take the same value on classes not con-

taining elements of A. Ii a character is exceptional for one of Ait then it is

nonexceptional for the rest of the A,-. From the above property of exceptional
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characters it follows that the characters ©j are not exceptional for any Ai.

We have so far assigned exceptional characters for those A{ which satisfy

the relation Wt>l. In this way 22w< characters are associated, where the

summation is over those indices i with «\->l. If there are indices for which

w,= l, then there are still unassigned characters remaining. This is because

each Ai contributes Wi conjugate classes and the number of irreducible char-

acters is equal to the number of conjugate classes. Therefore we can assign an

irreducible character to an abelian group A-, with w,= l as an exceptional

character in such a way that this character is nonexceptional for any other

Ai and different from the principal character or ©*. Thus we have m excep-

tional characters. If w,-> 1 for all i, the set of exceptional characters is deter-

mined uniquely by the structure of G. On the other hand if w, = 1 for some i,

the set is not unique. In this case we shall fix a set and consider the characters

in it as exceptional characters.

8. Sketch of the proof. The purpose here is to prove the following theorem.

Theorem 4. Let G be a semi-simple iClT)-group. If Sylow 2-groups are

not independent and have a noncyclic center, then G is isomorphic with the linear

fractional group LF(3, 4).

The first part of proof is to determine the order of G. It is known (cf. [l])

that if the order of the centralizer of involutions is given then the order of G

is bounded. Hence the determination of the structure of G is certainly possible

by a finite process. The following is a rough sketch of how to obtain the pos-

sible orders for G.

From the table (4) we see that if x„ = y„ = 0, the character Xu vanishes on

2-singular classes and its degree is a multiple of 64. Thus the character A% is

of defect 0 for 2. Conversely if a character A% is defect 0 for 2, we have

xM = yM = 0. It follows from the equations (1) and (2) that the number of char-

acters with positive defect for 2 is bounded. Rough estimate gives a bound

10 besides 1 and ©*. Among m exceptional characters we suppose that there

are 5 characters of positive defect for 2. By a theorem on characters the order

g of G is the sum of the square of degrees. We decompose the summation into

three parts:

s = 22+z2 + 22
1 2 3

where 22i 1S the summation over nonexceptional characters, 22* ls over ex"

ceptional characters with positive defect for 2 and 22s ranges over excep-

tional characters of defect 0. In JZs eacb term is at least (64)2 and the num-

ber of summands is m — s. Using Proposition 6 we have

7872 + (64)2mi = 22 + £ + (« - s)(64)2,
1 2

or
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7872 + (64) 2s = 22 + 22-
1 2

Since s is at most 10, the above inequality gives a bound for the degrees of

characters of positive defect for 2. The equations (1), (2) and (3) are used in

conjunction with the table (4) to reduce the possibility. The equations (5)

and (6) can also be used. If the table (4) has been completed for characters

of positive defect for 2, then we use the formula (cf. [l])

(64)'(«(S) - 1) = g(2>//)

where n(S) is the number of involutions in S, t is the value on involutions,

/ is the degree and the summation ranges over all characters of positive de-

fect for 2. This determines a possible order of G. It turns out that 20160 is

the only possibility for the order.

We discuss a few cases in detail and leave the remaining cases to the read-

ers. The equation (2) implies that y2 = l, and (1) yields x2 = l. Assume

y = x = 0. Then the possibilities for xß, yM are as follows.

2ei,      «2, e3, 0,   0 ti,      €2,      e3, €4, «6, ee,   0

(A) (B)
— €i,  — e2, 0,   «4, e6 — «i,  — é2,  — é3, 0,   0,   0,   e?.

In the above table the first line gives the values for y„ and the second line, for

xß. The €j are either 1 or — 1. Consider the first case (A). Degrees of characters

Xß are as follows (cf. (4)).

— 43éi, — 44é2, é3, 45é4, 45é6 (mod 64).

The value of s is certainly at most 5. This bound can be reduced to 3. Ex-

ceptional characters for Ai have the same degree. Hence if AT,- (i = 5) is ex-

ceptional for Ak, we have wk=:2, and «* = 3, 5 or 9. If wk = 2, then X4 and X&

are exceptional for Ak and Uk = 5 or 9. The degree of 0 is congruent to 15é

(mod 64). We have
5

20160 ̂  1 4- 3(0)2 4- 22 (*.)2
•—i

where (X) is the degree of a character X. We have (9) =78. From the con-

gruence for (©) we conclude that (0) = 15 or 49.

Assume that (0) = 49. Then we have

5

22 (Xi)2 = 12956.
•—i

The equations (5) and (6) are

2aifi + a262 -|- a3C3 = 2    and    aiei 4- a2t2 — a&\ — a^tt = 2.
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If a3>l, (X3) = 127 and this is impossible. Hence a3=l. The first equation

shows that <x2 is odd. Therefore a2 is also 1. Then e2 must be 1 and (X2) = 20.

We have two cases:

ai = 0,    ti = - 1,   63 = 1,        (ZO = 43,    iX3) = 65;

ai = 1,    «i = 1, €3 = - 1,    iXi) = 21,    iXt) = 63.

Accordingly we have aiU+aiti= —1 or 0. In the first case iX¿)¿¿iXi) and

5 = 2. Hence we must have (X4)=45 and iX¿) = 19. In the second case we

must have Ö4 = a6 = 0 and e4 = e5=l. Hence iXt) = (X6) =45. The values of

these characters on involutions are as follows:

o,       4,        1,       ó,       o,

5,      4,  -1,  -3,  -3.

The computed value of g is not an integer in either case. We have used the

following result which is also useful in other cases.

Lemma 14. G has only one linear character.

Proof. The proof depends on the structure of N in Lemma 7. Combined

with Proposition 5 we see that the group N/H is a simple group of order 60

and N contains the normalizer of a Sylow group of G. It follows that the group

N coincides with its commutator subgroup. Hence the commutator subgroup

of G contains N. The only normal subgroup containing the normalizer of a

Sylow group is the whole group. Hence G coincides with its commutator sub-

group. This proves Lemma 14.

We have treated one particular case. The remaining cases can be studied

similarly. Except one case when e = y=l and x= — 1 in (1) and (2) we find

some contradiction. The values of xa, y» are then computed as follows:

ei,    a,    «3,    0,  0;

— ei,    0,      0,  e4,   «6.

The first line gives the values for yM, while the second, for x„. The values e,

are 1 or —1. Degrees are obtained from the table (4) as follows:

— 44ei,    €2,    «3,    45e4,    45e5    (mod 64).

The degree of 0* is conjugate to —29 (mod 64). Hence a = l and (0)=35.

The number s is at most 4 by Lemma 10. We have

5

1 + 3(0)2 + 22 (xi)s = 2425°-
t=i

Then (0) =90 and we get the value 35 for (0) and a= 1. The equations (5)

and (6) are
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ai6i -f- a2e2 -}- 0363 = — 1    and    — aiÉi 4- aiu + a&t = — 1.

The congruence relations for degrees show that

(Xi) ^ 20,    (X2) ^ 63,    (X3) = 63,    (XA = 19,    (X.)  = 19

and
5

1 4- 3(35)* 4- 22 (xi)* = 12736.
«•-1

If a2>l, then we get (X2) = 127 which is impossible. Hence o2 = a3=l. The

value of oí must be odd and hence ai= 1. If éi= —1, then e24-e3 = 0. Hence by

Lemma 10 the number s is at most 3. This is impossible because (Xi) = 108.

We have therefore £i = l. This implies that 624-e3 = —2, (Zi) = 20 and (X2)

= (X3)=63. Moreover 04644-0565 = 0, which implies a4 = a6. If ai9i0, we have

5 = 3 as before. Then we have too much contribution from Xt and Xb. Hence

we have at = a6 = 0, 64 = 65=1 and (Xi) = (Xs) = 45.

The values on involutions are computed from the table (4). We have

0 = 3,    Xi = 4,    Xt = Xt - - 1,    Xi = Xb = - 3.

The group order g is then 20160. There is one more character X( of degree 64.

It is not difficult to compute the table of characters of G but we shall not

enter into the details.

9. Final step of the proof. We have shown that the order of G is 20160 and

G contains a subgroup N of order 16-60. Here N is the subgroup N0(H) of a

subgroup Pi of order 16 as in §2. The index [G: H] is 21. If we represent G as

a transitive permutation group r^ on the cosets mod N, then the character

of YN is 1+Xi. This implies the double transitivity of YN [4, §207]. If 5 is

a Sylow 2-group of G containing II, S contains another elementary abelian

subgroup H'. If A7' is the normalizer of H' in G, the argument of the third

section can be applied to H' as well. We conclude that N' is also a subgroup

of index 21. Hence the transitive representation T^- on the cosets mod N' is

doubly transitive.

We consider the set 9? of subgroups conjugate to H and the set 8 consist-

ing of conjugate subgroups of H'. The elements of 9Î are called points and

the elements of ? are lines. A point P is on a line / if and only if PCM^e. In

exactly the same way as Propositions 14, 15 and 16 of [ 13, II ], we can prove

the following lemma.

Lemma 15. PAe sets 9Î and 8 equipped with the incidence relation defined

above form a projective plane S(3 of order 4. PAe plane ty is Desarguesian and the

group G is a group of collineations of ty.

In the proof of this lemma the double transitivity plays an essential role.

The full group Go of collineations of ^3 contains the group Gi of all the uni-
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modular projective linear transformations as a normal subgroup and the

index [G0: Gi] is 6. If we identify our group G as a subgroup of G0, the inter-

section GC\Gi is a normal subgroup of G and its index in G is at most 6.

On the other hand by Lemma 14 we know that G coincides with its com-

mutator subgroup. Hence GC\Gi must be identical with G, which means

Gi3G. The order of Gi is however the same as that of G. Therefore G coin-

cides with Gi. This proves the assertion of Theorem 4.

10. Concluding remarks. The results we have obtained are summarized

as follows.

Theorem 5. £ef G be a nonsolvable iClT)-group. Then the maximal solvable

normal subgroup N of G is a 2-group. The factor group G/N is one of the follow-

ing types:

aiZT)-group,    LF(2, q),   LF(3, 4)    or    M9.

The first part is proved in Theorem 11.4. The second part is proved in

Theorems II.3, III.l, III.3 and III.4. For the possible values of q in the

second case see Theorem 111.2.

The structure of N is not arbitrary. The theorem of Neumann [lO] we

have referred to several times before shows that if the order of G is divisible

by 3 the central quotient group of N is abelian. The class of N is therefore at

most 2. We can say a little more. If N?¿e, every Sylow group for an odd prime

number in the quotient group G/N is cyclic by Theorem II.2. This eliminates

LF(2, 9), LF(3, 4) and Mt from the possibility for G/N. If p is a Mersenne

prime, the normalizer of a Sylow p-group in G/N is a meta-cyclic group with-

out center. Such a group can not operate on any abelian group without fixed

points. Hence if N^e the group G/N is not LF(2, p) for any Mersenne prime.

On the other hand if p is a Fermât prime, G/N can be isomorphic with

LF(2, p) even if N^e. In this case however N must be abelian. This can be

shown as follows. It follows from the structure of LF(2, p) that G/N contains

subgroups isomorphic with the alternating group of four letters. It is easy to

show that there are four subgroups U, V, X and Y such that

X37J3ÍV,        F3F3A,        UVJV = G

and both X/N and Y/N are isomorphic with the alternating group of four

letters. Moreover the groups U and V are 2-groups. Then the groups U and

V are normal subgroups of X and Y respectively, and X/U, Y/V induce

automorphisms of order 3. Let U0 and F0 denote the centers of U and F

respectively. By a theorem of Neumann [10] the groups U/Uo and V/Vo are

abelian. Since N contains CG(A) both C/0 and Vo are subgroups of N. Hence

the commutator subgroup of N is contained in UoC\ Vo. On the other hand

UoCWo consists of elements which commute with every element of Í/U7,

We have chosen U and  F in such a way that G= Í/WF. Hence we have
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UoC\Vo = e. This proves that N is abelian. A similar argument can be applied

if the group G/N is isomorphic with LF(2, 22n).

A partial converse statement of Theorem 5 is true. We have the following

theorem

Theorem 6. If G is any one of the following groups: a (ZT)-group, LF(2, p)

with a Fermât or Mersenne prime p, LF(2, 9), LF(3, 4) or Mo, then G is a semi-

simple (ClT)-group.

For (ZT)-groups this is proved in Theorem LI. For LF(2, q) this follows

from the subgroup theorem of Gierster. It is easy to check the assertion for

LF(3, 4) or Mo. Except the last group Mo, all groups are simple.

For linear groups in Theorem 6 it is easy to see and actually is known that

they are (CN)-groups. It is not yet known whether every (ZT)-group is a

(CN)-group. There are only two types of (ZT)-groups known: namely a

series of LF(2, 2") and another infinite series discovered in [15] recently. All

these groups are (CN)-groups (cf. [15]). Theorem 1.4 proves that a non-

solvable (CN)-group is a (CIT)-group. As to the converse of this proposition

we have the following theorem.

Theorem 7. A nonsolvable (ClT)-group G is a (CN)-group if and only if the

quotient group G/N is a (CN) -group where N is the maximal solvable normal

subgroup of G.

Proof. Suppose that a nonsolvable (CIT)-group G is a (CN)-group. Then

AMs a 2-group by Theorem 11.4. Consider the group H=G/N and take an

element £ of G/N. If the order of £ is even, then Ch(£) is a 2-group. Assume

that the order of £ is odd. There is an element o of G such that ^ = aN and the

order of a is odd. Let K be the subgroup of G such that K/N = C« (£). II pEK,

then a~1p~1ap belongs to N. The cyclic groups {a} and {p~xap} are conjugate

in {N, a}. There is an element v of N such that

v~1p~1apv = ak.

Since p~1op = au with uEN, we get Guv = vok. This implies that <rk = a and

pvECG(a). Hence we have

K = CG(a)N   and    C„(Ç) S K/H ^ CG(a)/CG(a) f\ N.

This proves that G/N is a (CN)-group.

Conversely suppose that G/N is a (CN)-group. Take an element a of G.

If Cctfâf^N^e, then a is an element of 2-power order by the condition (CIT).

If CG(o)C\N = e, then the group CG(a)N/N is contained in the centralizer of

the element oN in G/N. If G/N is a (CN)-group, CG(a)N/N is nilpotent. This

group is however isomorphic with CG(ff) because Co(a)r\N = e. Hence G is a

(CN)-group.
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It follows from Theorem 7 and the remark made just before Theorem 7

that all the nonsolvable (CIT)-groups known so far are (CN)-groups.

Added in proof. Recently the author has classified the (ZT)-groups. Ac-

cording to his result LF(2, q) and the groups G(g) of [15] are the only (ZT)-

groups. Hence a nonsolvable (CIT)-group is a (CN)-group (cf. Theorem

III.7). For the proof see the author's forthcoming paper in Annals of Mathe-

matics.
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