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1. Introduction. Besicovitch [l] has shown that there are infinitely many

trigonometric series convergent to any function/(x) bounded and continuous

for — t» <x< + co and of bounded variation in every finite interval, and

therefore that the sum-function of an everywhere convergent trigonometric

series is not necessarily almost periodic. His proof makes clear that almost

periodicity of the sum-function can only be ensured by placing a suitable re-

striction on the exponents of the series. The conditions to be satisfied by the

sum-function itself depend on the type of almost periodicity to be established.

By use of the symmetrical (SCP) and unsymmetrical (CP) Cesàro-Perron

integrals and the introduction of new distance-functions, H. Burkill [4] has

enlarged the class of almost periodic functions sufficiently to enable him to

obtain the following result, whose most remarkable feature is that no assump-

tion is made concerning the integrability of the sum-function. Jt is a general-

ization of a similar theorem for purely periodic functions, due to J. C.

Burkill [5].

H. Burkill's Theorem. If (Xn) be a sequence of real numbers such that

Xi > 0    and   X„+i - X„ = I > 0 in = 1, 2, • • ■ )

aMd if, for all x, the series

oo

ao/2 + 22 (an cos X„x + b„ sin X„x)
n-1

converges to fix), then fix) is SCP-integrable and SCP-a.p., and this series is

the Fourier series of fix). In particular,

(i) If fix) is CP'-integrable, then it is CP-a.p.

(ii) If fix) is bounded, then it is D.a.p.

(iii) If fix) is bounded and uniformly continuous, then it is u.a.p.
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In the present paper, however, attention is confined to series having sum-

functions integrable in the sense of Lebesgue, and to the U, Sp, W", Bp types

of almost periodicity. In Theorem I the same restrictions are imposed on the

Xn as in Burkill's theorem. The conditions imposed on f(x) are, in a sense,

uniform restrictions on properties possessed by any P-integrable function

over a finite interval. It is found that the hypothesis of convergence can be

relaxed in an enumerable set. Theorem II embodies another result for bounded,

uniformly continuous sum-functions, showing that the condition Xn+i —X»

= I > 0 can be replaced by the less restrictive condition

00

22 xñ2 < °°
n=i

when the series converges everywhere.

2. Notation. The notation used for distance-functions is that commonly

employed in the literature (e.g. see Besicovitch [2]).

The symbol Da", is used to denote any one of the distance-functions

DB*, Dw>, Ds* (p^l).

For « = 1, we write

An(x) = an cos X„x 4- bn sin X„x,

. On «n     .
Bn(x) = — cos X„x-sin X„x,

Xn Xn

oo

*(*) = -EÙ.W.
n-l

We also define

2
^hg(x) = g(x + h) + g(x - h) - 2g(x),

L>2g(x) = lim sup [h   Ahg(x)],       D2g(x) = lim inf [h   Ahg(x)],
A->0 n->0

and write

r      —2        2 -,

I>2g(x) = lim [h   Ahg(x)\
n-K)

whenever the limit exists.

3. Theorem I. If (XO is a sequence of real numbers such that

Xi > 0   and   Xn+i - X„ = / > 0 (n = 1, 2, • • ■ )

and if the series
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flu/2 + 22 (an cos X„x + b„ sin X„x)

converges, except possibly in an enumerable set E, to a function fix) belonging to

the class Lp ipî=l) on any finite interval and such that

lim       sup       Í      fil)dt    = 0
S->0  |_— <*><x<*>    J x \

and

lim Dap\fix + h), fix)] = 0,

where Gp is one of Bp, Wp, Sp, then fix) is Gp-a.p. and the given series is the

Fourier series of fix).

In particular, if fix) is bounded and uniformly continuous, then it is u.a.p.

Before proceeding to the proof of Theorem 1, it is convenient to establish

a number of lemmas. Where these are simple extensions of well-known re-

sults(3), they are stated without proof.

Lemma 1. If\n—» °° as m—> °o, and if an cos \nx+b„ sin X„x—>0 in a set E of

positive measure, then an—>0 and bn—»0.

Definition I(4). A series XXo u» will be said to be "summable (£, X„)

to S" if

''sin X„ft\2
«o + y. M« (-) —» S

-       /sin \nh\2

„_i     \   \nh   )

as ft—->0, where 0 <Xi <X2 < • • • <X„ < • • • and X„—* *> as m—> *>.

Lemma 2(4). The method (£, X„) is regular; i.e. if a series converges, it is

summable (£, X„) to the same sum.

Lemma 3. If ¿2m-y ^ñ2 < w. and x is a point of convergence of 22n-i -4n(x),

ffteM

DMx) = lim ¿ Anix) í5^-)  = ¿ Au(x).
ä->o  „=i \   X„ft   /       „_i

Lemma 4. If Xi>0 aMd Xn+i—X„ = Z>0  (m = 1, 2, • • ■ ), aMd m„—>0, as
n—> oo, fhen

(3) See, for example, Hardy and Rogosinski [6].

(*) H. Burkill [4] defines summability (R, X„) and establishes Lemma 2 with the condition

\„+i-K^l>0.
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-        /sin XnÂ\2
*£*(-«-) ^°

a5 A—>0.

Definition 2. A function g(x) is said to be "smooth at x" if

2
Ahg(x) = o(h)

as A—>0.

Lemma 5. 7/Xn+i —X„ = / > 0 and if 22"=i An(x) converges in a set E of posi-

tive measure, then

OO

X~>     ~2
4>(x)   =    —   2-, Xn   ̂ n(x)

n = l

is smooth at any point x of E.

Lemma 6. Suppose that f(x) is finite except in an enumerable set E, and

integrable in (a, b) ; that g(x) is continuous and smooth, and that

T>2g(x) = f(x) = D2g(x)

except in E. Then

g(x) —   I   dt j   f(u)du

is linear in (a, b).

Lemma 7. If 0<Xi<X2< • • • <X„< • • •   and Xn+i-X„ = />0,  and if
a„ = o(X„~1), o„ = o(X~1), then the series

oo

(l/2)a0 + 22 (an cos Xnx -|- 6„ sin X„x)
n-l

converges almost everywhere to an S2 a.p. function f(x) of which it is the Fourier

series.

If, moreover, ao = 0, then the series integrated term-by-term converges to a

u.a.p. function F(x), where

F(x) =\r*f(t)dt.

A proof of Lemma 7, based on results due to Titchmarsh [7] and Bochner [8]

has been given by H. Burkill [4].

Proof of Theorem 1. Put
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F(x) =f(x) - ao/2 = Ê,A,(x).
n~ï

By Lemma 1, an = o(l), o„ = o(l), so that the coefficients in the series

- 22ñ-i Bn(x) satisfy the conditions of Lemma 7. Hence — 22"-i Bn(x) con-

verges almost everywhere to an S2 a.p. function 0(x) of which it is the Fourier

series; and furthermore the series — 22™-i X„~2.4„(x) converges uniformly to a

u.a.p. function i>(x), where

-/"
(1) *(*) = J   P(t)dt.

By Lemma 5, <ï>(x) is everywhere smooth; and by Lemma 3, D2 $(x) = P(x)

except possibly in the at most enumerable set E in which 22m-i An(x) di-

verges. Thus we may take g(x) =<£(x) in Lemma 6, so that if — m<x<m,

4>(x) =   I    dt I    P(m)¿« = Cmx 4- Pm
•^ — m      J —m

where Cm, Dm are constants whose value may depend on m. Therefore

*'(*) -  f  F(t)dt = 0„.
J -m

But from (1),

*'(*) = 0(x) p.p.,

and so may we take

0(x) =  fXF(t)dt + K„

everywhere in ( — m, m), since the value of <p(x) may be modified if necessary

in a set of zero measure without affecting its S2 almost periodicity. Hence, for

any x in ( — m, m)

0(x + 5) - 0(x) |   =
/.

z+t

F(t)dt

This equation is independent of m, so it holds for — » <x< °o ; and since

F(t)dl = j      f(t)dt - (8/2)ao,

the condition imposed on fl+sf(t)dt as ô—»0 implies

lim sup | 0(x 4- 8) — 0(x) |   = 0.
i->0
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Thus p(x) is a uniformly continuous 5 a.p. function and hence, by a theorem

of Bochner [8], it is u.a.p.: so also, therefore, is the function

1 1   rx+i
fM = — [*(* + v) - P(x)] + aa/2 = — f(t)dt,

V V J x

for any r¡>0.

To prove that/(x) is Gp a.p. it is sufficient to show that

lim DGv\fix),fM] = 0,

and we now prove that this condition is satisfied when/(x) is "Gp-continuous,"

i.e. when lim{j,0 £cp[/(x + 5),/(x)] = 0 (¿> = 1). The proof is written down only

for GP = BP; the results corresponding to Gp= W", Sp, respectively can be ob-

tained similarly.

Since/(x) is ^-continuous, given e>0 we can find £o= £o(«) >0 such that

0 = [- J    \f(x + S) -f(x) I'dxl   " = DB,[jix + b),fix)] + e

for all £= To, and a number 50 = S0(6)>0 such that for \h\ ¿8o,

DBp[fix + b),fix)] = e;

therefore, if £=£o and \b\ =50,

r 1   CT l1,p
[-J     |/(x + 5)-/(x)|»dxJ     = 2e.

Now, by an application of Minkowski's inequality, we have

-        \f(t)--\      f(u)du\dt\
L TJo   I v Jt I    J

= [-^J*   I/(/ + «.)-/«) I'd/J

+ [^ J   {"J " I A< + «) - /« + ««) | d«| "dtj

= [li(T, Ho)]1" +\—f   {?*(*, So)}pdl\

(2)

say. Here

(3) [li(T, So)]1'' = 2«

when T=T0; also, by an application of Holder's inequality, we have
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I2(t, 80)  se —   f ' | /(/ + U)  - f(t + 80) | dU
V Ja

û — [ f '¡M+u) - f(t+ôo) \*du\p- r j "du~\

= ,-"| j * j f(t + u) - f(t + 80) \>du~\ ',

so that

— f   {l2(t,8o)}Htú— (   Í— f"\f(t + u) -f(t + 8o)\"du\dl

= — f ' <( 14- — j (2e)'¿« + — f " I /(0 - /(< + «o - «) \"dt\ du

when P^ P0 and 0 <r¡ = 2S0,

= (1+—-) (2É)- + sup {- r i fa) - fa+8o-u) \*di\
\ T / oá«S2J0  (TJo l

(4)
= (1 + e)(2e)" 4- e" < (5e)" (0 < e < 1)

for P>max(Po, Pi), where Ti=Tx(e, 50) = Pi(e). Hence, from (2)-(4)

r 1 r T\ 1 ri+n       ip i1'"
DB'[f(x),Ux)] = lim    — /«)-/(«)¿«    d/

r->» L 1 J 0   1 rç •/ « I     J

< 2e 4- 5e = 7e (0 < e < 1)

when 0<>; = 2So(e). Since e is arbitrarily small, it follows that

lim DB'[f(x),f„(x)] = 0; thus/(x) is Bp a.p.
1-.0

Furthermore, by integration by parts, we have for any real value of X,

1   CT 1 r i*"     x  rT
— I    P(x) cosXxdx = — [0(x) cos Xxjo 4-I    0(x) sinXxdx
P»/ 0 7 T J 0

—>\M[d>(x) sin Xx]

as P—x», since 0(x) is bounded. Since — 22n=i Bn(x) is the Fourier series of

4>(x),

M[p(x) sin Xx] =  <      _i
(a„X„

if X F^ X„,

if X = X„.
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M[(f(x) - ao/2) cosXx] = \
(an
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if X 5* \n,

if X = X».

i
M[(a0/2)cosXx] =  <

M [fix) cos X.t] =

Similarly,

M[fix) sm Xx] -  {

0 if X ;* 0,

ao/2 if X = 0;

ao/2 if X = 0,

an if X = X„ in = 1, 2, • • • ),

0 for all other X.

f»„ if X = X„ (m = 1, 2, • • • ),

0 for all other X.

These show that the given series ao/2+ 2^n-i (an cos X„x+o„ sin Xnx) is the

Fourier series of its sum-function/(x).

If fix) is continuous at x, then

/.

x+S

fit)dt = 8-fix) + o(8)

as 5—>0, so that if /(x) is everywhere continuous, the condition

• x+S

lim       sup
S-*0    — » <x< »

fit)dt
X

= 0

is plainly equivalent to the condition that/(x) be everywhere bounded. Also,

uniform continuity of fix) for — » < x < =o is the same as

lims^o £r/[/(x + o),/(x)]=0. Thus if/(x) is bounded and uniformly continuous

for — «3<x<<x>, the function <p(x) is u.a.p. and has the Fourier series

— ̂ "_i £»(x) as before; furthermore,/,(x) is u.a.p. and

/,(*) = V~'[p(x + v) - P(x)] + ao/2 = /(* + 6V)    (0 < 6 < 1)

-.fix)

uniformly for — °o <x< «> as n—>0, which proves that/(x) is u.a.p. It can be

shown as before that a0/2+ 22n-i A„ix) is the Fourier series of fix).

4. However, when fix) is bounded and uniformly continuous, and the

series converges everywhere to fix), the condition imposed on the X„ in
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Theorem 1 is unnecessarily restrictive and can be replaced by the condition

E»"-iX„-2<-.

Theorem 2. If (X„) « = 1, 2, • • • is a sequence of real numbers such that

0<Xi<X2< ■ ■ • <X„< • • •  and 2"-Añ2< °°> and if for all x, the series
OO

ao/2 + 22 (an cos X„x 4- 6„ sin X„x)
n-l

converges to a bounded, uniformly continuous function f(x), then f(x) is u.a.p.

and this series is the Fourier series of f(x).

The proof of Theorem 2 requires an additional lemma(5), viz.,

Lemma 8. If, for — oo <x < oo, g(x) is continuous and D2g(x) = c, then

—2    2

A   Ahg(x) ^ c;

and if D2g(x) =c, then h~2A2hg(x) =c.

Proof of Theorem 2. Write

*(x) = (l/4)a0x2 + 4>(x).

Since 22m-i ^ñ2< °° ar>d °n, bn—>0 by Lemma 1, the series defining $(x) con-

verges uniformly and absolutely for all x; hence SI'(x) is continuous, and for

A>0,

A22h-*(x)       ao   ,    "    A , . /sin XnA\2

Mx) = -w-=j+^iMx)Ki^r)-

Here, the series converges uniformly for all x, so that for any A>0 the func-

tion fh(x) is u.a.p. By Lemma 2, fh(x)—>/(x) as A—*0 for all x, i.e. D2^(x)

=f(x), and so | P2^(x) | =P, where K is the upper bound of |/(x) | ; hence by

Lemma 8, |/*(x)| =P.

Consider now the function

1    r °° sin2 \t
(5) fh(x, X) = -       fh(x + 21) —— dt

1   «/ —«j X/

where A>0 and X>0, together with the formula

sin2 \t M -  | m | A        for 0 =  | p |   = X,1   rM        sin2 \t I 1
— j    e2»"-dt= {
iJ-,        \t2 lo

Since the sequence of trigonometric polynomials

T+Ê'.<*>(^)'L n_l \     X„«     /

for X <  | u | .

(N= 1,2- ••)

(') Again, a simple generalization of a well-known result; see Hardy and Rogosinski [6].
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converges uniformly to/n(x) as N—* w, it is easy to show by use of the above

formula that

ao      T-y /        X„\ /sin X„ft\2

'*»-7+£v")hj-W
which is a trigonometric polynomial. Hence the function

(6) lim/A(x, X) = ^ + D (l - -A Anix) m fix, X)
"^o 2       xn<x \ X /

say is u.a.p.

To prove the theorem, it is now sufficient to show that/(x, X)—>/(x) uni-

formly in x as X—> ». Since |/a(x) | = K everywhere, for all values of ft > 0, the

integrand in (5) is uniformly bounded and is 0(1/Xf2), uniformly in x and ft,

for large t. Hence

1   rT sin2Xf / 1 \

whence, by an application of Lebesgue's theorem on bounded convergence,

and then letting £—► <*>, we find

1   c °° sin2 Xf
fix, X) = -        fix + 2t) —— dt.

r J _oo Af-

Further, since/(x) is uniformly continuous, given e>0 we can find Xo = Xo(e)

>€-2 such that for X=Xo and all x,

|/(x+2f)-/(x)|   = «

whenever 0 = 2f=X_1/2. Therefore, for X=Xo and all x, we have for any num-

ber e in (0, 1),

sin2 Xf
-dt

Xf2
r\f(x,\) -fix) |   = I f   {/(* + 21) +fix - 21) - 2fix)\

I J o

Û(lo       + /"«       + Xl ) ^ ' f(X + 2t) ~ f(X) '   +  ' f(X) " /(ÍC ~ 2<) ' }

sin2 Xf
-dt

Xf2

=  f     2Xedf + 2i[-1       + 4£|-1
Jo L Xf Jx-' L X, Jx

= 2e + 2e (1 - X"1'2) + 4£/X~1'2

< 4(£ + l)a.
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Therefore/(x) is u.a.p. and its Fourier series is the formal limit of the series

(6) asX—»-oo, viz., a0/2+22n°-i An(x).
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