FINITE GROUPS WITH NILPOTENT CENTRALIZERS(%)

BY
MICHIO SUZUKI

Introduction. The purpose of this paper is to clarify the structure of finite
groups satisfying the following condition:

(CN): the centralizer of any nonidentity element is nilpotent.

Throughout this investigation we consider only groups of finite order. A
group is called a (P)-group if it satisfies a group theoretical property (P). In
this paper we shall clarify the structure of nonsolvable (CN)-groups and
classify them as far as possible. This goal has been attained in a sense which
we shall explain later.

If we replace in (CN) the assumption of nilpotency by being abelian we
get a stronger condition (CA). The structure of (CA)-groups has been known.
In fact after an initial attempt by K. A. Fowler in his thesis [8], Wall and
the author have shown that a nonsolvable (CA)-group of even order is iso-
morphic with LF(2, ) for some ¢=2">2. A few years later the author [12]
has succeeded in proving a particular case of Burnside's conjecture for (CA)-
groups, namely a nonsolvable (CA)-group has an even order. Quite recently
Feit, M. Hall and Thompson [7] have proved the Burnside’s conjecture for
(CN)-groups. We can therefore consider groups of even order and focus our
attention to the centralizers of involutions.

We consider the condition (CIT):

(CIT): a group is of even order and the centralizer of any involution is a
2-group.

There is no apparent connection between the class of (CN)-groups and
the class of (CIT)-groups. But a nonsolvable (CN)-group is a (CIT)-group
(Theorem 4 in Part I). This theorem reduces the study of nonsolvable (CN)-
groups to that of (CIT)-groups. Both properties (CN) and (CIT) are obviously
hereditary to subgroups (provided that we consider only subgroups of even
order in the case of (CIT)). Although it is true that a homomorphic image
of a (CN)-group is also a (CN)-group (this statement is false for infinite
groups), it is not an obvious statement. On the other hand it is not difficult to
show that a factor group of a (CIT)-group is a (CIT)-group, provided that
the order is even. This is due to the following characterization of (CIT)-groups:
namely a (CIT)-group is a group of even order containing no element of order
2p with p>2 and vice versa. This makes the study of (CIT)-groups some-
what easier. The large part of this paper concerns the structure of (CIT)-
groups.
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There is an important subclass of (CIT)-groups. Zassenhaus [18] has con-
sidered a group G satisfying the following condition:

(Z): G is faithfully represented as a doubly transitive permutation group
in which only the identity leaves three distinct letters invariant.

The degree of this permutation group is called the degree of a (Z)-group
G. If we denote this degree as 14NV, the number N is a power of a prime num-
ber unless G contains a normal subgroup of order N+1 (cf. Feit [5]). We
shall denote by (ZT) the following conditions on G:

(ZT): G is a (Z)-group of odd degree and G is not a Frobenius group.

It is not too difficult to see that a (ZT)-group is a simple (CIT)-group
(Theorem 1 in Part I). One of the main results in this investigation is that
the class of simple (CIT)-groups consists of (ZT)-groups and some classical
linear fractional groups (see Part I1I). Precisely we have

THEOREM. Let G be a simple nonabelian (CIT)-group. Then G is one of the
following types:

(i) a (ZT)-group,

(ii) LF(2, p) with a Fermat prime or a Mersenne prime p,

(iii) LF(2, 9) or

(iv) LF(3, 4).
Conversely any one of the above types of groups is a simple (CIT)-group.

Thus the study of simple (CIT)-groups is reduced completely to the study
of (ZT)-groups. If g=27>2, the group LF(2, ¢) is an example of (ZT)-groups.
In fact until quite recently this family of groups was the only example of
(ZT)-groups. Recently the author [15] has given another infinite family of
(ZT)-groups G(q) for g=2?t1>2 The author has been unable to decide
whether there would be more (ZT)-groups. Only fragmental results are known
for the general (ZT)-groups. The author hopes to return to this subject in
the future and would like to remark here that a (ZT)-group is isomorphic with
LF(2, ¢) if and only if the order is divisible by 3. Hence the orders of groups
G(g) and all the remaining (ZT)-groups, if any, are prime to 3. Moreover a
simple (CIT)-group is one of linear fractional groups if (and of course only
if) the order is divisible by 3.

The above theorem solves the problem we had at the beginning. If G is a
simple nonabelian (CN)-group, then G is one of the groups mentioned above.
Here again the classification would not be complete unless we know the struc-
ture of general (ZT)-groups which remain to be investigated.

The author has also been unable to decide whether a nonsolvable (CIT)-
group is a (CN)-group or not. So far all the known nonsolvable (CIT)-groups
are (CN)-groups. As a matter of fact if every (ZT)-group is a (CN)-group,
then all the nonsolvable (CIT)-groups would be (CN)-groups.

Part I discusses a characterization of (ZT)-groups which may be con-
sidered as a generalization of the result of Wall and the author. The second
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part is a study of general (CIT)-groups. More detailed study of semi-simple
(CIT)-groups occupies the long third part, where the theorem stated before
is proved in a more general form. The main results of this paper have been
published in a short note [16].

We use standard notations throughout. For a subset X of a group G let
Ng(X) denote the normalizer of X in G. The centralizer of X is denoted by
C¢(X). Theorems or lemmas of the same part are quoted just by numbers.
On the other hand quotations from other parts are indicated by inserting
the number of the part from which quotation is made. For instance Lemma §
means the fifth lemma of the same part, but Lemma 1.2 indicates it is the
second lemma of Part I.

PART I. A CHARACTERIZATION OF (ZT)-GROUPS

1. Preliminary remarks on (ZT)-groups. Let G be a (ZT)-group of degree
g+1. Then g is a power of 2 by a theorem of Feit [5]. Let F denote the sub-
group of G which leaves one letter invariant. Then F is a Frobenius group of
order gd where d is a divisor of ¢—1. Let Q be the Sylow 2-group of F and K
be a subgroup of order d. Then F is a semi-direct product of Q and K, and
coincides with N¢(Q).

LEMMA 1. If 7 is an involution of Q, then Cqa(7) is contained in Q.

In general we denote by I(o) the set of letters left invariant by ¢. Then
I(pap?) consists of the letters of the form p(a) with a€I(s). Hence if p com-
mutes with ¢, then p leaves the set I(s) fixed. If 7 is an involution of Q, I(r)
consists of a single letter so that C¢(r) must be contained in Q. Incidentally
Lemma 1 proves that the group F is a Frobenius group since every non-
identity element of K induces an automorphism of Q which leaves only the
identity invariant.

LEMMA 2. If N is a normal subgroup of G containing Q, then two involutions
of N are conjugate in N.

Proof. First of all remark that any involution of G is contained in N since
N is a normal subgroup containing a Sylow 2-group. Since Q is not normal in
N, there is a conjugate subgroup Q' of Q which is different from Q. Take in-
volutions TEQ and 7' €Q’. If the order of 77’ is even, there is an involution
7'’ commuting with both 7 and 7/. By Lemma 1, 7 and 7' would be in the
same Sylow 2-group of G. This contradicts the choice of 7 and 7’. Hence the
order of 77’ is odd and 7 is conjugate to 7’ in the group generated by r and
7', If = is another involution of Q, 7 is conjugate to 7’ in N. Hence 7 is con-
jugate to 7 in N, proving the assertion.

If for two involutions 7 and 7 of Q we have 7 =p~7p, then p~!QpN\Q con-
tains w. Hence p~!Qp coincides with Q, that is, p& F. Hence the index d is
equal to the number of involutions in Q. This implies in particular that the
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normal subgroup N of Lemma 2 contains F. Since Q is a Sylow 2-group, we
must have N¢(Q) N =G. We conclude therefore that G is the only normal sub-
group of G containing Q.

THEOREM 1. 4 (ZT)-group G is a nonabelian simple (CIT)-group.

Proof. By Lemma 1 G is a (CIT)-group. We need only to show its sim-
plicity. Assume the contrary. Let H be the smallest proper normal subgroup
of G. By the preceding argument H does not contain the subgroup Q. Let R
be the intersection QM H. The group HNF is a normal subgroup of F. Since
F is a Frobenius group, HNF is contained in Q. Hence we have HNF
=HNFNQ=R. Suppose that R#e. Then H contains all the involutions of
G. If R contains more than one involution, we have Ny(R) # R since involu-
tions of R are conjugate in Ng(R). This is not the case because

R Ng(R) S No(Q) VH=HNF.

Hence R contains only one involution. R is therefore either cyclic or a gen-
eralized quaternion group. If R is cyclic, a theorem of Burnside [4, §243]
shows the existence of a normal subgroup H, of H such that H=RH,. This
contradicts the minimum choice of H. If R is a generalized quaternion group,
H is not simple by a theorem of Brauer and Suzuki [3]. Since H is minimum,
H is characteristic simple. If H is not simple, it is a direct product of iso-
morphic simple groups. Such a group has more than one involution in a
Sylow 2-group. This is a contradiction. Hence we must have R=e. Then the
group Q induces fixed-point-free automorphisms in H by Lemma 1. Q is again
either cyclic or a generalized quaternion group. Let N be the maximal normal
subgroup of odd order. A theorem of Burnside or a theorem of Brauer and
Suzuki [3] can be applied to show that G/N contains a central involution.
Since G is a (CIT)-group the quotient group G/N is also a (CIT)-group. This
implies that G/N is a 2-group and that G=QN. The group G is therefore a
Frobenius group contrary to the definition of a (ZT)-group.

2. A characterization of (ZT)-groups. In this section we shall characterize
(ZT)-groups by some group theoretical properties. For ¢ €G we denote by

%(0) the totality of elements of G which transform ¢ into o or ¢~ 1.

THEOREM 2. Let G be a group and H a subgroup of G. Let H, denote the sub-
group of H generated by involutions of H. Suppose that the following two condi-
tions are satisfied:

(1) C§(o) CH for any o1 of H, and

(2) the center of Hy is not trivial.

Then we have one of the following four cases:

(i) Hy is a normal subgroup of G,

(ii) a Sylow 2-group of G is cyclic,

(iii) a Sylow 2-group of G is a generalized quaternion group, or

(iv) G is a (ZT)-group and H is a Sylow 2-group of G.
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Proof of this theorem requires a few lemmas of which the first is the
following:

LEMMA 3. Under the assumptions of Theorem 2, H is a group of even order
containing a Sylow 2-group of G.

Proof. By the assumption (2) the group H, contains more than one ele-
ment. Hence there is at least one involution in H. The order of H is obviously
even. The last assertion is a particular case of the next lemma.

LeMMA 4. Let H be a subgroup of G satisfying the condition
1): Celo) &S H foranyo #1of H.
Then H is a Hall subgroup of G.

Proof. It suffices to show that a Sylow group of H is a Sylow subgroup
of G. Let S be a Sylow subgroup of H. By way of contradiction suppose that
S is not a Sylow subgroup of G. By a theorem of Sylow S is contained in a
Sylow group S’ of G. There is a subgroup T of S’ containing S as a proper
normal subgroup. By a property of p-groups S contains a central element
o#1 of T. Hence we have

Cole) D T2S.

Since S was a Sylow group of H, H can not contain T. Hence Cg(0) is not a
part of H violating the condition (1’).

LEMMA 5. The condition (1) in Theorem 2 implies the condition (1') of
Lemma 4 and the condition

(1) if o1 of H is a product of two involutions v and v’ of G, then  is con-
tained in H.

Proof. From the definition it is clear that Cg(0) S Cg(c). Hence the condi-
tion (1’) is a consequence of the condition (1). Suppose that ¢ =77'. Then 7
transforms ¢ into o~. Hence 1€ Cg(c) CH.

For any group G let #(G) denote the number of involutions in G.

LEMMA 6. Let H be a subgroup of G satisfying the condition (1'’) of Lemma 5.
Then we have

n(G) £ n(H) + [G: H] — 1.

Proof. Consider any coset X modulo H. If X=H, X contains exactly
n(H) involutions. Suppose X% H. If X contains two different involutions 7
and 7/, then the product 77’ is an element of H and 77’ #1. By the condition
(1””) 7 is an element of H. This is not the case. Hence any coset # H contains
at most one involution. The inequality follows immediately.
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We shall return to the proof of Theorem 2 and assume the conditions (1'),
(1), (2). Let us assume that H, is not a normal subgroup of G. Remark that
we have n(H) =n(H,) by definition. Since H, is not normal in G, there is a
conjugate subgroup H; of H, different from H,. We want to show that Hy"\H
contains no involution. Suppose that it does. Take one, say 7, of involutions
in HHNH. By (2) there is an element 71 which is in the center of H;. Then
T commutes with m, since 7€ H,. By the condition (1’) we conclude that =
belongs to H since 1€ Cq(r) CH. Again by (1’) Ce(r) is contained in H.
C(m) certainly contains H,. Therefore H; is a subgroup of H and is generated
by involutions. By definition H; coincides with H,. Hence HiN\H contains no
involution. Thus we have

n(H,) + n(H) = n(G).

On the other hand we get #(G) Sn(H)+[G: H]—1 by Lemma 6. Hence we
have

n(H) = n(Hy) < [G: H] — 1.

It follows from Lemma 3 that every involution of G is conjugate to an in-
volution of H. If 7 is an involution of H, the number of involutions conjugate
to 7 is the index [G: Cq(7)] which is a multiple of [G: H], since by (1’) Ce(r)
is a subgroup of H. Hence if there are more than one conjugate class of in-
volutions, or there is an involution not contained in the center of H, then we
have #(G) 22[G: H]. Then we get

2(G:H) < n(H) + [G:H] — 1, or [G:H]+ 1= n(H).

This contradicts the inequality n(H) < [G: H]—1. Hence there is exactly one
class of involutions in G, and H contains a central involution 7. If 7/ is another
involution of H, C¢(7’) is a subgroup of H by (1’) and has the same order as
Ce(r) =H. Hence every involution of H lies in the center of H. The group
H, is an elementary abelian subgroup of the center of H and C¢(H,)=H.

Let L be the normalizer N¢(H,) of Hy. Since H=C¢(H,), H is a normal
subgroup of L. Burnside’s argument shows that two involutions of H are
conjugate in L. Hence t=[L: H]=n(H). Since ¢ is odd, no coset > H modulo
H in L contains any involution. We have therefore

[G: H] = n(G) £ n(H) + [G: H] — [L: H].

This implies that every coset modulo H outside of L contains exactly one in-
volution.

If Yisa coset modulo L and if YL, Y consists of ¢ cosets modulo H and
all those cosets are outside of L. Hence Y contains exactly ¢ involutions
T, * +, Te. Then 7,7,(154¢<!t) are t—1 elements of L. If Z is another coset
#L modulo L, Z contains ¢ involutions my, - - -, ;. Suppose that we have
mir¢=mm;. Then p=7,7, is an element of L and commutes with 7ym;. We want



1961] FINITE GROUPS WITH NILPOTENT CENTRALIZERS 431

to conclude that 7;m; is an element of L and hence the coset Z coincides with
Y. We need a lemma.

LeEMMA 7. Suppose an element p#~1 of L is a product of two involutions.
Then Cq(p) is contained in L.

Proof. Suppose that an element o outside of L commutes with p. The cosets
modulo H outside of L contain exactly one involution. Hence we may write
o as a product g where nE€ H and 7 is an involution. Since ¢ €L, T is not con-
tained in H. The equation ps=op implies that n~'pn=7pr. Hence we get
p 7 tpn=p~'rpr. It is clear that the group {H, p} contains H as a normal
subgroup. Hence the commutator p~'%~'p7 is an element of H. H contains
therefore the product of two involutions 7 and p~'rp. The condition (1") says
that 7€ H. This is not the case.

This lemma and the argument of this part are essentially ideas of Feit
[6]. Returning to the proof of Theorem 2, we see that each coset L modulo
L contributes exactly t—1 elements of L and there is no coincidence. Hence
by counting the number of elements of L we get an inequality

[L:e] = [H:e] + (¢t = 1)(G: L] — 1).

Denote by % the order of H and by m the index [G: L]. Smce t=[L: H] we
have an inequality

¢t—=10)Mh—-m+1) 20,

which implies that either ¢t=1 or k412 m.

Since t=n(H), the equality £=1 occurs only when H contains exactly one
involution. This is the case only if a Sylow 2-group of H is either a cyclic
group or a generalized quaternion group. By Lemma 3, we have the case (ii)
or (iii) accordingly.

If G is a (Z)-group of odd degree 1+4¢ but not a (ZT)-group, then G con-
tains a normal subgroup G, of order 1+4g¢. Then a Sylow group Q of G induces
fixed-point-free automorphisms of G, and hence Q is either cyclic or a gen-
eralized quaternion group. Hence in order to finish the proof of Theorem 2 it
suffices to show that G is a (Z)-group, assuming ¢> 1.

Suppose that a conjugate subgroup p—'Hp intersects with L nontrivially.
By Lemma 4 H is a Hall subgroup of L and is normal in L by definition.
Hence the intersection LNMp~'Hp is a part of H. If ¢5£1 is an element of
LNp~'Hp, Cg(c) contains both H, and p~'Hyp and is contained in H. We
have therefore p—'Hop = H, and hence p~'Hp=H. We have assumed that H,,
and hence H, is not normal in G. There must be a conjugate subgroup H; of
H different from H, Then Hy/\L=e, which means two distinct elements of
H, belong to different cosets modulo L. Hence we obtain an inequality

[G:L] =14 [Hi:e], or m2=1+h.
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Combined with the reverse inequality m <1+#% we get an equality m=1-+h.

We shall represent G as a permutation group I" on the cosets modulo L.
The degree of this representation is m =144 and is odd. L is the subgroup
consisting of elements leaving one symbol invariant. We claim that the group
H is transitive on cosets Lu# L so that the group is at least doubly transitive.
Take a coset Lu and suppose an element ¢ #1 of H leaves Ly invariant. Then
we have Lug = Ly, which implies that uou=!& L. As shown before this is pos-
sible only when uou~! belongs to H. Hence u& N ¢e(Ho) =L. Since m=1-+h,
H is transitive on cosets #L.

Let ¢ be the character of the representation I'. Since I is doubly transitive,
¢ is decomposed as a sum of two irreducible characters over the complex num-
ber field: ¢ =1+x (cf. [4, §207]). For any element o of G the value of ¢ is the
number of symbols left invariant by o. Suppose that Cy, - - -, Ci are the
totality of conjugate classes of G containing no element of H. Let g; be the
number of elements in C; and x; the value of ¢ on C;. If x;>0, then x; is at
least 2. The identity leaves exactly m =14k symbols invariant and each non-
identity of H leaves exactly one symbol fixed. The orthogonality relations
yield two equations:

2= 2.6(0) and g= 2 ¢(0).

0EG sEG

Using the values of ¢ we obtain '
2g=m2+m(h— 1)+fogi

and

g=m+m(h—1)+2x.-g.~.

Hence by subtracting twice the second equation from the first one we have

Z x;(x,- - Z)g, = 0.

i

Since x;=0 or x;=2, x;(x;—2) is non-negative. Hence for any ¢, cither
x;=0 or x;=2. This shows that the identity is the only element which leaves
three different symbols invariant. G is a (Z)-group by definition and the
assertion of Theorem 2 is proved.

COROLLARY. Let H be a nilpotent subgroup of even order in G. Assume that
H satisfies the condition (1') of Lemma 4. Then we have one of the four cases:

(1) H is a normal subgroup of G,

(i1) a Sylow 2-group of G is cyclic,

(iii) a Sylow 2-group of G is a generalized quaternion group or

(iv) G is a (ZT)-group and H is a Sylow 2-group of G.
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Proof. Let H, be the subgroup of H generated by involutions of H. Since
H is nilpotent, the center of Hj is not trivial. This proves the second condition
(2) for H. By Lemma 4, H is a Hall subgroup of G. Suppose an element g1
of H is a product of two involutions 7 and 7. Then 7 is contained in C§(s).
1f the order of ¢ is odd, then C¢(o) contains a Sylow 2-group of H. Since H is
a Hall subgroup we have C§(¢) = Cs(c) and hence C§(o) is contained in H
by (1'). Hence 1€ H. On the other hand if the order of ¢ is even, a power of
¢ commutes with 7. By (1’) 7 must be an element of H. Thus the condition
(1”") of Lemma 5 is satisfied. Hence Theorem 2 can be applied. We need only
to show the first case of Theorem 2 implies the normality of H. Suppose that
H is not normal. Then there is a conjugate subgroup H, of H and H,#H.
Since H, is normal, H, contains H,. By a property of nilpotent groups H, con-
tains a central element of H;. By (1’) we get a contradiction.

We remark that the assumption of the nilpotency of H can be replaced by
the following one. H is a direct product of a 2-group and any group of odd
order.

The next theorem is a particular case of Theorem 2 and characterizes
(ZT)-groups among simple groups of composite order.

THEOREM 3. Let G be a group and H a subgroup of G satisfying the condi-
tions (1) and (2) (or (1), (1”") and (2)) of Theorem 2. If G is a simple group of
order greater than 2, then G is a (ZT)-group. Conversely any (ZT)-group con-
tains a subgroup satisfying the conditions (1) and (2).

Proof. By Theorem 2 we have one of four cases for G. Suppose that H, is
normal in G. Then being a characteristic subgroup of H,, the center C of H,
is a normal subgroup of G. Obviously C is an abelian group of even order.
Hence if G is simple, C coincides with G and is a group of order 2.

If a Sylow 2-group S is cyclic, G contains by a theorem of Burnside [4]
a normal subgroup N such that G=NS and NNS=e. If G is simple we have
N=¢ so that G=S. Again the order of G must be 2.

If G is simple its Sylow 2-group can not be a generalized quaternion group
by a theorem of Brauer and the author [3]. Hence the only possibility remain-
ing is the last case (iv).

If conversely G is a (ZT)-group, its Sylow 2-group H satisfies the condi-
tion (1) (cf. the proof of Lemma 1). The condition (2) is trivial since H is a
2-group.

3. Applications. The next two theorems are also corollaries to Theorem 2.
THEOREM 4. A nonsolvable (CN)-group is a (CIT)-group.

Proof. Let G be a nonsolvable (CN)-group. By a theorem of Feit, M.
Hall and Thompson [7], the order of G is even. By way of contradiction sup-
pose that G is not a (CIT)-group. Then there are nilpotent subgroups of even
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order which are not a 2-group. Among them choose one, say M, with the
largest possible order. Since M is nilpotent M is a direct product of a 2-group
M, and a group of odd order. Consider a Sylow 2-group Q containing M. If
Q# M,, there is a subgroup T of Q containing M, as a proper normal sub-
group. Then M, contains a central element 01 of T. The centralizer C¢(0)
contains T as well as M and by assumption Cg(e) is nilpotent. This contra-
dicts the definition of M. Hence M contains a Sylow 2-group Q. If M=0XK,
K contains at least two elements by definition. Let p be an element 1 of
the center of K. It is clear that Ce(p) is a nilpotent subgroup containing M.
From the maximal choice C¢(p) = M. Similarly if 7 is a nonidentity element
of the center of Q, we have C¢(7) = M. We want to show that the group M
satisfies the condition (1’). Let ¢ be any element #1 of M. If ¢€K, Cqs(o)
is by definition a nilpotent group containing Q. Since Q is a Sylow 2-group Q
is a direct factor of C¢(0). Hence C¢(0) SCq(r) =M. If 0 &K, a power 7 of
o is a nonidentity element of Q. C¢(w) is a nilpotent group containing Cg(0)
and K. If Ce(m) =R XS where R is a 2-group and S is of odd order, K is a
part of S. If S# K, there is a subgroup of S containing K as a proper normal
subgroup. Then there is an element 1 of K whose centralizer contains M
as a proper subgroup. This is not the case. Hence we have

Ce(r) = RX K C Cqlp) = M.

By the above corollary we have one of the four cases. If the group M is
normal G/M is a solvable group, since all the Sylow groups are cyclic (cf.
Zassenhaus [19]). If a Sylow group of G is either a cyclic group or a general-
ized quaternion group, then the factor group G/N by the maximal normal
subgroup N of odd order contains a central involution (cf. the last part of the
proof of Theorem 1). If 7 is an involution of G, TN is the central involution of
G/N and G = NCgs(r). By assumption Cg(7) is nilpotent. Since G/N
=~C¢(r)/NNC¢(r), G/N is also nilpotent. Since the order of N is odd, N is
solvable by a theorem of Feit, M. Hall and Thompson [7]. Hence in both
cases G is a solvable group contrary to the assumption. Since M is not a
Sylow 2-group, the last case (iv) can not happen either. Hence G is a (CIT)-
group.

THEOREM 5. Let G be a (CIT)-group and S a Sylow 2-group of G. Assume
that Sylow 2-groups of G are independent. Then we have one of the following:

(1) S is normal,

(i1) S is cyclic,

(iii) S s a generalized quaternion group or

(iv) G is a (ZT)-group.

Proof. If 1 is an element of S and if po =0p, then ¢ is contained in both
S and p~'Sp. Since Sylow 2-groups are independent by assumption, p~1Sp
coincides with S. This means that p is an element of N¢g(S). Since G is a
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(CIT)-group the order of p is a power of 2. Since p& N¢(S), p must be an
element of S. Therefore the group S satisfies the condition (1’) of Lemma 4.
The corollary of Theorem 2 proves the assertion of Theorem 5.

PARrT II. PROPERTIES OF GENERAL (CIT)-GrRoOUPS

1. The structure of solvable (CIT)-groups. In this section we shall study
the structure of solvable (CIT)-groups. The ﬁrst theorem is however proved
in a slightly more general form.

THEOREM 1. Let G be a (CIT)-group. Assume that G contains a proper nor-
mal subgroup of odd order. Then G is a solvable group. In this case G contains
an abelian normal subgroup A of odd order such that G=AS for a Sylow 2-group
S of G and no element #1 of A commutes with an element #1 of S.

Proof. By assumption G contains proper normal subgroups of odd order.
Let N be one of them. Since the order of G is even there is a Sylow 2-group
S of G such that SN =e. If 7 is a central involution of .S, 7 induces an auto-
morphism of order 2 in N, which leaves only the identity invariant. Hence
by a result of Burnside N is abelian and 7 maps any element of N into its
inverse. If S contains another involution 7/, 7/ would also map every element
of N into its inverse. Then the product 77’ would be an involution of S which
commutes with every element of N. This is a contradiction to the condition
(CIT). Hence S contains only one involution. Such a 2-group is either a
cyclic group or a generalized quaternion group. Thus the proof of Theorem 1
is reduced to the proof of the following proposition.

ProposITION 1. Suppose that a Sylow 2-group S of a (CIT)-group G is
either a cyclic group or a generalized quaternion group. Then G conlains an
abelian normal subgroup A of odd order such that G=AS and no element #1
of S commutes with an element =1 of A. In particular G is a Frobenius group.

Proof. Let A be the normal subgroup of G with the greatest possible odd
order. As before A4 is abelian. If S is cyclic, 4 satisfies the condition G=A4S
by a theorem of Burnside [4, §243]. On the other hand if S is a generalized
quaternion group, the group G/4 contains a central involution by a theorem
of Brauer and Suzuki [3]. There is an involution 7 of S such that the coset
74 is in the center of G/A4. If ¢ is any element of G, the element ¢~'70 gener-
ates a Sylow 2-group of the subgroup {4, 7}. Hence by a Sylow’s theorem
there is an element p of 4 such that ¢—'r¢ =p~!rp. Then the element op~! be-
longs to the centralizer of 7 in G which is by assumption the group S. Hence
op~'€.S and so we have G=S4. Since every element #1 of S induces a fixed-
point-free automorphism of A, the group G is a Frobenius group and the
proposition follows immediately.

The solvability of G in Theorem 1 follows from the condition G=A4S. The
above theorem is supplemented by the next theorem.
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THEOREM 2. Let G be a solvable (C1T)-group. If G contains no proper normal
subgroup of odd order, G has a series of normal subgroups

GOLDNDe

such that G/L and L/ N are cyclic groups of relatively prime orders, N is a 2-
group and the extension of G over N splits. If moreover the order G/N is even,
the group G/L is a 2-group and induces fixed-point-free automorphisms of L/ N,

Proof. Since G is solvable, G contains a proper normal subgroup of prime
power order. By assumption all proper normal subgroups are of even order.
Hence G contains a normal subgroup which is a 2-group. Let N be the normal
subgroup of the greatest possible 2-power order. Then N#=e.

Suppose that the group G/N is of odd order. If T is a Sylow p-group for
some odd prime p, the group N T is a Frobenius group by the condition (CIT).
Hence T is a cyclic group. By a result of Zassenhaus [19] there is a normal
subgroup L of G such that both G/L and L/N are cyclic and the orders are
relatively prime. The splitting of the extension of G over N is proved by a
theorem of Schur [20, p. 125].

Assume that the order of G/N is even. Then the group G/N is a (CIT)-
group containing a proper normal subgroup of odd order. By Theorem 1 there
is a normal subgroup L of G such that GDLDN, G/L is a 2-group and L/N
is an abelian group of odd order. As shown before every Sylow group belong-
ing to an odd prime is cyclic. This implies that L/N is cyclic. The group G/L
is isomorphic with a Sylow 2-group of G/N which is either a cyclic group or a
generalized quaternion group. On the other hand the group G/N is a Frobe-
nius group. Hence the group G/L is isomorphic with a subgroup of the group of
automorphisms of L/N. Since L/N is cyclic, G/L must be abelian. Hence the
group G/L is also cyclic.

The only thing left is to show that the extension of G over N splits. By
the splitting theorem of Schur [20] L contains a subgroup H such that

L=NH and NNH=ce.

Since L is solvable, the subgroup ¢—'Ho¢ for 0 €G is conjugate to H in L. This
implies that G=LK with K=Ng(H). Since L=NH and HCK, we have
G=NK. On the other hand KMNL is the normalizer of H in L and hence

KNL=(KNN)XH.

From the condition (CIT) it follows that KN N =e. Therefore the subgroup
K is a complement of N in G.

2. Remarks on general (CIT)-groups. Using Proposition 1 the theorem at
the end of Part I may be stated in the following form.

THEOREM 3. Let G be a (CIT)-group. If Sylow 2-groups are independent,
then G 1is either a solvable Frobenius group or a (ZT)-group.
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Proof. Let S be a Sylow 2-group of G. If G is not a (ZT)-group, we have
one of the following two cases: (1) 'S is normal or (2) S is either cyclic or a
generalized quaternion group. In the first case all Sylow groups of G/S are
cyclic. Hence by a theorem of Burnside G is solvable. The solvability in the
case (2) is shown in Proposition 1.

THEOREM 4. Let G be a nonsolvable (CIT)-group. Then the maximal solvable
normal subgroup of G is a 2-group.

Proof. Let NV be the maximal solvable normal subgroup of G. Suppose that
N#e. Since N is solvable, N contains a characteristic subgroup M#e of
prime power order. Then M is a normal subgroup of G. Since G is assumed to
be nonsolvable M is a 2-group by Theorem 1. We may assume that M has the
greatest possible order.

By way of contradiction suppose that N is larger than M, and consider
the group G/ M. If the group G/ M is of odd order all Sylow groups of G/ M
are cyclic, since G is a (CIT)-group. This would imply the solvability of G/ M
and hence of G. This contradicts the assumption. If the group G/ M is of even
order G/ M is a (CIT)-group. Since N# M, G/ M would contain a normal sub-
group of odd order. This would imply again the solvability of G/M by Theo-
rem 1. Hence we must have M=N.

3. The family  of 2-subgroups of G. In the following discussion on the
structure of general (CIT)-groups a family of 2-subgroups of G attracts our
attention.

Let 9 be the collection of 2-subgroups of G defined by the following prop-
erties: HE D if (1) H#e, (2) Ne(H) contains at least two Sylow 2-groups
and (3) H is the maximal normal 2-subgroup of N¢(H).

LEMMA 1. The family © of 2-subgroups of G is empty if and only if Sylow
2-groups of G are independent.

Proof. If $ is not empty we can take a subgroup H which belongs to $-
Then by (2) the normalizer N = N(H) contains at least two Sylow 2-groups-
If Q and Q' are Sylow 2-groups of N, QNQ’ contains H and H>e by (1). By
a theorem of Sylow Q and Q’ are contained in Sylow 2-groups P and P’ of G
respectively. Since Q#(Q’, P is different from P’. Thus PP’ and

PN\P DHHe.

Sylow 2-groups are therefore not independent.

Conversely assume that Sylow 2-groups are not independent. Let D be a
maximal intersection of Sylow 2-groups. Then D#e by assumption. If
D = P,N\P, for Sylow 2-groups P, and P,, the normalizers of D in P, and P,
are larger than D by a property of 2-groups. Hence the normalizer N of D
contains at least two Sylow 2-groups. Since D is a maximal intersection, D
must be the maximal normal 2-group of N. Hence D is in $.
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Sometimes the following lemma is useful.

LEMMA 2. If D3e is a 2-subgroup of G such that N ¢(D) contains at least
two Sylow 2-groups, then there exists a subgroup H in © such that

HD D and Ng(H) D Ng(D).
Proof. Let D; be the maximal normal 2-subgroup of N¢(D). Then
D12 D and Ng(Dy) 2 No(D).

Hence Ng(D,) contains at least two Sylow 2-groups. We shall define a se-
quence of subgroups D; by induction. Suppose D; for j < have been defined
and satisfy the properties

D;y,D2D;32:---2D and N1 DN 22 -2 Ng(D)

where N;j= N¢g(D;). Let D; be the maximal normal 2-subgroup of N;_;. Then
clearly we have

D;DD;, and N;2D N,

Since G is a finite group the sequence {D;} must terminate after a finite num-
ber of steps. If H=UD;, H=D,, for large values of #n. By definition H is the
maximal normal 2-group of Ng(D,)=Ng(H). This is the third requirement
for H to be a member of 9. The first two are also satisfied as is seen from the
construction. Hence H is in 9.

The family 9 is a partly ordered set by the usual order relation defined by
inclusion. Thompson [17] has introduced another order in § so as to make
another partly ordered set. We define a relation >> in  in the following way.
Let H;€ 9 for 1=1, 2. Denote by N; the normalizer of H; in G, by n; the
order of N; and by 2% the order of a 2-Sylow subgroup of N;. We define

H,> H, if (l) e > ey Or (2) e = ez, my > N2, OF (3) H, = H,.

It is easy to see that the relation defined above satisfies the usual three
axioms for an order and the set § becomes a partly ordered set. In the follow-
ing we shall refer to this order as the Thompson order in order to distinguish
it from the usual one.

4. Conjugacy of involutions in (CIT)-groups. This section is devoted to
the proof of the following theorem.

THEOREM 5. Let G be a (CIT)-group and N the maximal normal 2-subgroup
of G. If the order of G/ N 1is even, G contains an involution outside of N and any
two involutions not contained in N are conjugate to each other.

Before entering the proof which is quite involved, we remark that if G
is nonsolvable the order of G/N is by Theorem 4 automatically even. We
need a few lemmas, of which the first is the following.
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LEMMA 3. Assume that a (CIT)-group G contains two Sylow 2-groups S
and S’ such that SM\S’ =e. Then all the involutions form a single conjugate class.

Proof. By assumption S#e, so that we can take an involution 7, in the
center of S. By way of contradiction suppose that there exists an involution
7 which is not conjugate to 7o. By assumption the centralizer C¢(r) is a 2-
group. By a theorem of Sylow C¢(7) is conjugate to a subgroup of S. We may
therefore assume that S contains Cg(r). Take an arbitrary Sylow 2-group T
of G. Then there is a central involution 7’ of T such that 7’ is not conjugate
to 7. Then there is another involution 7 of G which commutes with both =
and 7. Hence we have

7€ Ca(r) N Co(r) SSNT.

This implies in particular that SN\T#e. Since T was arbitrary we get a
contradiction to the assumption. Therefore involutions form a single con-
jugate class.

LEMMA 4. Let G and N be as stated in Theorem S. Assume that the order of
G/N is even. If there are two Sylow 2-groups S and S’ of G such that SN\S' =N,
then the conclusions of Theorem 5 hold.

Proof. Consider the natural homomorphism ¢ of G onto G/N. Then the
groups ¢(S) and ¢(S’) are Sylow 2-groups of G/N satisfying the condition
d(S)NP(S’) =e. We apply Lemma 3 to the group G/N and conclude that
involutions of G/N form a single conjugate class. Let 7 and =’ be central in-
volutions of ¢(S) and ¢(S’) respectively. The subgroup {=, 7'} generated by
x and 7’ is a dihedral group containing {7} as a Sylow 2-group. Let H be the
subgroup of G containing N such that ¢(H) = {1r, x'}. Then H is a solvable
(CIT)-group. If H contains a normal subgroup T of odd order, every element
of T must commute with any element of N. By the condition (CIT) T must
be trivial. Hence H satisfies the assumption of Theorem 2. Since N is clearly
the maximal normal 2-group of H, the extension of H over N splits. This
means that there is a subgroup D of H isomorphic with the dihedral group
{1r, ' } Hence D contains involutions 7 such that ¢(7) ==. Since 7N we
have proved the first assertion of existence. If ¢ is any involution of G outside
of N, the element ¢(o) is an involution of G/N and is conjugate to =’'. We
may therefore assume that ¢(c) =='. If ¢ is not conjugate to = the order of
ot =p must be even. Hence by assumption it is a power of 2. Then the same
is true for ¢(p) ==n’. This is, however, not the case since no element except
the identity commutes with both = and #’. Hence ¢ is conjugate to 7 in G
as claimed.

The next lemma is more complicated to prove, but this is the final step
in the proof of Theorem 5.
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LEMMA 5. Let G and N be as stated before. If the order of G/ N is even, G con-
tains Sylow 2-groups S and S’ satisfying

SNS = N.

Proof. We use the inductive argument on the order of G.

Suppose N#e. The group G/N is by assumption a (CIT)-group of order
less than that of G. Since N is the maximal normal 2-subgroup of G, the group
G/ N does not contain any proper normal 2-group. By inductive hypothesis
there are Sylow groups T and 7" of G/N such that TNT’ =e. We take sub-
groups S and S’ of G such that S/N=T and $’/N=T". Then we have SN.S’
= N and both S and S’ are Sylow 2-groups of G.

Assume that N=e. If Sylow 2-groups are independent, Lemma § is
trivially true. We assume that Sylow 2-groups are not independent. Let
be the family of 2-subgroups of G defined in the previous section. By Lemma 1
and by the assumption just made the family § is not empty. We remark that
for any HE O the normalizer N ¢(H) is a proper subgroup of G so that we may
apply inductive hypothesis to N ¢(H), since we have assumed that N=e.

For each HE P let O(H) denote the set of elements of Ng(H) outside of
H:O(H)=Ng(H)— H. Let Z be the subgroup of the center of a Sylow 2-group
generated by involutions. For any subgroup K of G let V(K) denote the sub-
group of K generated by subgroups of K which are conjugate to Z in G.
Clearly the subgroup V(K) is a normal subgroup of N¢(K).

Assume that there is a subgroup H in 9 satisfying the condition that
O(H) contains an involution conjugate to some element of Z. By inductive
hypothesis Ng(H) contains two Sylow 2-groups P and P’ such that PNP’
=H. By Lemma 4 involutions in O(H) are conjugate to each other. We can
take two involutions 7 and 7’ of N¢(H) in such a way that 7H(7'H) belongs
to the center of P/H(P’/H). Since we assumed that O(H) contains an involu-
tion conjugate to an element of Z, 7 must belong to the center of some Sylow
2-group and the same is true for 7. Hence both S=C¢(7) and §' = Ce(7') are
Sylow 2-groups of G. Suppose that SNS’ #e. Then there exists an involution
m in SNS’ and Ce(w) contains 7 and 7’. By assumption Cg(w) is a 2-group.
Hence 7 and 7’ generate a 2-group Q. The group QH/H contains both 7H and
7'H, and has a nontrivial center because it is a 2-group. Hence the centralizer
of 7H in Ng(H)/H contains at least two elements of the centralizer of 7' H.
This is, however, impossible since the centralizer of 7H is P/H and that of
7'H is P'/H. Hence SN\S’ =e¢ as was to be shown.

We want to derive a contradiction out of the assumption that for any
HE 9, O(H) contains no involution conjugate to an element of Z. By way of
contradiction suppose that O(H)N\e~'Zo= & for any ¢ €EG and HE . This
assumption implies that V(H)=V(Ne(H)) for all HE®. In particular we
have V(H) #e.

Let H, be a subgroup of  which is maximal in the Thompson order.
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Let P be a Sylow 2-group of M = N g(H,). Consider the subgroup V= V(H,).
V is a normal subgroup of M. Hence N¢(V) contains M. If P is not a Sylow
2-group of G, P is contained in a 2-group T as a proper normal subgroup.
Since V=V(P), Ne(V) contains T. By Lemma 2 there is a subgroup H of
© such that HDV and Ng(H)2N¢(V). Since Ng(H)DT2P, the subgroup
H would be larger than H, in the Thompson order. This is impossible since
we took H, to be maximal. Hence P is a Sylow subgroup of G. Similarly we
see that Ng(V) =M. It fol'ows now that the subgroup H, is uniquely de-
termined by P. Namely H, is the maximal normal 2-group of N¢(V) where
V=V(P). We denote Hy=H(P).

We shall show that if P and P’ are two Sylow 2-groups of G and if PNP’
#e, then PNP'DH(P).

First of all we remark that the relation PN\P' D H(P) implies that H(P’)
=H(P). In fact if a Sylow 2-group T contains H(P), T contains V(P)="V.
Hence V(T) = V. This implies that H(T) = H(P). In order to prove the above
statement we suppose, by way of contradiction, that there is a pair of
Sylow 2-groups P and P’ such that PMP’ ¢ and PNP’' DH(P). Denote by
D the intersection PMP’ and assume that we have chosen a pair P and P’
so as to make the order of D as large as possible under the two restrictions.

Suppose that N¢(D) contains only one Sylow 2-group Q. Let P’ be a Sy-
low 2-group of G containing Q. by a property of 2-groups D is different from
Np(D) and also from Np/(D). Hence P"NP2ONp(D)##D. Since D has a
maximal order, we conclude that

P"MN\ P2 H(P).

Similarly we get P”MP'2DH(P’). But as remarked before these relations
yield equations

H(P) = H(P") = H(P') and D=PNP D2PNPNP'DHP).

This is not the case. Thus N¢(D) contains at least two Sylow groups.

Suppose that D is not the maximal normal 2-group of N¢(D). By Lemma
2 there is a subgroup D’ of § such that D’2D and Ng(D') DN ¢(D). Since D
does not belong to §, D’ is larger than D. The group PN N g(D) contains D
properly. We take a Sylow 2-group P; of G containing (PN ¢(D))D’. Then
the intersection PMP; contains PMNg(D) and hence larger than D. From
the maximal choice we get

PN P,D H(P) = H(P,).
Similarly if P{ is a Sylow 2-group of G containing (P’"\N¢(D))D’, we have
PPN\ P{ D H(P') = H(P{).

On the other hand we see that Py"\P{ contains D’. In the same way as above
we get Py\N\P{ DH(P,)=H(P{). Hence we conclude that
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D=PNPDPNPNPNP DHP).

This is a contradiction. Hence D must be a subgroup of .

In general we remark that a subgroup H of § is an intersection of Sylow
subgroups of G. In fact let Qy, - - -, Qs, - - - be Sylow groups of N¢(H).
Then the intersection M; Q; is the maximal normal 2-group of N¢(H) and
hence H=0; Q;. By a theorem of Sylow each Q; is contained in a Sylow group
P, of G. Let D denote the intersection ; P;. By definition D contains H. If H
is a proper subgroup of D, there is a subgroup K of D which contains H as a
proper normal subgroup. Hence DN\ N¢(H) 2K #H. On the other hand for
each i, Pi\N\Ng(H) is a 2-group containing Q;. Since Q; is a Sylow group of
Ng(H), we must have P;N\Ng(H)=Q;. Hence DN\Ng(H)=N; P;N\N¢(H)
=MNQ;=H, which is a contradiction. Hence H=/; P; is an intersection of
Sylow groups of G. As a consequence we remark that if a subgroup K of G
contains N ¢(H), then the maximal normal 2-subgroup of K is contained in H.

We have shown that if there is a pair of Sylow 2-groups P and P’ such that
PNP’#e¢and PNP'DH(P), then there is an intersection D=Py"\ - - - NPy
of Sylow subgroups of G such that DE® and DPH(P,). Consider such a
subgroup D which is maximal with respect to the Thompson order. Let Q
be a Sylow 2-group of N¢(D). Suppose that Q is not a Sylow group of G.
Then there is a 2-group T containing Q as a proper normal subgroup. The
subgroup Vo= V(D) is normal in N¢(D) and at the same time normal in T
since

Vo= V(Ne(D)) = V(Q).

Hence there is a subgroup D; of § such that
D12V,  Na(D1) 2 Ng(Vo) 2 Ne(D)

and D, is larger than D in the Thompson order. Since D,E€ 9, D, is the max-
imal normal 2-group of Ng(D:) and hence by a remark at the end of the
preceding paragraph we conclude that D,ED. Since we have assumed that
DD H(P,), D; does not contain H(P) for any Sylow 2-group P containing D;.
This contradicts the maximal choice of D. Hence Q is a Sylow 2-group of G.

If so, by assumption
V(D) = V(Ne(D)) = V(Q)

and hence V(Q) is a part of D. Since P; is another Sylow 2-group containing
D, V(Py) coincides with V(Q) and is also contained in D. By definition H(P)
is the maximal normal 2-subgroup of Ng(V(P1)). On the other hand since
V(Py) is a part of D, we see that N¢(V(Py)) 2Na(D). It follows that D con-
tains H(P;). This is a contradiction to our assumption. Hence if two Sylow
2-groups P and P’ intersect nontrivially, then PMP’ contains H(P).
Incidentally this part of the argument proves a more general proposition.
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Let p be an arbitrary prime number and 9, be the family of p-subgroups de-
fined in a similar way as 9 in the third section. For subgroups X and U of G,
let V(X : U) denote the subgroup of X generated by conjugate subgroups of U
contained in X.

PROPOSITION 2. Suppose that the family O, is not empty and that there exists
a subgroup U of G such that

V(H:U) %~ e and V(H:U) = V(Ng(H): U)

for all HE §,. Then a Sylow p-subgroup S of G contains a subgroup K satisfying
the following properties: (1) KED,, (2) K=V(S: K) and (3) if T is another
Sylow p-subgroup of G and if SNT#e, then SNTIK.

The subgroup H(S) defined in the above proof satisfies the required prop-
erties. The first and the last properties are obvious. As for the second property
we can prove a stronger result, that K is strongly closed in S. In fact if a con-
jugate subgroup K’ of K intersects nontrivially with S, then K’ is contained
in a subgroup ' conjugate to S. Then SN.S’' ¢ and this implies, by (3), that
SNS'DK'. Since K=H(S) and K'=H(S’) we conclude that K=K".

In this formulation the actual meaning of V(X: U) is not essential. We
can replace V(X: U) by a function V defined on p-subgroups satisfying cer-
tain conditions. If p=2 we can say something about the involutions of G.
Assume moreover that G contains no proper normal 2-subgroup. Then the
subgroup K of Proposition 2 is not normal. There is a subgroup K’'#K,
which is conjugate to K. Let P be a Sylow 2-group containing K’. We take
two involutions 7 and 7’ such that 7€K and 7’EP. Let D denote the sub-
group generated by 7 and 7’. If the order of D is divisible by 4, there are
Sylow 2-groups Q and Q' of D such that @27, Q'27’ and QNQ’ #e. Q and
Q' are contained in Sylow 2-groups S and S’ of G respectively: QC.S and
Q'CS'. Since T€K, SNK #¢ and we conclude that SOK. The involution
7’ is an element of PN\S’ and PDOK'. Hence by (3) of Proposition 2 we have
S’DK’. Since SNS'2QNQ’ e, we have again by (3) SDK’ which implies
that K=K'. This contradiction proves that the order of D is not divisible by
4. Hence 7 and 7’ are conjugate in D and a fortiori in G. It follows therefore
that involutions of G form a single conjugate class. Moreover we conclude
that there is no involution in S—K, since K is strongly closed in S. As a
matter of fact every involution of S is contained in the center of K. This last
situation is however impossible in our case of Lemma 5, since there is an
involution in S—K by inductive hypothesis. Thus we have proved Lemma §
and at the same time the proof of Theorem § is finished. Moreover we have
the following corollary to Proposition 2.

COROLLARY. Let G be a (CIT)-group having no proper normal 2-group. As-
sume that the family © of 2-subgroups defined in the third section is not empty.
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Then there is no subgroup U of G for which the conditions
v(H:U) % ¢ and V(H:U) = V(Ne(H): U)
are satisfied for all HED.

5. Intersections of Sylow groups. In the following we assume always that
G is a (CIT)-group, G contains no proper solvable normal subgroup and
Sylow 2-groups are not independent. Theorems 4 and S show that G contains
one and only one class of conjugate elements containing involutions. If $
is the family of 2-subgroups defined in the third section, this set § is not
empty.

LeMMA 6. If HE 9D, there is a pair of Sylow 2-groups T and T’ of G such
that H=TNT".

Proof. Let N denote the normalizer N¢(H). By Lemma 5 there are Sylow
2-groups Q and @’ of N such that QNQ'=H. Then Q and Q’ are contained
in Sylow groups T and T’ of G. We have

Q=TNN and "=T"NN.

If TNT' contains H properly, there is a subgroup U of TMT’ which con-
tains H as a proper normal subgroup. Hence

TNT'NNDU&#H.
On the other hand TNT'NN=0Q0MNQ'=H. Hence we must have TNT’'=H.

LEMMA 7. Let Z be a subgroup of the center of a Sylow 2-group of G. If a
Sylow 2-group P contains an involution of Z, then P contains Z.

Proof. Let 7 be the involution of Z contained in P. If C is the center of P,
every element of C commutes with 7. Hence CC Cg(7). On the other hand by
assumption Cg(r)=S is a Sylow 2-group of G containing Z. Hence CCS
and this implies that ZCC¢(C) =P.

In the rest of this section we consider a fixed subgroup Z of the center of
some Sylow 2-group of G. As before the subgroup V(U) = V(U: Z) is the sub-
group of U generated by all the conjugate subgroups of Z which are contained
in U.

LEMMA 8. There are subgroups H and W of G satisfying the conditions
HED, W is conjugate to Z, Ng(H)DW and WNH=ke.

Proof. Since Z is a subgroup e of the center of some Sylow 2-group of
G, V(N ¢(H)) is not trivial. Hence by the corollary to Proposition 2, there is
a subgroup H of $ such that V(N¢(H)) %« V(H). This means that there is a
conjugate subgroup W of Z contained in Ng(H) but not in H. We need only
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to show that WNH=e. By Lemma 6, there is a pair of Sylow 2-groups T
and T of G satisfying TNT'=H. If WNH#e, we have

WNTDODWNH#e and WNT DWNH#e.

Hence by Lemma 7 we conclude that W is contained in both T and T”. This
is a contradiction since 7\ T’ = H does not contain W.

LEMMA 9. Let 1 be the family of 2-subgroups of G defined by the conditions:
A subgroup H is in D if and only if HEC D and there is a conjugate subgroup
W of Z such that
W C Ng(H) and WNH =e.

If a subgroup H of D1 is maximal in D1 in the usual inclusion, then Sylow 2-
subgroups of Ng(H)/H are independent.

Proof. Let G’ denote the factor group Ne(H)/H. In G’ we denote the
normalizer of X simply by N(X). Let §' be the family of 2-subgroups of G’
defined in a similar way as 9. It is necessary to show that 9’ is empty. By
way of contradiction suppose that $’ is not empty.

The group WH/H is a subgroup of G’. Let W’ denote the subgroup of
WH/H generated by involutions. First of all suppose that there is a subgroup
K’ of ' such that

V(K': W') # V(N(K'): W').

Take a subgroup K of G such that K/H=K’. Elements of G in N(X') form
a subgroup N which is the normalizer of K in Ng(H). Since K'€ 9’, N¢(K)
contains at least two Sylow 2-groups. Hence by Lemma 2, there is a subgroup
H, of © such that

H; 2D K and NG(HI) =2 NG(K) 2N.

By definition of K, there is a subgroup U such that U is conjugate to W in
Ng(H) and the subgroup of U generated by involutions is contained in N
but not in K. Lemma 5 applied to N(K’) shows that there is a pair of Sylow
2-groups Q1 and Q; of N such that 0:/MN\Q:=K. Q; is contained in a Sylow
2-group P; of Ng(H1). Then we have Py"\P,D H,. Hence

Hlf\NgPlf\PzﬂN=Q1f\Q2=K.

This implies that there is an involution in U which is not contained in H;.
If HiNUs%e, any Sylow group of G containing H, contains U by Lemma 7.
Hence U would be a subgroup of Hi;. We conclude therefore HiN\U=e. This
is a contradiction, since UCN¢(Hy), HiDK2H and H was chosen to be
maximal subject to those restrictions.

Suppose that there are subgroups of §’ containing W’. Among them pick
one, say L', maximal with respect to the Thompson order. Then we have

V(LW = V(N(L): W)
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and this group is not equal to e since L' 2 W’. In a similar way as before N(L’)
contains a Sylow 2-group Q’ of G’. Consider subgroups L, N and Q such that
L/H=L', NJH=N(L') and Q/H=Q'. Q is a Sylow 2-group of N¢(H) and
is contained in a Sylow 2-group S of G. By Theorem 5 Q contains an involu-
tion outside of L which is conjugate in N¢(H) to an element of W. Hence
there is a subgroup V such that V is conjugate to Win Ng(H) but VNQEL.
Then we have VMNS#e, which implies by Lemma 7 that VC.S. This means
that VESNNg(H)=Q. Hence VH/H is a subgroup of N(L') but VH/H
contains an involution outside of L’. Hence V(L’: W) is smaller than
V(N(L'): W’); a contradiction.

Hence there is no subgroup of ' containing W’. By Theorem 5 involu-
tions form a single conjugate class of G’. Hence each involution of W’ is in
the center of some Sylow 2-group of G’ containing W’. There is however only
one Sylow 2-group containing W’. In fact if there are more than one, there
would be a member of $’ containing W’. Hence W’ is contained in the center
of a Sylow 2-group, which implies that V(N(L’): W’) #e for any 2-subgroup
L’ of G’. This is however a contradiction to the corollary of Proposition 2,

since
V(L':W') =V(NL): W)

for all L'€ $’. This finishes the proof of Lemma 9.

PRrRoOPOSITION 3. Let G be a (CIT)-group containing no proper solvable nor-
mal subgroup, and Z be a subgroup of the center of a Sylow 2-group of G. Then
there is a maximal intersection D of Sylow 2-groups of G satisfying the following
property: the group Ng(D) contains a conjugate subgroup W of Z such that
WD =e.

Proof. This proposition is trivial if Sylow 2-groups of G are independent.
Hence we assume the contrary throughout the proof.

Let 9, be the family of 2-subgroups of G which is defined as follows. A
subgroup H is in 9, if and only if HED: (see Lemma 9 for the definition)
and the Sylow 2-groups of Ng(H)/H are independent. Lemma 9 says that
9 is a nonempty subfamily of $. We shall prove that if D is a subgroup of
9. containing the largest number of involutions, then D is a maximal inter-
section of Sylow 2-groups of G.

First of all we remark that the subgroup V(H: Z) = V(H) contains all the
involutions of H. In fact since HE D there is by Lemma 6 a pair of Sylow
2-groups T and T” of G such that TNT’'=H. If 7 is an involution of H, 7 is
in T and 7’. By Theorem § 7 is contained in a conjugate subgroup U of Z.
By Lemma 7 U is contained in both T"and 7" and hence in H=TNT’. Defini-
tion of V(H) implies that V(H)2 U. This proves the remark.

Suppose, by way of contradiction, that the subgroup D is not a maximal
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intersection. Then there are Sylow 2-groups Q and Q' of G such that I =QNQ’
is a maximal intersection containing D. Being a maximal intersection, I is
a member of 9. Since I contains D properly, INN (D) contains D properly.
Hence by Theorem 5 I contains an involution which is not contained in D.
Thus the number of involutions of I is larger than that of D.

For each HE 9 let n(H) denote the number of involutions in H. Let $*
denote the subfamily of § consisting of H with n(H) >n(D). Then $* is not
empty as is seen from the preceding argument.

We want to show that V(H)=V(N¢(H)) for all HE$*. Again suppose
the contrary. Take one of the groups in *, say H, such that

V(H) # V(Ne(H)).

The last part of the proof of Lemma 8 shows that such an H belongs to $;.
Let H, be a group containing H and maximal in §; (with respect to the usual
order). Then n(H:) Zn(H) and so HiEH*. By Lemma 9 Sylow 2-groups of
Ng(Hy)/H, are independent. This contradicts the definition of D since
n(Hl) >n(D) and Hle\@z.

Consider a group K which belongs to $* and is maximal in the Thompson
order. Let P be a Sylow 2-group of N¢(K). Then we have

V = V(K) = V(N¢(K))

and V contains as many involutions as K. From the definition N¢(V) con-
tains N¢(K). Suppose that P is not a Sylow 2-group of G. Then as before P
is not a Sylow 2-group of Ng(V). By Lemma 2 there is a subgroup K; of §
such that K;DV and N¢g(K;1) DNe(V). Since K;2V, we have

n(K1) z n(K) > n(D),

which means K,E9$*. The second relation implies that K; is larger than K
in the Thompson order. This is a contradiction to the definition of K. On
the other hand if P is a Sylow 2-group of G, N¢(K) contains an involution
outside of K by Theorem 5. By Lemma 7, we get V(N¢(K)) # V(K) which is
again a contradiction. This proves that D is a maximal intersection of Sylow
groups.

PARrT II1. STRUCTURE OF sEMI-SIMPLE (CIT)-GRoUPS

1. Preliminary remarks. Throughout this third part we consider only a
(CIT)-group G containing no proper solvable normal subgroup, namely we
assume that G is semi-simple. If Sylow 2-groups are independent, G is a
(ZT)-group (Theorem 11.3). The purpose of this part is to determine the
structure of G when Sylow 2-groups are not independent. Theorem II.5 and
Proposition I1.3 are essential in this study. By Proposition 11.3, we know
the existence of a 2-group H satisfying the following properties: H is a max-



448 MICHIO SUZUKI [June

imal intersection of Sylow 2-groups of G and the group N¢(H) contains a
conjugate subgroup W of Z such that WN\H =e. Here Z is a fixed subgroup
of the center of some Sylow 2-group. The first part of the discussion is to de-
termine the structure of N¢(H). Throughout this part the letter H is reserved
for one of the subgroups satisfying the above conditions, on which we focus
our attention. Let N denote the group Ne(H).

LeEmMMA 1. Let P be a Sylow 2-group of N and S a Sylow 2-group of G con-
taining P. If Z, is the part of the center of P generated by involutions, then Zg is
contained in the center of S.

Proof. By definition Z, is a part of C¢(H) which is a normal subgroup of
N. Since H is a maximal intersection, H is the maximal normal 2-subgroup
of N. Hence Z,CCq(H)-HCH. If 7 is an involution of Z,, Cs(7) is a Sylow
2-group of G by Theorem I1. 5. Since H is a maximal intersection, C¢(r) must
be equal to S. Hence Z, is in the center of S.

LEMMA 2. If 1 is an involution of the center of H, then 7 is contained in the
center of some Sylow 2-group of N and this Sylow group is uniquely determined.

Proof. By assumption S=C¢(r) contains H. By Theorem II.5 S is a
Sylow 2-group of G. Hence there is a subgroup Q of S which contains H as a
proper normal subgroup. Then Q is in N. There is a Sylow 2-group P of N
containing Q and a Sylow 2-group T of G containing P. Then T\S contains Q.
Since H is a maximal intersection of Sylow groups we must have T'=S. Then
P=TNN=SNN contains 7 in the center.

2. The structure of G when the center of a Sylow 2-group is cyclic. This
section is devoted to the study of semi-simple (CIT)-groups in which the
center of Sylow 2-groups is cyclic.

LEMMA 3. If the center of a Sylow 2-group is cyclic, then N/H is a dihedral
group of order 6.

Proof. As before let P denote a Sylow 2-group of N and S be a Sylow 2-
group of G containing P. By assumption the center of S is cyclic. It follows
from Lemma 1 that the center of P is also a cyclic group.

By Theorem II.5 there is an involution 7 of P not contained in H. Let
P’ be another Sylow 2-group of N. Take involutions = and #’ in the center
of P and P’ respectively. Since PNP’ = H, both 7 and 7’ belong to the center
of H. Consider the conjugate element 7w’/ =7"!7'r of #’. This is another ele-
ment of the center of H. Hence 7’ and %"’ commute. The product #'7"’ of
«’ and 7'’ is an involution and commutes with 7. Since we took 7 outside of
H, 7is not an element of P’ and does not commute with #’. Hence n'#’' #1
and it is an element of the center of P (see Lemma 2). Hence m=='7"" and
leaves the subgroup U= {1r, 7'} generated by 7 and #’ invariant. Similarly
if 7/ is an involution of P’ not contained in H, 7’ leaves U invariant. The
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group U is an abelian group of order 4 and clearly in the center of H. On the
other hand

Ca(U) = Ca(1l‘) N Ca(ﬂ") = H.

Since Ng(U) contains 7 and 7/ we conclude that the group Ne¢(U)/H is a
group of order 6 isomorphic to the symmetric group of three letters. In the
preceding argument the choices of P, P’, 7 or 7’ are arbitrary. Hence any
pair of involutions in N/H generates a group of order 6, provided that those
involutions are not in the same Sylow 2-groups. If however r and 7, are two
involutions in P, then both 7 and 7 transform #n’ into w#’. Hence 771 commutes
with ', This means 77:€ H. Hence the group P/H contains only one involu-
tion. By Proposition I1.1, N/H contains an abelian normal subgroup 4/H
and N=PA. Since N/H is a (CIT)-group every element of A/H is a product
of involutions. Hence the order of any element of A/H is 3. Since the group
N is solvable, the group A/H must be cyclic. Hence A/H is a cyclic group of
order 3 and at the same time N/H is a group of order 6 which is a dihedral
group.

PRroOPOSITION 1. Let G be a semi-simple (CIT)-group. Assume that the center
of a Sylow 2-group is cyclic. Then this center is actually a group of order 2. If
D is any maximal intersection of Sylow 2-groups, then the group Ng(D)/D isa
dihedral group of order 6 and the center of D is of rank 2.

Proof. Apply Proposition 11.3 taking Z to be the center of a Sylow 2-group.
Then there is a maximal intersection H of Sylow 2-groups such that N¢(H)
contains a conjugate subgroup W of Z and WN\H =e. Then WH/H is a part
of a Sylow group of N¢(H)/H. By Lemma 3 N¢(H)/H is a group of order 6.
This proves the first assertion. The second part can be proved in a similar
way as before.

LEMMA 4. Let A be a direct product of two cyclic 2-groups of the same order.
If A admits an automorphism 0 of order 2 which leaves exactly two elements fixed,
then the order of A is 4.

Proof. We shall use additive notations. Let A = {«} + {9} with nu=nv=0
and =27 We may assume that uo="Fku (k=2""") is the only fixed element
besides the identity by 6. Write down 8 explicitly by

0(u) = au+ bv and 6(v) = cu + dv.
Since ku is fixed, we get
ea=1 and b= 0 (mod 2).
Since kv is not invariant but is mapped to k(x4v), we get

c=d=1 (mod 2).
We have
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0(xu + yv) = (ax + cy)u + (bx + dy)v.
Hence 0 leaves xu+yv invariant if and only if we have
ax + ¢y = %, bx + dy = y (mod n).

Hence if =0 (mod 4), then the element 22 or 224 +2""'y would be in-
variant by 6 according as a=1 (inod 4) or a=3 (mod 4). Suppose the order of
A is greater than 4. Then m 22 and the assumption =0 (mod 4) produces an
invariant element besides ku. On the other hand if b is not divisible by 4,
the order of 8 can not be 2. If so, we would have a?+bc=1 (mod 7). Since
a*=1 (mod 4) we would get bc=0 (mod 4), a contradiction. Hence the order
of A must be 4.

LeEMMA 5. Under the same assumptions as in Proposition 1, a Sylow 2-group
S contains an involution w such that the order of Cs(w) s 4.

Proof. Consider maximal intersections of Sylow 2-groups contained in S.
Assume that none of those maximal intersections is a maximal subgroup of S.
Let H be one of the maximal intersections in S which has the maximal possible
order. Let V denote the center of H. By Proposition 1 the group N¢(H)/H is
a dihedral group of order 6. By assumption the group P=SNNg(H) is a
proper subgroup of S. Hence there is a subgroup T of S containing P as a
proper normal subgroup of index 2. Since T is not a part of N¢(H), T contains
an element ¢ which transforms H onto a subgroup H’ of P where H'#H.
Let V'’ be the center of H'. Again by Proposition 1 V is an abelian group of
rank 2. VNV’ is contained in the center of P. By Lemma 1, VNV’ is cyclic.
Hence there is an involution w of V which is not contained in VNV’ We
may assume that V=UXW where U2 VNV’ and WDw. Suppose that two
elements w and 6~ 're commute. Then p=mo~!me is an involution of P which is
not contained in VN V’. From the choice of ¢, 6~ 2rg? is an involution of V.
Hence o~ 'po is either p itself or p times the involution 7 of VN V’. Hence ¢
leaves the subgroup X generated by p and 7 invariant. If « is any element
of P, a leaves both H and H’ invariant. Hence a leaves the groups {7, 7} and
{7, 0~'ro} invariant. This means a~'ra = or 77, and

a Yo ro)a = ¢ re or o lmor.

Hence a~'pa=p or pr. Since 7 is in the center of S we conclude that o' Xa=X.
Therefore Ne(X) D {P, o} =T. Since X is a noncyclic abelian group of order
4, N¢(X) contains a normal 2-group Y of larger order than H. Y is contained
in a maximal intersection. This contradicts the definition of H. Hence 7 does
not commute with ¢~!'ro. Hence 7 is not contained in H’. This implies that
HNW=e and W=P/H'. The group W is a group of order 2. At the same
time we see that {1r} is a maximal cyclic group of V. Since N¢(H)/H is a
dihedral group of order 6, there is an automorphism of H of order 3 which
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leaves only the identity invariant. Hence {r} is also a maximal cyclic group
of V. This implies that V is a group of order 4. By a theorem of Neumann
[10], the central quotient group H/V is abelian. Since H'NW=e, we get
H'NV=U. Hence we get

H/U = (V/U) X (HNH)/U and HNH/UH/V.

Thus we conclude that the group H/U is abelian. Hence the commutator
subgroup of H is contained in U. Since H admits an automorphism which
maps U onto W, the commutator subgroup of H must be in UNW=e. The
group H itself is therefore abelian. Hence H coincides with the center V which
is as shown above a group of order 4. Clearly H is the centralizer of = in S
and this proves our assertion.

Suppose that there is a maximal intersection D which is a maximal sub-
group of S. By Proposition 1 N¢(D)/D is again of order 6. Let V be the center
of D. Since D admits an automorphism of order 3 which leaves only the
identity fixed, by a theorem of Neumann the group D/ V is abelian. Moreover
we see that Vis a direct product of two cyclic 2-groups of the same order. By
Theorem 11.5, S contains an involution w which is not contained in D. The
element 7 induces an automorphism of V which leaves exactly two elements,
since the center of S is of order 2. By Lemma 4 the order of V is 4. The group
T=Cg¢(r) is a Sylow 2-group of G by assumption, and H=SMNT is the cen-
tralizer of 7 in S. If H is a maximal subgroup of S we can apply the similar
argument as before, and conclude that the order of H is 4. Suppose that H
is not a maximal subgroup of S. Let 7 denote the central involution of S. V
contains another involution p. Since p leaves the group K ='{1', 1r} invariant,
p leaves H=C¢(K) invariant. Let P be the group generated by H and p.
Since HPp, we get HN\V="U= {7}. Since D is a maximal subgroup, DNH
is maximal in H. Hence we get

(DNHNV=U and VU(DNH)=PND.

Hence we get HN\D/U=PND/V. The last group is abelian since it is a sub-
group of D/ V. Since D does not contain m, we get

H=HNDVUW
where W= {r}. Hence we get
H/U = (HND)/U X UW/U.

The group HND/U is abelian as shown before. Therefore H/U must be
abelian. There is an automorphism of H which maps U onto W. It follows
that H itself is abelian. Then the group PMN\D is also abelian since it is a direct
product of {p} and HND. Therefore HN\D is contained in the center of P.
A similar consideration on T (instead of S) shows that H contains a maximal
subgroup Y which is the center of a subgroup of T covering H. The inter-
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section DINHNY consists of elements which commute with some element of
order 3. Hence we have DINNHN Y =¢, which means the order of H is 4.

PROPOSITION 2. Let G be a semi-simple (CIT)-group. Assume that the center
of a Sylow 2-group is cyclic. Then the structure of Sylow 2-groups is as follows.
A Sylow group S is generated by two elements o and w satisfying conditions

an

o =x2=1 and wlow =01 or oW

This is a direct consequence of Lemma 5 and Lemma 4 of [11]. One of
the above types is a dihedral group. The other one contains a dihedral group
as a maximal subgroup. This dihedral group is generated by all the involu-
tions. Another noncyclic maximal subgroup is a generalized quaternion group.

THEOREM 1. Let G be a semi-simple (CIT)-group. If a Sylow 2-group is a
dihedral group, then G is one of the linear fractional groups LF(2, q).

Proof. By Theorem II.5 involutions of G form a single conjugate class.
Hence G does not contain a normal subgroup of index 2. If X is a cyclic sub-
group of even order of G the order of X is a power of 2. If ¥ is another cyclic
subgroup of G and if XM Y #e, then XMY contains an involution 7. Hence
both X and Y are contained in the centralizer of r which is by the condition
(CIT) a Sylow 2-group. Therefore X\UY is contained in a cyclic group. We
can apply a theorem of Brauer, Suzuki and Wall [2]. It follows that G is iso-
morphic with LF(2, ¢) for some prime power ¢.

More precisely we have

THEOREM 2. Only the following values of q are possible in Theorem 1.
g=p=2"41, a Fermat prime,
g=p=2"—1, @ Mersenne prime,
q=9 or g=4.

Proof. If g is even, Sylow 2-groups of LF(2, ¢) are elementary abelian
groups of order ¢g. They are of dihedral type only if ¢=4. Assume that ¢ is
odd. Then it is known (cf. Burnside [4, Chapter 20]) that the centralizer of
an involution is a dihedral group of order ¢g-+1 or ¢—1 according as g=—1 or
+1 (mod 4). Hence by assumption ¢+1 is a power of 2.

Let g=p™ and ¢+1=27 Then n=2. If m is even,

g+1=p"+1=2 (mod4).
This is impossible. If m=2k+1, then
¢g+1=(p+ 1) where I =p% — p2-14 ... 41,

Hence I=2k+1=1 (mod 2). On the other hand !/ is a power of 2. Hence /=1
and g=p=2"—1 is a Mersenne prime.
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Let ¢g—1=2" If m is odd, the same method as above shows that g=p isa
Fermat prime. If m is even, then ¢=r% and

g—1=0+Dr-1) =2~

Since the greatest common divisor of r4+1 and r—1 is 2, we must have
r—1=2and ¢=9.

THEOREM 3. Let G be a semi-simple (CIT)-group. Assume that a Sylow 2-
group is not a dihedral group but the center is cyclic. Then G 1is the group M,, in
the notation of Zassenhaus [18), of order 720, which is the projective group of one
variable over the near-field of 9 elements.

Proof. By assumptions the structure of a Sylow group S is the second one
given in Proposition 2. Since the center of S contains only one involution, the
normalizer of S in G coincides with S. From the defining relations it follows
that the commutator subgroup T of S is a cyclic group. Consider the inter-
section D=38Mo"'To for ¢EG. If D is not contained in T, then the order of
D is either 4 or 2. If the order is 4, D and T contain the central involution in
common. Hence ¢ commutes with the central involution of S. Then D would
be a subgroup of T. Hence for all ¢&G, D=SNe~'T0 is either a group of
order 2 or a part of T. Hence the maximal dihedral subgroup P of S contains
all those intersections and actually is generated by them. By a theorem of
Griin [9], G contains a normal subgroup H of index 2 such that HN\S = P.

The group H is a semi-simple (CIT)-group with dihedral Sylow 2-groups.
Hence by Theorem 1 H is one of linear fractional groups. Let Q be a Sylow
3-group of H. Then [N¢(Q): Nu(Q)]=2. If Qis cyclic, Q contains a character-
istic subgroup Q, of order 3. Then C¢(Qo) is a group of odd order by assump-
tion and

[N6(Q0): Co(Q0)] = 2.

Since N¢(Qo) 2N ¢(Q), Ny(Q) would be a group of odd order. This is not the
case since H is one of linear groups. Hence Q is not cyclic. By Theorem 2 and
the subgroup theorem of Gierster (cf. [4]), H is isomorphic with LF(2, 9).
G is then isomorphically represented by a permutation group on Sylow 3-
groups. The degree is 10 and this permutation group is at least doubly transi-
tive. Since the subgroup leaving one object fixed is a Frobenius group of order
72, it is triply transitive. A theorem of Zassenhaus [18] may be applied to
conclude that G is isomorphic with M,

3. The structure of a Sylow 2-group whose center is not cyclic. In this
section we shall assume that G is a semi-simple (CIT)-group, S is a Sylow 2-
group of G, the center Z of S is not cyclic and Sylow 2-groups are not inde-
pendent. The purpose is to determine the structure of S. Again Theorem II.5
and Proposition I1.3 are prominent.
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ProOPOSITION 3. Under the above assumptions the center Z is elementary
abelian. There exists a maximal intersection H of Sylow 2-groups such that
Ng(H) contains a subgroup W which is conjugate to Z and WNH=e, and
Ne(H)/H is isomorphic with LF (2, q) for some q.

Proof. Apply Proposition I1.3 taking Z to be the center. There exists a
maximal intersection H of Sylow 2-groups such that N=Ng(H) contains a
conjugate subgroup Wof Z and WNH =e. Since H is a maximal intersection,
Sylow 2-groups of N/H are independent. By assumption a Sylow group of
N/H contains a subgroup isomorphic with Z. Since Z is assumed to be non-
cyclic, Sylow groups of N/H are neither cyclic nor generalized quaternion
groups. By Theorem 11.3 the group N/H is a (ZT)-group.

Let H, be the subgroup of the center of H generated by involutions. If
T&H,, 7 is contained in the center of a Sylow 2-group of N by Lemma 2. If
P is a Sylow 2-group of N, we denote by I(P) the set of involutions in the
center of P. Then I(P) is a subset of Hy and every involution of H) is con-
tained in some I(P). If P’ is another Sylow 2-group of N, I(P’) has no element
in common with I(P). Let I(P) contain ¢—1 involutions. If N/H contains
exactly n+1 Sylow 2-groups, n being the order of Sylow groups of N/H,
then H, contains exactly (¢—1)(n+41) involutions. The order m of H, is then

@-Dr+D4+1=gn—n+q=nm.

All the numbers ¢, # and m are powers of 2 (cf. Feit’s theorem in [5]). Since
I(P) is contained in the center of a Sylow 2-group by Lemma 1 and since P
contains a subgroup W which is conjugate to the center Z, ¢ is a divisor of .
Suppose ¢ <n. Clearly we have m =¢% Hence m=0 (mod 2q). But

m=gn —n -+ ¢=q (mod 2¢).

This contradiction proves that ¢g=#. This implies many things. First of all
the order of W is ¢, since it is a multiple of ¢ and is a divisor of #. Secondly the
group W contains at least ¢—1 involutions and so W is an elementary abelian
group of order ¢. Finally W is isomorphic with a Sylow 2-group of N/H, since

P/H~WH/H=W.

N/H is a (ZT)-group with abelian Sylow 2-groups so that by a theorem of
Zassenhaus it is isomorphic with LF(2, ¢). Thus Proposition 3 has been
proved completely.

ProrosiITION 4. Let W be the subgroup of N= N g(H) in Proposition 3. N
contains a cyclic group U of order g—1 such that Co(W) U is the normalizer of
Co(W).

Proof. The subgroup W is conjugate to Z so that Ce(W) =S is a Sylow
2-group of G. By Theorem 1.5 any two involutions of W are conjugate in G.
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If 71 and 7, are involutions of W, there exists an element ¢ of G such that
7o=0"1710. Then C¢(r3) =671Cq(71)o. Since Cqg(m1) =Cs(r2) =S, the element
o is in the normalizer N¢(S) of S. By Proposition 3 the group N/H is iso-
morphic with LF(2, ¢). Hence there is an element p of order ¢—1 which trans-
forms the Sylow 2-group P of N containing W into itself. If 7€ W is an in-
volution, p transforms the group {7, H} into another subgroup which is gen-
erated by H and an involution w of W. There is an element ¢ of N which trans-
forms 7 into 7. The element —p leaves the subgroup {r, H} invariant. Hence
o—'pE P. This implies that ¢ is an element of {P, p} and has an order ¢—1.
The subgroup U generated by o satisfies the conditions of Proposition 4.

LEMMA 6. In the notation of Proposition 4 the extension of N over H splits.

Proof. Let o be a generator of the subgroup U in Proposition 4. Since
N/H=2LF(2, q), there is a dihedral group of order 2(¢—1) of N/H containing
HU/H. If this dihedral group is D/H, D is a solvable subgroup of N with H
as a maximal normal 2-group. By Theorem II.2 the extension of D over H
splits. Hence N contains an involution 7 such that 7~'¢r=¢~!. Again since
N/H is LF(2, q), there is an involution 7 in W such that the coset w7H is of
order 3 in N/H. This implies that the order of w7 is actually 3. We want to
show that the group L generated by W, ¢ and 7 is isomorphic with LF(2, g).
If this has been done, L is a complement of H in N.

Since (r7)3=1 we have 7rr =mrm. If x’ is any element of W, =’ =p~'mp for
some power p of ¢. Hence we have

o't = 1p lwpr = prarp~! = pmwpL:plrpwp~l.
This means that every element of L can be written as either #'p or w’prr’’
with 7/, 7/ €W and p&E U. This expression is unique because ‘rWTf\{ w, U}
=e. Hence the order of L is g(g2—1). Since L is a (CIT)-group with abelian
Sylow 2-groups, L must be isomorphic with LF(2, ¢) (cf. [13] or [6]).

LEMMA 7. The group N/H in the notation of Proposition 4 is isomorphic with
LF(2, 4).

Proof. Let L be a complement of H in N. Lemma 6 shows that there exists
such a complement. Let H, be the subgroup of the center of H generated by
involutions. In the proof of Proposition 3 we have shown that the order of
H,is g* Let P be the Sylow 2-group of N containing W. Then using the same
notation as in Lemma 6 the group 7~'Pr is another Sylow 2-group of N. Since
7=1Ur=U, U is contained in the normalizer of 7-!Pr. Let X be the part of
center of P generated by involutions and Y the same of r='Pr. Since 7-'Pr
#P, we have XN\Y=e¢ and Hy=X X Y as is seen from the proof of Proposi-
tion 3. We remark that both X and Y are invariant by ¢. Let a be an involu-
tion of X. Since the order of X is ¢ every involution of X is conjugate to a by
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some element of U. Moreover every involution of Hj is in the center of some
Sylow 2-group of N. Hence H, is a minimum normal subgroup of H,L.

We shall obtain the explicit forms of automorphisms of Hy induced by ele-
ments ¢, 7, and 7 (the notations being the same as in the proof of Lemma 6).
The groups XU and YU are the Frobenius groups of order g(¢g—1). Here X
and Y are considered as the additive group of the field F of ¢ elements, and
the element o induces a scalar multiplication (cf. Zassenhaus [18]) by a gen-
erator of its multiplicative group. The element 7 exchanges X and Y. The
element 7 is in W. Hence 7 commutes with every element of X. Let 5 be any
involution of Y. Then £ =9n~'9w is an element of H,, which commutes with .
Hence £ is an involution of X. Thus we have

T gr = & with ¢ € X.

Since Y=7"'X7 we may write n=7""A7 for N€X. In this case we have
£=N\:that is

()T = AT
To show this equation we use the equation (rm)*=1 or 7ar=wrw. We have
(&)1 = 7%\ = iy = mrmATrT = £y

Since Hy=X X Y we get A=¢.

Let A be the totality of endomorphisms of H, which commute with auto-
morphisms induced by L. Since H, is a minimum normal subgroup of K = H,L,
the set A is a (skew) field by Schur’s lemma. Since X is the totality of ele-
ments of Hy left invariant by 7, A must leave X invariant. Since 7 exchanges
X and ¥, Y is also left invariant by A. On X every element of A commutes
with p which induces a scalar multiplication. Hence elements of A are also
scalar multiplications by elements of F on X. The same is true on Y. Since
T exchanges X and Y, the multipliers in X and ¥ must coincide. If 0#a&F,
the scalar multiplication in X is defined by

£ = a7 Ya,

where «a in the right side is considered as an element of U. The scalar multi-
plication in ¥ is however defined by

n® = 78 if n = 7&r.
Let 8 be the mapping on H, defined by
0(kn) = En” forteX,n€ Y.

We shall show that 8E€A and hence A is isomorphic with F. We have
0(c(En)0) = 6(c™ ko0 n0) = (o7 %0)*(07'n0)".

From the definition
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(07%0)* = alo7ltga = o~ o Yag = o~ %
Suppose n=7¢{r ({EX). Then
o 9o = o7 1{10 = T0to 7.
Hence by definition
(6790)® = 1(o¢o~ V)2 = 10¢% 11 = ¢~ lr{%0 = o 1p%.

Hence 6 commutes with the automorphism induced by o. From the definition
it follows that # commutes with the automorphism induced by 7. As for 7
we have

O(x(¢rir)m) = O(¢¢r¢r) = Eoforger
= w(terter)m = w0(EriT)w.

Thus we have shown that §EA. Since A=F, the group K is isomorphic with
a group of matrices over F. The correspondence is given by
A 1 1
T At , T— |1 R r— |1 1

1 1 1

and the group H, corresponds to the totality of matrices

1
1

En 1

The subgroup W is the totality of conjugate elements of 7 by elements of
U. We see that the subgroups { W, U} and {X, U} are isomorphic under the
following isomorphism ¢:
A A2
¢: [Nl AU — A2

1 1

The group W is the center of some Sylow 2-group of G. Hence there is an ele-
ment 3 of G which transforms X onto W. The element 8 transforms U into
a group ~*UB which is a subgroup of Ng(W). Since U and B~1UB are two
subgroups of order ¢—1 in Ng(W), they are conjugate in Ng(W). We may
therefore assume that B3—'UB coincides with U:

U8B = U, or B laf = o*.
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Moreover we may assume that 8 maps the element 7, onto m, where

1

T1 = 1

1 1
The group N¢(U) is a group of even order since it contains the involution 7.
Since G is a (CIT)-group, the group Cq(U) is of odd order. Hence the group
Ne(U)/Ce(U) is a group of even order and is abelian, since U is a cyclic
group. From the condition (CIT) it follows that the order of N¢(U)/Ce(U)
and in particular the order of 8 is a power of 2. Again by (CIT) the involution

which is a power of 8 maps every element of U into its inverse. If 8* is the
involution we have

B—ta. z — a.la . 0'—1.
On the other hand 8 induces an isomorphism ¢ of {X, ¢} onto { W, ¢}. The
mapping ¢ oy is an isomorphism of {X, v} which maps 7, into itself and
sends ¢ into o%*. From the property of {X, ¢} it follows that 2 is a power

of 2. (The mapping ¢—¢?%* is an automorphism of GF(g).) Hence k=2". If
g=2* we have a congruence

2= — 1 (mod 2* — 1).
Let us choose two integers x and y in such a way that
vz=au+9y and 0=y <y,
Then we have
r=2aty = 2= — 1 (mod 2* — 1).
Hence we have

24+1>294+12 2% — 1.
This implies either 2v+41=2# or 2¢v41=2#—1. The first case happens only
when y=0 and p=1, while the second case is possible only when y=1 and

u=2. Since we have assumed that the center of Sylow 2-groups is not cyclic,
¢=2* must be more than 2. We have therefore u=2 and ¢=4.

PrOPOSITION 5. Under the assumptions of Proposition 3, Sylow 2-groups
of G are isomorphic with the group of matrices

1
a 1 a;ﬂ)'YEGF(4)'
B v 1
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Proof. In the proof of Lemma 7 we have shown that the group K =H,L is
isomorphic with a group of matrices over GF(4). The structure of Sylow 2-
groups of K is the one given above.

Consider the group N of Proposition 3. If P is one of the Sylow 2-groups of
N, P admits an automorphism of order 3 which leaves only the identity in-
variant. Hence by a theorem of Neumann [10] the quotient group of P by
its center is abelian. If Z is the center of P, Z is contained in H and the group
H/Z is abelian since it is a subgroup of P/Z. If Z' is the center of another
Sylow 2-group P’. H/Z' is also abelian. Since ZNZ’ =e¢ we conclude that H is
abelian. Let S be a Sylow 2-group of G containing P. Then S admits an auto-
morphism of order 3 which leaves only the identity element invariant. By a
theorem of Neumann [10] the central quotient group of S is abelian. On the
other hand the center of S is contained in H. Hence S is contained in the nor-
malizer of H. This means that P is identical with S.

Set T'=C¢(W), the notation W being the same as in Proposition 4. Then
the group T is a Sylow 2-group of G containing Z, the center of S. Let D de-
note the intersection SMT. Since D2Z, D is a normal subgroup of S. At
the same time it is a normal subgroup of T, since the center of T is W. Con-
sider the subgroup Y defined in Lemma 7: i.e. the subgroup of the center of
Sylow 2-group P’ of N generated by involutions. Then we have YND =e¢ as
is seen from the proof of Lemma 7. Hence the group D is in the family §; of
Part I1. Since Sylow 2-groups of Ng(D)/D are abelian, D is a maximal inter-
section of Sylow groups because N¢(D)/D is a (CIT)-group. We can apply
the consideration of this section to D instead of H. In particular Proposition
3 and Lemma 7 applied to D show that the group Ne(D)/D is isomorphic with
LF(2, 4). Hence the index [S: D] is 4. Since DN\Y =¢ we conclude that

H=HNDMVJY, or H=(HND) X Y.

This means that Y is a direct factor of H. Since there is an automorphism of
H which exchanges Y and X, X is another direct factor of H. It is easily seen
that Hy=XUY is a direct factor of H. The definition of H, is however the
subgroup of the center of H generated by involutions. Since H is abelian, H,
contains all the involutions of H. No direct factor except the group itself can
contain all the involutions. Hence we get Hy=H. The group N coincides
with K and the assertion has been proved.
4. Distribution of real elements.

LEMMA 8. If a product o =77" of two involutions v and v’ has an odd order
>1, the centralizer Cq(o) is an abelian group and every element of Co(c) is a
product of two involutions. Moreover Cg(a) is the centralizer of any nonidentity
element in 1t.

Proof. Let 4 denote the centralizer Cg(c). Since 7 transforms o into its
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inverse, 7 transforms A4 into itself. By assumption G is a (CIT)-group and
hence every element of A has an odd order. Therefore 7 commutes with no
element of A except the identity. By a result of Burnside 7 transforms every
element of 4 into its inverse. This implies that 4 is abelian and that every
element of A4 is a product of two involutions. If 1#p& A4, p is a product of
two involutions. Hence as shown before Cg(p) is abelian. Clearly Cg(p) con-
tains 4 and hence C¢(p) coincides with 4.

LEMMA 9. If an element o #1 of G is a product of two tnvolutions, o is con-
tained in a unique maximal abelian Hall subgroup A of G and the index
[No(4): A] is a power of 2 not more than 8.

Proof. The group A = C¢(0) is a maximal abelian group so that the unique-
ness is trivial. By Lemma 1.4 and by the last assertion of Lemma 8, 4 is a
Hall subgroup of G. The group B=N¢(4)/A induces automorphisms of A
which are fixed-point-free. Hence Sylow groups of B are either cyclic or a gen-
eralized quaternion group. Since the index [Ng(4): 4] is even, B contains
a central involution. By the condition (CIT) B must be a 2-group. From the
structure of Sylow 2-groups given in Proposition 5, the order of B is at most 8.

We remark that the index [Ng(A4): A] divides the order of A minus 1.
Let 4,, - - -, 4, be a system of maximal abelian subgroups of G containing
products of two involutions. We may assume that any such maximal abelian
subgroup of G is conjugate to one and only one of the 4; (1=1, 2, - - -, s).
Let n; denote the order of A; and /; be the index [N¢g(4,): 4;]. Let m be
defined by the equation:

m=3 (n— D/l

ProprosITION 6. The order g of G is equal to

7872 + 4096m.

Proof. By Proposition 5, we know the structure of Sylow 2-groups of G.
From the proof we see that each involution of G is contained in exactly 9
Sylow 2-groups. One of them is the centralizer of the involution. Let it be S.
S contains two elementary abelian subgroups of order 16, which intersect in
a group of order 4. Hence S contains 27 involutions. There are four more
Sylow 2-groups containing each elementary abelian subgroup of order 16.
Hence in these 9 Sylow 2-groups there are exactly 274812 =123 involutions.

Let 7 be an involution of G. If 7’ is another involution, the product 77’
has an odd order if 7’ is not one of those 123 involutions. By Lemma 9, the
products 77" are distributed in conjugate subgroups of 4. Suppose that 77’/
is conjugate to another product 77"/ of involutions. Then there is an element
p of G such that p~!(77")p=77"". Since 7 transforms 77’ and 77’ into their in-
verses, p~l7p is conjugate to 7 in the group {7, 7"’}. Hence we may assume
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that p commutes with 7. This implies that there are exactly 64 products 77"
conjugate to the given 77/. Each maximal abelian subgroup 4; contributes
(mni—1)/1; classes. There are exactly m classes containing products of two
involutions whose orders are odd. G contains g/64 involutions. Hence there
are g/64—123 products 77’ of odd order. Each conjugate class contains ex-
actly 64 such products. Hence we have

(g/64) — 123 = 64m.

The following lemma is used in order to reduce the number of cases which
we have to analyze in the later part of proof {(cf. §7).

LeEMMA 10. If for some i, n;—1=1; or 2l;, then n; is either 3, 5 or 9.

Proof. By Lemma 9, /; is a power of 2 not more than 8. Hence in the first
case #n; is 3, 5 or 9, while in the second case 7n;is 5, 9 or 17. The value 17 is
eliminated because if /;=8, the group Ng(4:)/A;is a quaternion group which
cannot act on cyclic groups without fixed points.

5. Characters of Ng(S). Let S be a Sylow 2-group of G. We can determine
the irreducible characters of M= Ng(S) without difficulty. First of all we
prove the following lemma.

LEMMA 11. G has three classes containing elements of order 4.

Proof. Consider an element 7 of order 4. The element = is contained in the
Sylow 2-group S=Cg(w?). S contains three classes of elements of order 4
whose squares are w2 If #’ is another element of order 4, 7’ is conjugate to
m'’ such that #'’2=x?% The element 7'’ is conjugate to 7 in G if and only if
they are conjugate in S. Therefore G has three classes containing elements of
order 4.

This lemma is true for all subgroups containing M. In particular M itself
has three classes of elements of order 4.

LEMMA 12. M has three linear characters, 5 characters of degree 3 and a char-
acter of degree 12.

Proof. From the structure of S given in Proposition 5, we see that the
center Z of 'S is the commutator subgroup of S. Hence S has 16 linear char-
acters and 3 characters of degree 4. The 3 characters of degree 4 are conjugate
in M, giving a character of degree 12 of M. Fifteen nonprincipal linear char-
acters are distributed into 5 classes of conjugate characters, each class con-
taining 3 conjugate characters. Thus M has 5 characters of degree 3.

The group S contains two elementary abelian subgroups H and H’ of
order 16. HNH'’ is the center Z of S. There are three classes C;, C; and C; of
involutions in M. C; consists of central involutions of S, C; is the set of in-
volutions in H not contained in Z and C; is the similar set of H'. Characters
of degree 3 are given in the following table:
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C,, Cs C
ol; 02) 03 - 1 *
0, 3 -1
-1
0s -1 3
0o 3 3

In the table the class C contains elements of order 4. All characters take the
value 3 on C;. The last character 6, is the sum of three linear characters of M.

6. Decomposition of induced characters. As usual 6* means the character
of G induced by a character 0. If ¢ is a character (irreducible or not), we de-
note by w(¢) the norm of ¢, i.e., the average of the absolute value squared:

w(g) = (1/g) 2| ¢(o) |2

€@
PROPOSITION 7. W have 0 =05 and for 1, j=1,2, 3
w(F — 0}F) =2, w@F —0F) =35, w@F —6F =17, wOF—6F) = 18.

This is proved by a straightforward computation of induced characters.
The same result may be obtained if we consider the decomposition in the group
N first and apply the method described in [14]. The first equation implies
that the decomposition of 8 (:=1, 2, 3) takes the form

0% = 0, + A (e =+ 1).

The characters ©,, ©; and ©; have the same degree and take the same value
everywhere except on classes containing elements of order 4.

LeEMMA 13. If a character ¢ of G takes the constant value on classes of elements
of order 4, then ¢ contains the characters ©; with the same multiplicity.

Proof. The character ©;— 0; (¢#j5; ¢, j=1, 2, 3) vanishes everywhere ex-
cept on classes of elements of order 4. If ¢ takes the value ¢ on these classes,
we have

2 6(67)(Bi(0) — B,(0)) = 2 c(Bi(0) — ©;(a)) = 0.
o€CG sEQ
The orthogonality relation yields the assertion.

As a special case of this lemma we conclude that 6 contains the characters
0, with the same multiplicity. The decomposition of 6 is of the following
form:

0F =ad, 0;+ > a.X,, a,a, =0,
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where the characters X, are not the principal character 1. We shall denote
further

0F — 0} = 0; + 2.0, + > %X, (i=1,23)
0F — 0 =1+ yE O, + Zyan

Then
6F — 0% =1—e:i+ (y = 9) 2O+ 2 (0 — %) Xa.

It follows from Proposition 7 that

(1) (x+o +2 + T =5
) 1+3 + T =1,
1+20 =)'+ (- 2— '+ 2 0w —x)* = 18
Under the above two equations the last one is equivalent to
® 3xy+ ey + 2wy = — 3.
If 65 is the character of M with degree 12, we have
¢ = 0 + 0 + 05 + 604

Using the reciprocity law of Frobenius we can compute the values of each
irreducible character on 2-singular classes in terms of the coefficients of de-
compositions. We shall state the result in the following table.

Or: 452 + y + 15¢ + 64a; y — 3x — ¢ x4+ v+ e,

X,: 452, + y. + 64a; Yo — 3% 2y + Yue
In the above table the first number is the degree, the second is the value on
the class of involutions and the last one is the value on classes containing ele-

ments of order 4. The orthogonality relations together with (1), (2) and (3)
yield

(4

(5) 3ay + E QY = 2,
and '
(6) a3z + ¢ + 2 ax, = — 3.

7. Exceptional characters. Consider a maximal abelian group 4 =4, of
the fourth section. If w;=(n;—1)/1;>1, then we can associate to A w; ir-
reducible characters of G as exceptional characters (cf. [1] or [12]). These
exceptional characters satisfy various properties. First of all the exceptional
characters have the same degree and take the same value on classes not con-
taining elements of 4. If a character is exceptional for one of 4;, then it is
nonexceptional for the rest of the 4;. From the above property of exceptional
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characters it follows that the characters ©; are not exceptional for any A..

We have so far assigned exceptional characters for those 4; which satisfy
the relation w;>1. In this way Y w; characters are associated, where the
summation is over those indices ¢ with w;>1. If there are indices for which
w;=1, then there are still unassigned characters remaining. This is because
each A, contributes w; conjugate classes and the number of irreducible char-
acters is equal to the number of conjugate classes. Therefore we can assign an
irreducible character to an abelian group A4; with w;=1 as an exceptional
character in such a way that this character is nonexceptional for any other
A; and different from the principal character or ®;. Thus we have m excep-
tional characters. If w;>1 for all 7, the set of exceptional characters is deter-
mined uniquely by the structure of G. On the other hand if w;=1 for some 1,
the set is not unique. In this case we shall fix a set and consider the characters
in it as exceptional characters.

8. Sketch of the proof. The purpose here is to prove the following theorem.

THEOREM 4. Let G be a semi-simple (CIT)-group. If Sylow 2-groups are
not independent and have a noncyclic center, then G is isomorphic with the linear
fractional group LF (3, 4).

The first part of proof is to determine the order of G. It is known (cf. [1])
that if the order of the centralizer of involutions is given then the order of G
is bounded. Hence the determination of the structure of G is certainly possible
by a finite process. The following is a rough sketch of how to obtain the pos-
sible orders for G.

From the table (4) we see that if x,=y,=0, the character X, vanishes on
2-singular classes and its degree is a multiple of 64. Thus the character X, is
of defect 0 for 2. Conversely if a character X, is defect 0 for 2, we have
x,=7,=0. It follows from the equations (1) and (2) that the number of char-
acters with positive defect for 2 is bounded. Rough estimate gives a bound
10 besides 1 and ©;. Among m exceptional characters we suppose that there
are s characters of positive defect for 2. By a theorem on characters the order
g of G is the sum of the square of degrees. We decompose the summation into

three parts:
g=2+2+ X
1 2 3

where Zl is the summation over nonexceptional characters, Zz is over ex-
ceptional characters with positive defect for 2 and Y s ranges over excep-
tional characters of defect 0. In Y 5 each term is at least (64)? and the num-
ber of summands is m —s. Using Proposition 6 we have

7872 + (64)m = 3 + D + (m — 5)(64)%,

or
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78724 (6452 3 + 3.
1 2

Since s is at most 10, the above inequality gives a bound for the degrees of
characters of positive defect for 2. The equations (1), (2) and (3) are used in
conjunction with the table (4) to reduce the possibility. The equations (5)
and (6) can also be used. If the table (4) has been completed for characters
of positive defect for 2, then we use the formula (cf. [1])

(64)2(n(S) — 1) = g(2_ £/f)

where 7n(S) is the number of involutions in S, ¢ is the value on involutions,
f is the degree and the summation ranges over all characters of positive de-
fect for 2. This determines a possible order of G. It turns out that 20160 is
the only possibility for the order.

We discuss a few cases in detail and leave the remaining cases to the read-
ers. The equation (2) implies that y2<1, and (1) yields x?2=<1. Assume
y=x=0. Then the possibilities for x,, y, are as follows.

261, €2, €3, 0, 0 €1, €2, €3, €4, €5, €q, 0

(A) (B)

—€, —€ 0’ €4, €5 —e, —€, —¢€, 0, 0, 0, e.

In the above table the first line gives the values for y, and the second line, for
x4 The €; are either 1 or —1. Consider the first case (A). Degrees of characters
X, are as follows (cf. (4)).

—43¢;, —44ez, €3, 45¢4, 45¢s (mod 64).

The value of s is certainly at most 5. This bound can be reduced to 3. Ex-
ceptional characters for 4; have the same degree. Hence if X; (:<55) is ex-
ceptional for 4;, we have w, <2, and n,=3, 5 or 9. If w;=2, then X, and X
are exceptional for Ax and n,=35 or 9. The degree of ® is congruent to 15¢
(mod 64). We have

5
20160 = 1 + 3(0)% + Y (X))?

t=1

where (X) is the degree of a character X. We have (®) <78. From the con-
gruence for (®) we conclude that (®) =15 or 49.
Assume that (©) =49. Then we have

5
> (X)? < 12956.

t=1
The equations (5) and (6) are

20161 + (1213 + a3€3 = 2 and ae; + 262 — (464 — QAp€s = 2.



466 MICHIO SUZUKI [June

If a;>1, (X3) =127 and this is impossible. Hence a;=1. The first equation
shows that a; is odd. Therefore a. is also 1. Then €, must be 1 and (X,) = 20.
We have two cases:

a = 0, € = — 1, €3 = 1, (Xl) = 43, (Xs) = 65,
a = 1, € = 1, €3 = — 1, (Xl) = 21, (Xa) = 63.

Accordingly we have ase,+ases= —1 or 0. In the first case (X,)#(Xs) and
s=2. Hence we must have (X,) =45 and (X;)=19. In the second case we
must have a4=0a;=0 and e&=¢=1. Hence (X,) =(X;)=45. The values of
these characters on involutions are as follows:

_5’ 4, 17 _35 3)
5, 4, —1, =3, -3.

The computed value of g is not an integer in either case. We have used the
following result which is also useful in other cases.

LEMMA 14. G has only one linear character.

Proof. The proof depends on the structure of N in Lemma 7. Combined
with Proposition 5 we see that the group N/H is a simple group of order 60
and N contains the normalizer of a Sylow group of G. It follows that the group
N coincides with its commutator subgroup. Hence the commutator subgroup
of G contains N. The only normal subgroup containing the normalizer of a
Sylow group is the whole group. Hence G coincides with its commutator sub-
group. This proves Lemma 14.

We have treated one particular case. The remaining cases can be studied
similarly. Except one case when e=y=1 and x=—1 in (1) and (2) we find
some contradiction. The values of x,, y, are then computed as follows:

€1, €2, €3, 0, 0;
— €1, 0, 0, €4, €5.
The first line gives the values for y,, while the second, for x,. The values ¢;
are 1 or —1. Degrees are obtained from the table (4) as follows:
—44e;, €, €, 45¢, 45¢; (mod 64).

The degree of O is conjugate to —29 (mod 64). Hence a=1 and (0©) = 35.
The number s is at most 4 by Lemma 10. We have

5
1+ 3(0)2 + Y (X)* < 24256.
t=1

Then (©) £90 and we get the value 35 for (0) and a=1. The equations (5)
and (6) are
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a1€1 + Q262 + aze3 = — 1 and —a€; + a4€4 + ag€p = — 1.
The congruence relations for degrees show that

and

5
14303524 X (X)) = 12736.

=1
If a;>1, then we get (X;) 2127 which is impossible. Hence a;=a3=1. The
value of a; must be odd and hence a;=1. If e,= —1, then e&,+¢=0. Hence by
Lemma 10 the number s is at most 3. This is impossible because (X;)=108.
We have therefore e, =1. This implies that e;+e;=—2, (X1) =20 and (X)
= (X3) =63. Moreover ase,+as¢; =0, which implies ay=as. If a,0, we have
s =3 as before. Then we have too much contribution from X, and X;. Hence
we have a4=a5=0, es=¢=1 and (X,) =(X;) =45.

The values on involutions are computed from the table (4). We have

0=3 Xi=4 X;=X3=-1 Xi=Xs=—3.

The group order g is then 20160. There is one more character X of degree 64,
It is not difficult to compute the table of characters of G but we shall not
enter into the details.

9. Final step of the proof. We have shown that the order of G is 20160 and
G contains a subgroup N of order 16:60. Here N is the subgroup Ng(H) of a
subgroup H of order 16 as in §2. The index [G: H] is 21. If we represent G as
a transitive permutation group I'y on the cosets mod N, then the character
of I'y is 14+ X;. This implies the double transitivity of 'y [4, §207]. If S is
a Sylow 2-group of G containing H, S contains another elementary abelian
subgroup H’. If N’ is the normalizer of H' in G, the argument of the third
section can be applied to H' as well. We conclude that N’ is also a subgroup
of index 21. Hence the transitive representation I'y. on the cosets mod N’ is
doubly transitive.

We consider the set R of subgroups conjugate to H and the set & consist-
ing of conjugate subgroups of H’. The elements of R are called points and
the elements of  are lines. A point P is on a line [ if and only if PMI=e. In
exactly the same way as Propositions 14, 15 and 16 of [13, I1], we can prove
the following lemma.

LEMMA 15. The sets R and L equipped with the incidence relation defined
above form a projective plane P of order 4. The plane P is Desarguesian and the
group G 1s a group of collineations of P.

In the proof of this lemma the double transitivity plays an essential role.
The full group G, of collineations of B contains the group G of all the uni-
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modular projective linear transformations as a normal subgroup and the
index [Go: G1] is 6. If we identify our group G as a subgroup of G,, the inter-
section GNG, is a normal subgroup of G and its index in G is at most 6.
On the other hand by Lemma 14 we know that G coincides with its com-
mutator subgroup. Hence G/MG; must be identical with G, which means
G12G. The order of G; is however the same as that of G. Therefore G coin-
cides with Gi. This proves the assertion of Theorem 4.

10. Concluding remarks. The results we have obtained are summarized
as follows.

THEOREM 5. Let G be a nonsolvable (C1T)-group. Then the maximal solvable
normal subgroup N of G is a 2-group. The factor group G/ N is one of the follow-
ing types:

a (ZT)-group, LF(2,q), LF(3,4) or M,

The first part is proved in Theorem I1.4. The second part is proved in
Theorems 11.3, I11.1, I11.3 and III.4. For the possible values of ¢ in the
second case see Theorem I1I.2.

The structure of N is not arbitrary. The theorem of Neumann [10] we
have referred to several times before shows that if the order of G is divisible
by 3 the central quotient group of NV is abelian. The class of N is therefore at
most 2. We can say a little more. If Ns£e¢, every Sylow group for an odd prime
number in the quotient group G/ N is cyclic by Theorem I1.2. This eliminates
LF(2,9), LF(3, 4) and M, from the possibility for G/N. If p is a Mersenne
prime, the normalizer of a Sylow p-group in G/ N is a meta-cyclic group with-
out center. Such a group can not operate on any abelian group without fixed
points. Hence if N e the group G/N is not LF(2, p) for any Mersenne prime.

On the other hand if p is a Fermat prime, G/N can be isomorphic with
LF(2, p) even if N5e. In this case however N must be abelian. This can be
shown as follows. It follows from the structure of LF(2, ) that G/N contains
subgroups isomorphic with the alternating group of four letters. It is easy to
show that there are four subgroups U, V, X and Y such that

XD2UDN, YD2VD2N, UUV=G

and both X/N and Y/N are isomorphic with the alternating group of four
letters. Moreover the groups U and V are 2-groups. Then the groups U and
V are normal subgroups of X and Y respectively, and X/U, Y/V induce
automorphisms of order 3. Let U, and V, denote the centers of U and V
respectively. By a theorem of Neumann [10] the groups U/ U, and V/V, are
abelian. Since N contains C¢(N) both U, and V, are subgroups of N. Hence
the commutator subgroup of N is contained in Uy M\ V,. On the other hand
UoNV, consists of elements which commute with every element of U\UV.
We have chosen U and V in such a way that G=U\UV. Hence we have
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UiNVy=e. This proves that N is abelian. A similar argument can be applied
if the group G/N is isomorphic with LF(2, 22»).

A partial converse statement of Theorem 5 is true. We have the following
theorem

THEOREM 6. If G is any one of the following groups: a (ZT)-group, LF (2, p)
with a Fermat or Mersenne prime p, LF (2, 9), LF(3, 4) or My, then G is a semi-
simple (CIT)-group.

For (ZT)-groups this is proved in Theorem I.1. For LF(2, q) this follows
from the subgroup theorem of Gierster. It is easy to check the assertion for
LF(3, 4) or M,. Except the last group M,, all groups are simple.

For linear groups in Theorem 6 it is easy to see and actually is known that
they are (CN)-groups. It is not yet known whether every (ZT)-group is a
(CN)-group. There are only two types of (ZT)-groups known: namely a
series of LF(2, 2*) and another infinite series discovered in [15] recently. All
these groups are (CN)-groups (cf. [15]). Theorem 1.4 proves that a non-
solvable (CN)-group is a (CIT)-group. As to the converse of this proposition
we have the following theorem.

THEOREM 7. A nonsolvable (CIT)-group Gisa (CN)-gréup if and only if the
quotient group G/N is a (CN)-group where N is the maximal solvable normal
subgroup of G.

Proof. Suppose that a nonsolvable (CIT)-group G is a (CN)-group. Then
N is a 2-group by Theorem 11.4. Consider the group H=G/N and take an
element £ of G/N. If the order of £ is even, then Cy(£) is a 2-group. Assume
that the order of £ is odd. There is an element ¢ of G such that £=¢ N and the
order of ¢ is odd. Let K be the subgroup of G such that K/N=Cg(¢). If pEK,
then 0~ 'p~lop belongs to N. The cyclic groups {a} and {p—‘op} are conjugate
in {N, ¢}. There is an element » of N such that

v"lp‘la'pv = gk,
Since p~lop=0ou with uEN, we get ouv=vo*. This implies that ¢*=0 and
pvE Cg(o). Hence we have

K = Cg¢(e)N and Cy(§) = K/H = Cg(s)/Ce¢(s) N\ N.

This proves that G/N is a (CN)-group.

Conversely suppose that G/N is a (CN)-group. Take an element ¢ of G.
If Ce(e)M N #e, then o is an element of 2-power order by the condition (CIT).
If Ce(6) NN =e¢, then the group Cg(c) N/ N is contained in the centralizer of
the element o N in G/N. If G/ N is a (CN)-group, C¢(e) N/ N is nilpotent. This
group is however isomorphic with Cg(o) because Cg(0)/\N =e. Hence G is a
(CN)-group.
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It follows from Theorem 7 and the remark made just before Theorem 7
that all the nonsolvable (CIT)-groups known so far are (CN)-groups.

Added in proof. Recently the author has classified the (ZT)-groups. Ac-
cording to his result LF(2, g) and the groups G(g) of [15] are the only (ZT)-
groups. Hence a nonsolvable (CIT)-group is a (CN)-group (cf. Theorem
I11.7). For the proof see the author’s forthcoming paper in Annals of Mathe-
matics.
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