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In this paper we construct, for an arbitrary principal bundle (with group

a real Lie group) over a differentiable manifold, a sheaf of germs of linear

differential operators of first order operating on the sheaf of germs of sections

of any differentiable vector bundle associated with the given principal bundle.

The commutators of these operators define a structure of Lie algebra (over

the real numbers) on the operator sheaf. By considering the sheaves of germs

of differential forms on the manifold with values in appropriate vector bun-

dles, we obtain a graded sheaf of operators carrying a structure of graded

Lie algebra (over the real numbers).

In many respects, the present work represents a generalization of the

paper of Frölicher and Nijenhuis [2] which characterized the derivations (of

all degrees) of the exterior algebra of real-valued differential forms on a differ-

entiable manifold. The case considered by these authors is obtained by choos-

ing the associated vector bundle to be the product bundle with fibre the real

numbers. In addition, the usual theory of covariant differentiation, cor-

responding to a connection in the given principal bundle, appears as a special

case.

It is hoped that the theory developed here will also have applications in

the systematic study of deformation of the structures defined on a differen-

tiable manifold by continuous pseudogroups of transformations.

1. Fundamental sequence of vector bundles. Let M he a differentiable

(i.e., C°°) manifold and let £—>M he a differentiable principal bundle with

group G, where G is a real Lie group. Let £(M), £(£), and £(G) denote the

bundle spaces of the tangent bundles to M, P, and G respectively. Then

£(G) is also a Lie group, and £(£)—>£(Ai) is a principal bundle with group

£(G) [3].
Since G is a subgroup of £(G), we may form the quotient bundle £(£)/G

—>£(M), and we have

(1) 0 -» K A £(£)/G -^ £(M) -» 0

where K denotes the restriction of £(£)/G to METiM). An element a of

£(£)/G over u = ra, where u is tangent to M at x, represents an equivalence

class of tangents to' £ at points of the fibre Px over x; the members of the

equivalence class are obtainable from any one member by right translation
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by elements of G and all tangents in the class project into u under the map

induced by the projection P-+M. In particular, an element of K represents

an equivalence class of vertical vectors, i.e., vectors along a fibre of P.

By a well-known theorem, T(P)/G—*T(M) is isomorphic to the bundle

over T(M), (weakly) associated with T(P)—*T(M), with group T(G) and

fibre T(G)/G.
The fibre T(G)/G may be identified with g, where g denotes the Lie

algebra of G. In fact, the group T(G) is isomorphic to a group constructed

on the product space GXg. This construction may be made in two different

ways, according as g is identified with the Lie algebra of left-invariant or of

right-invariant vector fields on G. We shall suppose that g is identified with

the Lie algebra of left-invariant vector fields on G. Then the multiplication in

GXg is defined by

(g, \)(h, m) = (gh, (Ad A-')X + u),      g, A £ G, X, M £ fl;

and tET(G), tangent to G at g£G, corresponds to (g, g_1i)£GXg. If g is

identified with the quotient space T(G)/G, where G acts on T(G) on the right,

then /= (g, A)£P(G) is projected into the equivalence class (Ad g)\, and the

induced left action of T(G) on the quotient g is expressed by

(2) tu = (Ad g)(\ + u), t= (g, X) £ T(G), m £ g.

Let { Ui} be a suitable open covering of M and let

gik: Utn Uk-^G

be the corresponding transition functions of the given principal bundle P—>M.

Then

7ik = gik*: T(Ui) r\ T(Uk) -> T(G)

are transition functions for the principal bundle T(P)—*T(M).

For the associated bundle with group T(G) and fibre g, the transition

laws are expressed by r\i = yik(u)\k, where uET(Ui)i\T(Uk) is tangent to M

at x£ Ui r\Uk, and where (u, Xi)£P(Pi)Xg and (u, Xt) £ P( £4) X g cor-

respond to the same bundle point. Explicitly, using (2), we have

(3) Xi = Ad gik(x)Xk + yik(u)gik (x)

where yik(u) = gik*(u). In particular, the bundle P—>M (u = 0) is seen to be

isomorphic to the bundle over M, associated with P—*M, with group G and

fibre g, where G acts on g by the adjoint action.

The canonical isomorphism of the associated bundle T(P)Xt(G) g—>P(M)

with the quotient bundle T(P)/G—*T(M) will be used to introduce differ-

entiable fibre coordinates in the latter bundle.

It is clear from (3) that T(P)/G—*T(M) is not a vector bundle, but that
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£(£)/G—>M is a vector bundle since 7,* is linear on (£(M))X, xE £< H £/*. The

bundles £—>M and £(M)—>M are also vector bundles, and it is easily verified

that the sequence (1) represents an exact sequence of vector bundles over M, de-

rived from the given principal bundle P-^M [l].

2. Basic operation. The elementary notions which will be used below may

be described as follows. Let F and IF be differentiable manifolds, let t he a

tangent vector to V at v, and let £ be a differentiable IF-valued function

defined on a differentiable curve through v having tangent f at v. These data

determine, first of all, a curve in FX IF through (», £(»)) which "lies over" the

given curve, that is, which projects into the given curve under the canonical

projection FXIF—>F, and whose tangent 17 at (0, £(i>)) lies over t. Ii £ is

given in a neighborhood of v, the vector r/ is the tangent to the surface defined

by £, lying over f. Since £(FXIF) may be identified with £(F)X£(IF), where

(£(FXIF))(„,W) = (£(F))„©(£(fF))w, we have a canonical decomposition

(4) v = t + £*(f)

where £*(f)£(£(IF))i(„) is defined by considering £ as a mapping from (a sub-

set of) F into IF. (If £ is considered as a mapping from (a subset of) F into

FX IF, then the symbol £*(f) would denote the vector 77.) If we specialize to

the case that IF is a finite dimensional vector space, then (£(PF))W is iso-

morphic to IF, and £*(f) may be identified with the Fréchet derivative

t-£E Wof the IF-valued function £ in the direction f. The Fréchet derivative

f •££ W may be computed in terms of ordinary differentiation of functions as

follows: relative to a basis for IF, the IF-valued function £ is given by its

components £<*; then f-££IF has the components f-£". Our basic operation

will be induced by the Fréchet derivative t •£; the fact that we have

(5) ft~Wn-t

leads to a geometric interpretation of this operation.

Let (B—>M be a bundle associated with the given principal bundle P—>M,

with fibre £ and group G. Then £((B)—>£(M) is a bundle associated with the

principal bundle £(£)-> 7XA/), with fibre £(£) and group £(G) [3]. We shall

denote by

/: £X £-*« = PXgF,

(6) >:    £(£) X TiF) -» £((B) = T(£) Xwi £(£)

the projections used in defining the associated bundles. Then

(7) jipg, f) = jip, gf), pEF,fEF,gEG,

and b=jip,f)E<S>x if pEPx, xEM. Similarly,

(8) Mty, z) = j*it, yz), tE T(P), z E HF), y E £(G).

If f is tangent to £ at p, and z is tangent to £ at /, then jt(t, z) is tangent to



512 H. K. NICKERSON [June

(B at j(p,f). Moreover, / and /*(£, 2) project into the same tangent vector in

T(M).   Here   we   have   identified   T(P X F)   with   T(P) X T(F),   where

(P(PXP) )<„./> is isomorphic to (T(P))p®(T(F))f.

For given 6£(Bx, the equation

(9) b=j(p,f), PEPJEF,

determines/ as an implicit function of p, lor pEPx. The resulting P-valued

function £ satisfies

(10) t(pg) = g-^(p), g E G,

because of (7). A differentiable local section s of (&—>M over an open set in

M determines a differentiable P-valued function £ on an open set in P by

allowing b in (9) to vary over im 5.

An element <r of T(P)/G in the fibre over x£M determines a unique

tangent vector ap to P at each pEPx, with

(H) Vpg = o-pg, g EG,

all vectors lying over ira. If the fibre P of (&—>M is a finite dimensional vector

space, and if £ denotes the P-valued function determined by a (differentiable)

local section 5 of (B—>M defined in a neighborhood of jc, then the Fréchet

derivative ap-^EF is defined for each pEPx. Moreover, if the action of G

on P is linear, this P-valued function on Px has the property (10). In fact,

for any fixed gEG, we have

<^ro-i = Wt = er„.(fog) = ffp-^'f = g~l(ap-Ç).

In the first steps above, g represents the map of Px into itself corresponding

to right translation by g; we then use (10) to evaluate the composite map

£ o g, and finally the fact that the action of g on P is linear. Thus, if (B—>M is a

vector bundle, we may set

(12) o--s =j(p,ap-Ç), pEPx,

where op is determined by or, and £ by s. The value a ■ s£(B, defines the operation

of oE(T(P)/G)x on the local section s of the vector bundle (&—>M, where 5 is

defined in an open neighborhood of x, x£M.

A geometric interpretation may be obtained from (5), with V = P, W=F,

v = pEPx, and t = crp. Here we map the right-hand member of (5) into P((B)

by /*, rather than the left-hand member into (B by means of j. The vector

r)ET(PXF), which is the tangent to im £ lying over apET(P), maps into

the tangent, lying over ira, to im s at s(x); the vector t=(ap, 0) maps into a

vector which is tangent to (B at j(p,f) =s(x), also lying over ira. The difference

/*(£*(<rp)) =j*(r¡— <Tp) is therefore a vertical vector at s(x), i.e., a tangent along

the fibre ($>x. These statements can be made without assuming that (B—>M is

a vector bundle, but this assumption is required in order to map the vertical
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vector J*(£*(<rp)) canonically into an element of (S>x which, in fact, coincides

with <r-s=jip, (TP-£).

Next we show how the above operation may be computed in terms of local

fibre coordinates. Recall that a coordinate function

</>:£/ X G^£| U

for the given principal bundle P—>M induces a corresponding coordinate

function

4>:    U X F-*(ñ\ U

by setting

P(x,f) = j(P(x, e),f), xEU, fEF,

where e denotes the identity element of G; that is, b=jip, f) is assigned the

coordinates ix, f) ii p has coordinates (x, e). A local section s of (&—*M over

U is determined by the fibre coordinate/(x) of six), as x varies. From (10),

we then see that the £-valued function £ on £| U is given by

(13) kip) = r'/(*) for p = pix, g), g E G.

From

*,:    T(U)XT(G)-*T(P)\T(U)

and

TiP)/G~ £(£)Xr(G>e,

we find that <rE(TiP)/G)x has coordinates (m, X), with u = raEiTiM))z and

XG9, if

<t>*iu, X) = ap for p = Pix, e).

Here ß is identified with (£(G)),. Computing at p=<pix, e), we then have

(14) <rp£ = u-f-Xif),

where X(/) denotes the action of X£fl on fEF under the representation of g

in £ induced by the linear action of G on £. The minus sign occurs because

g-1, rather than g, appears on the right-hand side of (13). The right-hand side

of (14) then gives the fibre coordinate of cr-sE(S>x.

Still more explicitly, suppose that GCG£(w, R), where R denotes the

real numbers. Then X£s is an («Xm)-matrix (X^),ju, r«"l, • • • , *». If the

fibre £ of <B—>M is Rm, then the local section s of 03—»M is represented by

functions/"(x), pt = l, ■ ■ ■ , m, and <r-sE&x is represented by

(15) (<t-j)   = u-f -\,f, n - 1, • • • , m.
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If (B—>M is replaced by its dual bundle with fibre (Rm) *, a local section s being

represented by fibre coordinates h„ v=l, ■ • ■ , m, then a-s is represented by

(16) (a-s)v = u-h, 4- A„X„ v = 1, • • • , m.

For more general choices of the fibre P of (B—>M, the pattern of the terms

representing the action of the matrix (X£) on the coordinates of s is deter-

mined by the appropriate analogue of the expression of the action of

g£gl(«z, R) on the vector space P. For example, if the fibre of (R—»M is

Rm ®Rm, with s represented by functions fw, then a-s is represented by

¡Iß fip )1 Vf) /J liV

(17) (a-s)     = u-f    — X„/    - \,f , u,p—l,'--,ttt.

For given <r£(P(P)/G)I, we may compute the value of o-sE<$>x if the

values of s are given only on a curve through x having the tangent ira at x.

In particular, for oEKET(P)/G (i.e., 7nr = 0), the value (T-s£(Bx is defined

for any aEKx and sE($>x- However, in order that a-s be defined for all choices

of aE(T(P)/G)x, it is necessary that s be given as a differentiable local sec-

tion of (B—>M on an open neighborhood of x. This action then maps local sec-

tions into bundle points. From the representation (14) in terms of fibre co-

ordinates, it is clear that the action of a varies differentiably with a. So, if a

is given as a differentiable local section of T(P)/G—*M, defined on the same

open set of M as s, the values a ■ s determine a local section of (B—>M. Further-

more, it is easily seen from (12) that the operation of d on s is "local" in the

sense that a = a on an open set PCM, on which 5 is also defined, implies

a • s = ö • s in U, and that 5 = s in U implies a ■ s = a • Ê in U. Thus the operation

(12) leads to a well-defined operation, at each xEM, lor elements in the

sheaves of germs of differentiable sections of the respective vector bundles.

It is also clear from (12) that this operation is i?-linear.

3. Sheaves of operators. Let E?, S9, B", and S" denote the sheaves of

germs of (differentiable) differential forms of degree q on M with values in

the vector bundles P—>M, T(P)/G-+M, T(M)—*M, and (B—>M respectively,

where (B—>M is an arbitrary vector bundle associated with the given prin-

cipal bundle P—*M. The sheaf Sq depends on the choice of the bundle (B—>M.

The germs of forms of degree 0 correspond to the germs of differentiable sec-

tions of the appropriate vector bundles. The elements of B" are the germs of

vector-valued ç-forms on M. We shall denote by A" the sheaf of germs of

(differentiable) real-valued differential forms of degree q on M, or g-forms

with values in the product bundle MXR-+M. Then .40 is the sheaf of germs

of differentiable functions on M, and the above sheaves are sheaves of A°-

modules. Obviously, S5CS9 and each element a in S5 determines an element

of Bq which we shall denote by ira, with tr£S' if and only if 7r<r = 0. Thus we

have the exact sequences
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(18) 0 -> S3 -* 2« -> B" -* 0, q = 0, 1, • • • , n = dim M,

of sheaves of A "-modules, the case q = 0 corresponding to the sheaves of germs

of differentiable sections of the sequence (1).

By (12), we have defined 2° as an operator sheaf for the sheaf S" of germs

of differentiable sections of any vector bundle (&—*M associated with P—*M.

We wish to extend the action (12) to define a map

(19) 2« ®rS* -»5«+"

sending <r<g)$, where aE^l, $ESl, into <r-$ESx+p.

It will henceforth be assumed—without explicit mention—that all germs

in any operation or computation are elements in the stalks, of the various

sheaves, over a common point xEM. All formulas may, of course, also be

interpreted as formulas for representatives (denoted by the same symbols)

of the relevant germs on a common open neighborhood of the given point

xEM. If vEB° and if f is the germ of a differentiable section of a tensor

bundle on M, we shall denote by v o f the germ which corresponds to the

classical Lie derivative of a representative of f with respect to a representative

of v. We shall denote by Ur a generic element of Ar£° corresponding to

«iA • • • Awr, UiEB0, i=l, • ■ ■ , r. We shall write Ui for iitlA • • • Am,,,

where I = Iq=iii< ■ ■ • <*,), g>0, with Uj=l if q = 0 and Ui = 0 ii q<0.
ForK = Ki, we shall write [Uk] for the Poisson bracket [uk¡, ukt]=ukl □ uk,.

The symbol eu will denote the sign of the permutation ii ■ • • iqji • ■ ■ jp of

the integers 1, 2, • • • , q+p, or zero in the case that I = Iq and J=JP have

an integer in common. Finally, if (rG23, for example, the symbol (Ui, o-)G2'

will denote the value of the g-form a for the argument Ui, where I = Iq.

Let 0-G2«, &ES". Then o--$£S5+p is defined by the values(2)

(Uq+P, <r-4>> = £ *iA(U',*)-(Uj,*) - ((U,,t*) a Uj,*)}
(20) /?"/"

+ (-l)i"1        E        tKLM(([VK\r,UL,ro-)r,UM,$).
KitLq-i,Mp-i

The essential action of a is expressed by the operation of 2° on 5° in the terms

(Ui, o-)-(Uj, $>); the remaining terms, involving Lie derivatives, are needed

to ensure that <r-i> define an A "-linear map fromAa+i'£0 into 5", that is, that

cr-$ be a germ of a differential form of degree q+p on M with values in the

vector bundle G5—>M, or o--$>£S5+I>. The operation defined by (20) is clearly

£-linear (so as to give (19)) but is not, in general, A "-linear. However, for

<r£EgC2", that is, rcr = 0, the action of <r is .4"-linear, or

(21) E« ®a°S>'-*S'>+'>.

(2) Added in proof: It has been pointed out by C. J. Henrich that the same result can be ob-

tained by generalizing (12), replacing ordinary differentiation of component functions by the

(generalized) Lie derivation of forms.
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If GEGL(m, R), there are no trivial operators in 2'; that is, a$ = 0 lor all

4>£SP, 0 =£ =m, for all choices of the associated vector bundle 03—»M, implies

<r = 0. In fact, it is sufficient to assume o-$ = 0 for all i>£S° where 03—> M is

the vector bundle with fibre F = Rm. For <t£2°, the conclusion then follows

easily from the local representation (15) and, for <r£2«, from the fact that

the formula (20) reduces, for p = 0, to (Uq, a-$)=(Uq, <r)-$ where (Uq, <r)

£2°.
If P—*M is the trivial principal bundle, with G = e, g = 0, then E5 = 0,

2««P«, and SP=AP il we take 03—> M to be the product bundle MXR-+M.

We shall show below that, in this case (a = wa, $ = <fiEAp), formula (20) gives

(22) wa-p = dI<rp, ira £ B", p £ Ap;

here the right-hand member denotes the (generalized) Lie derivative of the

p-lorm <j> with respect to the vector-valued g-form ira, in the notation of

Frôlicher and Nijenhuis [2].

We can also obtain local representations of (20) corresponding to the case

of an arbitrary principal bundle P—^M with group GEGL(m, R). Then

<r£2« is represented locally by a pair consisting of iraEB" and an (mXm)-

matrix (a") of (germs of) g-forms. Although (20) is valid for any choice of the

associated vector bundle 03—>M, a local representation of 4>£SP can be given

only for each particular choice of 03—>M. If 03—»M has fibre F = Rm, then

3>£SP is represented by p-lorms 0", u= 1, • • • , m. We shall show that

o-$ESq+p is represented by the (q+p)-forms

(23) (a-$f = dI<rp" - a, A p , a = 1, - - - , m.

This formula includes (15) as a special case, by taking q = p = 0. For other

choices of 03—>M, generalizations of (16), (17), etc., are obtained. In par-

ticular, if we choose 03—>M to have fibre F = R where G acts trivially on P,

then SP = A" and

(24) a-<t> = d„<p, aEV«,pEAp.

Clearly, o-d> = 0 for <r£E*.

To express the generalized Lie derivative for forms, Frôlicher and Nijen-

huis used a contraction operation of real-valued (or vector-valued) forms with

a vector-valued form. We summarize here the definition and properties of this

operation in a more general setting.

Let Xp denote the sheaf of germs of £-forms on M with values in some

vector bundle over M (for example, X* = SP, or 2*. or Bp or Ap). For $EXp

and F£PS, the contraction $ 7\ VEXp+q-x is defined by the values

(25) (PP+S_1,*AF)=    £   tIit((Ui,V)MI„.*).
Ii.Mp-l

This operation is clearly A "-linear and so induces a map
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X" ®AoB"-* XP+«"1.

We have <£ A F = 0 if p = 0, since then Um = 0; for p= 1 and uEB", we have

4> A u= (u, 4?). If /i is an .4"-homomorphism of the range Xo of 4> into another

sheaf over M, then

M(*AF) = (m$)AF.

For VEBq, WEBr and $GXP, we have the identity

(26) $a(FAIF) - (4-AF) A1F = (-l)(«-t>o-i>{$ft (fp;r p) - (4» A IF) A F}

with both sides of (26) vanishing if p = l. Finally, if 8EH"iM, £') is the

canonical 1-form corresponding to the identity transformation of £" into it-

self, that is,

(27) («, 8) = u, uE £",

then

(28) $ A 5 = />$,        5 A F = F, * G A'", F G 73".

In terms of the contraction operation, the (generalized) Lie derivative for

forms is given by

(29) dvp = dpiV + i-lYdiPlV), V EB*,<t>EA*>,

where d = ds is the exterior derivative. This obviously reduces to the standard

formula

(30) v op = d<p]\v + dipr\v), vE B°,PE A",

when 5 = 0, V = v.

In the case that the given principal bundle is trivial, we have 2««£5 and

the "basic action" of §2 is ordinary differentiation, by (14). For <j>EAv and

a = r<rEBq, the formula (20) becomes

(Uq+P, ra-p) = E tv{(Ui, ra)-(Uj, 0) - ((Ui, ro-) o Uj,p)\

(31) IqJ"
+  (-l)«-1 E *KLM(([UK\HVL,™)r\UM,4>).

Kz,Lq-i,Mp-i

For 2 = 0, ra = vEBa, this reduces to another well-known formula

(32) iUp, v d <j>) = v-(Up, p) - (v o Up, <j>), v E B\ p E A".

To show that the two generalizations (29) and (31) define the same opera-

tion, for V = ra, we first combine (30) and (32) to give, for z>G£°, <PEAV,

(v A U„ dp) = (Up, dpiv) = (Up, vaP)- (U„ dip A v))

= v-(Up,p) - (vd Up,p) - {Up,diPlv)).
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Then, for F£P«, <f>EAp, we have

(uq+p, dpiv)= 22 *tf«Ui, v) a u,, dp)
ig,jP

(33) = 22 *u{(Ui, V)-(Uj, p) - ((Uj, V) a Uj, p)
iq,jp

-(Uj,d(Pl(UhV)))}.

From the formula

(34) (U.+U dp) = 22  iijuv(Uj, p) -    22    *km([Uk] A Um, p),  P £ Ap,
i.Jp Kj.Jfp-i

for the exterior derivative, we compute

(U9+p, (~l)*d(plV))

=   22   (-iYusui-(us,pj\v) + (-iy-1   22   *KR([uK\KUl{,<t>iv)
9,Sq+p-l Ki,Rq+p~2

= (-i)5   22   uimuí-((ui,v)i\Um,<p)
>,Iq,Mp-i

(35) +(-l)«-l{ 22 eKLIi(([UK]*UL,V)HUM,<l>)
\ K2,Lq—i,Mp—i

+ (-1)5     22     uur«Ui, V) A [UK] A Ut,P)\
K2,Iq.Tp-2 J

= 22*iAUj,d(pj\(Ur,V)))
iq,jp

+ (-l)t_I        22        íklm(([Uk\!\Ul,V)KUm,P),
Ki,Xiq—i,Mp—\

using ( — l)?e,7 = e/s, etc. The sum of (33) and (35) gives (Uq+P, dvd>), by (29),

and coincides with (Uq+P, ira-cp), as given by (31), if F = 7r<r; this implies (22).

To prove (23), we use (15) to evaluate the components

(36) (eu(Ui, a)-(Uj, $»" = tIJ(Ui, ira)-(Uj, <t>") - tu(Ui, ¿)(Uj, p)

of the first expression on the right of (20). The terms of the first kind on the

right of (36) combine with the corresponding components of the remaining

terms on the right of (20) to give ( Uq+P, dT¿t>»). The fact that the sum of the

terms of the second kind on the right of (36) is {Uq+P, — of Kd>") follows from

(37) (Uq+P, pi\p)= 22 m(Ur, P)(Uj, p),       PEAq,pE Ap.
iq,jp

4. Graded Lie algebra. In this section we shall show that the graded sheaf

2* = (2°, 21, • • • , 2", 0, • • • ) carries a structure of graded Lie algebra

(over R). That is, we shall define a map
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(38) 2« ®Ä2r->2«+-r

sending cr®T, where aE^", rG2r, into the bracket product [a, r]G25+r,

where [a, r] satisfies

(39) [<x, t]-* = <r-(r-4>) - (-l)<"Y-(<7-4>),

for all $G5*, for all choices of the associated vector bundle ($>—*M determin-

ing S*, and

(40) kr] = (-Hr,4
(41) [k r], u] =  [<r, [r, a,]] - (-l)f [T> [<r, «]],

for <rG2a, rG2r, coG2*. Formulas (41) and (40) together imply the Jacobi

identity.

If GCG£(m, R), the element [a, 7-]G25+r is determined uniquely by the

condition (39) and is therefore the commutator of the operators a and r; the

condition (39) then implies that the map (<r, t)—>[<r, t] is i?-linear (even .4°-

linear for a, tGH*C2*) and that (40) and (41) are satisfied. In the general

case it is necessary to check these properties from the formula (45) below

which defines [a, t] in terms of <r and r. For £-linearity (or .4"-linearity in

S*C2*) and (40), this is trivial; the details of the verification of (41) will be

omitted.

Two germs a, rG2° represent right-invariant vector fields on £; the Pois-

son bracket of these vector fields is again a right-invariant vector field on P

and determines an element of 2° which will be denoted by [a, r]. Clearly we

have

(42) "'[o', t"] = [ira, rr]

where the right-hand side is defined by the Poisson bracket in £". The fact

that this bracket satisfies (39) for $ES° follows immediately from the defini-

tion (12) since the Poisson bracket gives the commutator for differentiation

of functions. For $ESP we have, by (20),

(Up, <r-(r-4>) -T-(<r-$)>

= a- {r-(Up, 4>) — (rr o Up, 4>)} — t-(7to- d Up, 4>) + irr n ira a Up), $)

(43) -r-{o--(Up,$)- (rro-nUp,®)] + <r ■ (rr a Up, 4>) - (tht d (ttt d Up) , 3>>

= [o-, r]-(Up, *) - ([ro-, rr] a Up, *> = (Up, [a, t] • *)

since (Up, $)ES°, and the Poisson bracket also gives the commutator for

classical Lie derivatives.

Thus, 2" is a Lie algebra (over R). From (42) we see that S" is an ideal in

2° and that the bracket in 2" projects into the Poisson bracket in £°. In

particular, the sequence (18) for q = 0 is an exact sequence of sheaves of Lie alge-

bras iover R).
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An explicit computation shows that, if a and t are represented locally by

(u, X) and (v, r¡) where u=ir<r, v = irr are vector fields on M and X, 77 are g-

valued functions, then [a, t] is represented by

(44) [(«, X), (v, ,)] = ([«, v], [\, v] + u-r, - v\),

where [X, rj] denotes the Lie algebra bracket of X and 77, and where the g-

valued functions u-tj and v-\ are Fréchet derivatives. In particular, we see

that the bracket product in E° is induced by the Lie algebra bracket in the

fibre g of the vector bundle K—»M, and is A "-linear.

For <r£2î, r£2r, the element [a, t] in 2«+r is defined, in terms of the

bracket product in 2°, by the values

(Uq+r, [a, r])

=  22 «A l(Ui, v), (Uj, r>] - {(Ur, Ta) D Uj, r) + ((Uj, irr) a Uj, a)}
(45) Iq'Jr

+  (-l)«-1 22 tKLlii(([UK]AUL,Tff)fiUM,T)

T!^l-l-Wr-l

- ({[UK]AUM,irT)AUL,a)}.

It can then be verified, by a computation generalizing (43), that (45) implies

(39), as required.

If in (39) we take the associated vector bundle to be the trivial bundle

with fibre R, with 3? = <pEA*, we have by (24)

dru,r]P = dIC(drrp) - (- l)<"dT7(d,<,<p)

=   d[TaiTT]p

where [ira, wt] denotes the generalized Poisson bracket [2] for elements of

B*, which gives the commutator for the (generalized) Lie derivations. Thus

(42) holds for arbitrary a, r£2*, where now the right-hand side is defined by

the generalized Poisson bracket in B*.

Thus, the graded sheaf E* îs a graded ideal in 2*, and

(46) 0 -> E* -^ 2* -^ B* -> 0

is an exact sequence of sheaves of graded Lie algebras (over R). Moreover, the

bracket product induced in B* is independent of the choice of the principal bundle

P—*M and coincides with the generalized Poisson bracket given by Frôlicher and

Nijenhuis.

If <r£2" is represented locally by iraEB" and an (mXm)-matrix (of) of

g-forms, and r£2r is represented by irrEB* and an (mXw)-matrix (r?) of

r-forms, then [a, t]£25+'' is represented by w[a, r]=[7ro-, 7TT]£Pî+r and

an (mXm)-matrix ([a, t],) of (ç4-r)-forms where

<r,r\,= (— 1)   t„ A a, — a„ A r„ 4- dT„r, — (— 1)   dTTa,.
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In fact, if we take components in (45), evaluating [(£/, <r), (Uj, t)] by means

of (44), we find

(Uq+r, [a, t]C) =   E *4(Uj, r"P)(Ui, ¿) - (Uit S,)(Uj, r',)
iq.J,

+ (Ui, ra)-(Uj, r.) - (Uj, rr)-(Uj, /,)

- ((Ui, ra) a Uj, ry) + ((Uj, rr) a Ui, ¿)\

+ (-1)"-1 E        eKLü{(([UK] A UL, ra) A Uu, r\)
^i.r.t—i.Mr—\

-(([UK]r,UM,rr)hUL,o-:)}

and the formula (47) then follows by (37), (31) and (22).

5. Derivations. In this section we shall consider the derivations (suitably

defined) of the doubly graded algebra of differential forms on a manifold

with values in the vector bundles obtained, from a given vector bu.idle over

the manifold, by forming the tensor product of bundles.

The algebraic description is as follows. Let S= {'Sp\, s, p = 0, 1, ■ ■ -, be

a doubly graded algebra (with unit) over a commutative ring K with unit,

that is, WG'+'S""1-' for $E'SP and ^E'Sr. A map D: S—>S will be called a
derivation of S of degree q ii

(a) D('S>) E'S«+»,
(b) D is K-linear,

(c) £($*) = (£$)* + (-l)<"»i>(£*), $E*S», *GS.

From these axioms it follows easily that (i) the set of all derivations of S of

degree g is a iC-module, (ii) the commutator of two derivations (with signs,

according to degrees, as in (39)) is again a derivation whose degree is the

sum of the degrees of the two given derivations. Thus the set of all deriva-

tions of S has a structure of graded Lie algebra over K. Further, (iii) if S may

also be considered as an algebra over K, where KEK, the subset of deriva-

tions of S which are /C-linear forms a graded subalgebra of the graded Lie

algebra of derivations over K, and has a structure of graded Lie algebra over

K. Finally, (iv) for any derivation £ of S we have £4> = 0 for $EKE°S°.

We remark that the restriction of the derivations D and the axioms (a),

(b), and (c) to the graded subalgebra 0S*E$> gives the usual derivations in

"5*. Also, the same axioms define the derivations of degree g of a graded Lie

algebra £* over K if (c) is interpreted as

(c') £[$, *] = [£$, *] + (-1)"[$, m], * G L»,* E L*,

and statements (i)-(iii), but not (iv), remain valid in this case.

Given a differentiable vector bundle (B—>Af, we shall construct sheaves

over M for which the algebraic description above applies in the stalks over x,

for each xGM, with K=R and K=AX. Let "(B—>M denote the vector bundle
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over M which has fibre (,03)I=O3I® • • • <8>(8X (s times), xEM; then 1Û3—>M

is the given bundle and °03—»M is the product bundle with fibre R. Let *SP

denote the sheaf of germs of differential forms of degree p on M with values

in *(B-»M, s, p = 0, I, ■ ■ ■ . For$£"Sp and VE'Sr, the product $<frE'+'Sp+r

is defined by

(48) (Up+r, **) = 22 eiAUi, *> 0 (P/, *>.

Note that this product coincides with the tensor product (of germs of local

sections) if p = r = 0, and with the exterior product if s = / = 0, by (37). Then

S = {*SP} is a doubly graded sheaf of algebras (over R or over A"), with the

graded subalgebra °S* corresponding to the exterior algebra A * of differential

forms on M.

To define the sheaf of germs of derivations of S, we first consider, for each

open PCM, the derivations (over R) of the algebra Su of forms defined on U.

A standard lemma [2; 4], which depends on the facts that any such deriva-

tion vanishes on RE&u and that A^ESu, then shows that a derivation in U

is a local operator, in the sense that $ = ^ in FC U, where V is open, implies

P<Ï> = P\I/ in V. Using the obvious restrictions of forms and of derivations to

smaller open sets, we then obtain the sheaf 33* of germs of derivations of S.

The sheaf £>* has a structure of graded Lie algebra (over R), the bracket

product being defined by commutators; the subset consisting of derivations

which are A "-linear is a graded subalgebra of 3D* and has a structure of

graded Lie algebra over A ".

The results of Frôlicher and Nijenhuis [2] show that the sheaf of germs

of derivations of degree q of the exterior algebra A* on M is isomorphic to

Bq®RBq+1, — l^g^w = dim M (with P_1 defined to be zero), and is zero

for other choices of q. Here Bq is the sheaf of germs of vector-valued g-forms

on M. The derivation of degree q corresponding to V+W, with VEB",

WEBq+1, is

(49) Dp = dvp + piW, PEA*,

where the right-hand member is defined by (29) and (25).

Let P^>M be the principal bundle with group GL(m, R) of the given

vector bundle 03—»M, where m is the dimension of the fibre Û3X. Then all the

vector bundles *03—>M are associated with P—*M. We shall show that the

sheaf 3)5 of germs of derivations (over R) of the doubly graded sheaf S = {'Sp}

is isomorphic to H"@RBq+1, —1 ;Sc5¡M = dim M (with 2_1 defined to be zero),

and is zero for other choices of q. The sheaf 25, 0 = c = m, is determined by the

principal bundle P—>M, as in §3.

We begin by showing that

(50) 2' @RBq+1-+ 3D«, -lúqún;
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the derivation corresponding to a+W, with crG2«, IFG£5+1, is

(51) W = ^$+$)[lf, $ES,

the right-hand member being defined by (20) and (25). Axioms (a) and (b)

are obviously satisfied for the map D: S—>S defined by (51), and it remains

to verify (c).

To show that

(*¥) A IF = (4> A IF)* + (-1)«-*^ A IF)

for $E'S", VE'Sr, IFG£5+1, we combine (25) and (48) to give

(Uq+p+r, (**) A IF) =       E      *hs((U„, W) A üb, 4"*)
Bt + l.Sp+,-1

E       *HUj((UB, W) A Um, *) ® (Uj, *>

+ (-i)p    E    ««(#/,*) ® ((tf*. wo a c7l,*)
Bf+i,Ip,Lr—i

= (^,(*IIF)*+(-l)»*(*ÄllO>

since €H7=( — 1)5p+pé/jï. Next we note that

(52) <r-(*¥) = (<r-$)4'+ (-l)«>$(<r-tf), <r G 2«, $ G 'S", * G 'S*,

holds for q = p = r = 0 by the basic definition (12) since 4,1F=4><8),ir in this

case. For the general case, we use the property

v d iUp A Ur) = iv a £P) A £r + £p A (r □ UT), v E 73°,

of classical Lie derivatives to compute, using (20) and (48),

(Uq+p+r, a•($*)>

=    E   eis{(UI,o-)-(Us,W) - ((UI,Tro)aUs,W)}

+ (-l)í~1 E íxl«(([C7í]a£7Lj ro)NUR, **)

=      E     Wp{(£7, <r)-«£.r, 4>> ® (f/p, ¥»

- ((£/, x«r) O Uj, 4>) ® <Í7,, ¥) - (77/, 4>> ® ((£/, x<r) G £p, *>}

+ (-1)5"1 E exiMp(([£X] A Ül, ra) A CTjr, *) ® (Up, *>
jr,,£»_i,Af,,_i,pr

+ (_1)5-i+p 53 €kljt(Uj, *) ® <([£X]A£L, rc)KUT, *>.

We then expand the terms (£/, <r)-((Uj, $)®(£/p, *)) by the special case of

(52) already checked, and use tu= ( — l)qpej¡, etc., to verify that the above

terms give (£s+P+r, (<r•$)*+(-1)«'^-1*')).
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To complete the proof we must show that the correspondence (50) which

is obviously injective and .R-linear, is also surjective, — l=g = w, and that

3D» = 0 for other choices of q. We use the fact that any derivation P£3D* is

determined uniquely by its action on a set of generators (over R) of S, be-

cause of properties (b) and (c). Clearly S is generated over R by the elements

of A * = "S* and of lS°. A derivation of degree q vanishes on A * unless — 1 =g

= m, by [2], and on 1S° unless 0î£ç = m, by (a) and the fact that 1SP = 0 unless

0=£ = w. Thus we conclude that 3D» = 0 unless — l=g = «. For given P£3D»

with — 1 = g = m, we have

(53) Dp = dvP + PlW, PE A*,

with VEB", WEBq+1, by [2]. Since locally we may always choose as gener-

ators the elements of A* together with a basis (over .4") for 1S°, say $(p>,

p= 1, • • • , mí, it is sufficient to show that there exists a (unique) o-£2» satis-

fying

(54) P$(P) = <r-$(p),        ira = V, p = 1, - - - ,m.

(Note that $(P) A W=0.) If a is represented locally by V = iraEBq and an

(mXm)-matrix (of) of g-forms, and <£(„) by functions $frt, then by (23) we

must solve the system

(55) (P4>(p))" = dv<t>ip) - afeM, n, p = I, ■ ■ ■ ,m,

for the g-forms a?. The existence and uniqueness of the solution follows im-

mediately from the fact that the matrix (ifp)) is nonsingular if {&(?)} is a

(local) basis for 1S". It is also clear that we obtain o- = 0 if q= —1. From (53)

and (54) it follows thaf a + W corresponds to the given D in (50) and that

2« ®r Bq+1 « 3D», - 1 = q = n,

as was to be shown.

In using (55) to express (54) we have assumed that the action of the

group GL(m, R) on the fibre P of 03—> M is the obvious one. The same conclu-

sion holds if we consider the dual action of GL(m, R). Equivalently, the same

sheaf 3D* of germs of derivations is obtained if we start from the dual bundle

(B*—>M, associated with the same principal bundle, rather than from 03—»M.

More generally we may consider derivations of the triply graded sheaf

S= {¡Sp}, where ¿S" is the sheaf of germs of sections of 03—> M and ?S" is the

sheaf of germs of sections of 03*—>M, with multiplication defined as in (48).

If we add the condition that P£3D* is determined, by duality, on °S° by

its action on A* and ¿S", the same sheaf 3D* of germs of derivations is ob-

tained. For D of degree 0, this condition should reduce to the usual condition

that derivations in the mixed tensor algebra shall commute with tensorial

contraction. Let <f> V ̂ EqS° = A ° denote the tensorial contraction, induced
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by duality, of $>E°iS0 and *Gj5". For QElS" and VElSr, we define $ Y *
EoSp+r = Ap+rhy

(56) (Up+n$V*) = E ««<#/, *> V (Í7/, *>.

The additional axiom for £G 2D« is then

(d)        £($Y¥) = £4>Y* + (-1)«"$V£^, 4>G Î5", ̂ gJs*.

Actually, it is sufficient to require only that (d) hold for ^GÏ-S" and VElS0;

the extended definition (56) is still needed in order that the right-hand side in

(d) be defined if q>0.

We have noted that the graded sheaf

3D* « 2* ®r B*

has a structure of graded Lie algebra (over R) induced by forming the com-

mutators of derivations. The graded sheaf B* corresponds to a graded sub-

algebra (over .4°) of 2D*, as is seen by writing (26) in the form

($AIF)AF- (-1)^(4»AF)AIF = 4>a{(1FAF) - (-IMF A IF)},

for$GS, VEBq+1, IFG£r+1; this shows that the commutator of two contrac-

tions, derivations of degrees q and r respectively, is again a contraction. The

graded sheaf 2* corresponds to a graded subalgebra (over R) oí 2D* in which

the commutator coincides with the bracket product defined by (45), because

of (39) ; in particular, we see that 2" determines a subalgebra (over R) of 2D*,

that S*C2* determines a graded subalgebra (over .4") of 2D*, and that S"

determines a subalgebra (over A0) of 2D*.

By considering the commutators of derivations of the two types, we find

the identities

(57) (cr-^AF- (-l)*v-(4>AF) = (aAF)-$+(-l)'4»A[F,w],

valid for <rG23, VEB'+1, $G§, and

k r] A F = [o- A F, r] + (-IM», t A F]

- (-l)'Vík V] + (-1)'«+'VA [rr, V],

valid for o-G2«, r£2r, VEBa+1; all terms in (58) are elements of 2s+r+".

In fact, since both sides of (57) represent derivations of S applied to an

arbitrary 4>GS, it is sufficient to verify that these derivations coincide on the

generators ^4* and ¿5" of S. For «ÊG-4*, this identity has been proved by

Frölicher and Nijenhuis [2]. For $EoS°, the identity reduces to

(59) i*-*)KV=i<rr\V)-*

where o-G2? and VEBS+1 are arbitrary. Combining (20) and (25), we find

trivially
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(Pí+„(cr-4>)AF>=      22      tTL((UT,V)AUL,a-*)
^i+i.^í-i

=       22      tTL((UT,V)AUL,a)-$
»"i + l.íg-l

= (Uq+„ (<rAF).$),

which proves (59) and therefore (57). The identity (58) has also been given

by Frôlicher and Nijenhuis in the case that the derivations act on $£.4*.

For $£¿S" we have, by (39) and (59),

([a,r]KV)-<!>= ([<r,r]-$)AF

= (<r-(r-4.))AF- (-l)«'(r-(ff-*))A7.

Also, by using (57) twice, we find

(<r-(r.$))AF= (<rAF).(r.4.) + (- 1)«V ((r A V) ■ *)

- (-l)q'(rl[ira, V\),

and a similar formula for (r-(a-$)) A V. These formulas combine easily to

give (58) for $£jS" and therefore for all $£S. We remark that (58) shows

that any contraction by an element of B* defines a derivation (over A") of

the graded Lie algebra E*C2* (but not of 2*).

Whenever the group of the principal bundle of the given vector bundle

03—>M can be reduced from GL(m, R) to a closed subgroup GEGL(m, R),

another graded subalgebra of 3D* is defined. In fact, the argument which

proves (50) does not use the fact that the principal bundle has group GL(m, R),

and we have

0->2* ©r B* -> 3D*

for any choice of the principal bundle P^>M of the vector bundle 03—>M.

However, any derivation D for which the uniquely determined local {\l(m, R)-

valued form (a1/) in (55) is not g-valued cannot be obtained from an element

in 2*©RP*. To verify that 2*©RP* determines a graded subalgebra of 3D*,

we need only check that the commutator of the derivations corresponding

to o£2* and VEB* lies in the image of 2*ffiÄP*. This follows from the

fact that the right-hand member of (57) clearly represents a derivation which

lies in this image.

The proofs of (57) and (58) given here cover only the case that P-^M has

group GEGL(m, R) and the operators act on 4>£S. These identities are valid

in general and may be proved by direct computation.

6. Connections. A connection in the principal bundle P-^M is a splitting

of the corresponding exact sequence (1) of vector bundles [l]. Such a split-

ting can be expressed in two ways: by an injective (differentiable) mapping

x:    T(M)^T(P)/G
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such that 7T o x is the identity mapping on £(M) and such that

(60) xx:    iTiM))x-*iTiP)/G)x

is linear for each xEM; or by a surjective (differentiable) mapping

n:    £(£)/G->£

such that t o II is the identity mapping on K and such that

IL:    iTiP)/G)x^Kx

is linear for each xG M. If x and II correspond to the same splitting, then the

sequence

x n
0 -► TiM) -> T(£)/G -> K -» 0

is exact.

Because of (60), a mapping x may be described as a globally defined 1-

form on M with values in the vector bundle £(£)/G, satisfying 7rx = 5. The

image of uETiM) under x may then be denoted by x A «• The usual local

descriptions follow from the isomorphism of the bundle £(£)/G—>£(M) with

the bundle £(£) Xr<G> ß—>£(Af). If { Ui} is an open covering of M such that

£(£)/G| £(£,) is isomorphic to £(t/¿)X8> then x may be expressed by

(xx = S and) a collection j x¿} of g-valued 1-forms x¿ defined on Ui, the values

in UiC\Uk being related by the transition laws (3). Still more explicitly, if

GEGLim, R), then x is represented locally by (a pair consisting of rx = 8

and) an (mXMz)-matrix of 1-forms, denoted classically by (w£) or by

(~^m(x)dxa), where (x1, • • ■ , x") are local coordinates on M. The transition

law for the Christoffel symbols T$a is obtained from (3) if we take coordinates

(x1, • • • , x") in Ui and (y1, • • • , yn) in Uk, with

d        dxa    d

dy»       df dx" '

and

/ dxa\
x< ■• xí "R « = Í — r»« —- J.      x* -= x* "h « = (— f »3) ;

the usual case corresponds to G = G£(m, R), M = dim M, with

A splitting of the sequence (1) defined by a mapping II: £(£)/G—>£ may

be expressed in terms of a globally defined g-valued 1-form fi on £, that is,

a 1-form on £ with values in the product bundle £Xö, such that ß induces
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a mapping II from the quotient T(P)/G of T(P) into K = PXo 8, a quotient

space of PXg. Since (p, X) and (pg, (Ad g_1)X) project into the same bundle

point of K, for pEP, gEG, X£g, this means that ß must satisfy

O(Jf) = (Ad rW), < £ r(P), g £ G.

The form fi must also satisfy a further condition to ensure that II o i is the

identity mapping on K.

The classical notion of covariant differentiation, corresponding to a con-

nection x in the principal bundle P—*M, is expressed in terms of the basic

operation of §2 as follows. Let u be a tangent vector to M at x, and let j be

a section of a vector bundle 03—>M, associated with P—>M, defined at least

on a curve through x having tangent u at x. Then the covariant derivative

Dus of 5 in the direction u is given by (12) with a = %]\u. For this particular

choice of a (depending on x and on u), the vector/*^, 0), tangent to 03 at

s(x) and lying over u, is called the "parallel" to u at s(x); the geometric

interpretation of the basic operation shows that Dus is obtained from the

difference between the tangent to s at s(x), lying over u, and the parallel to

u at s(x). The classical coordinate representation is obtained by setting

o- = x A u in (15) (or (16) or (17), etc.) to give

(Dus)> - «x*«)•*)' = u(— + r;aA
\dxa /

where s has fibre coordinates /" and u = uad/dx".

It is easily verified that a splitting of the exact sequence (1) of vector

bundles is equivalent to a splitting (over A0) of the exact sequence (18), for

g = 0. We then consider the connection form x as an element of IP(M, 21)

with 7tx = o£P°(M, P1). It is evident that the connections in a given prin-

cipal bundle are in one-one correspondence with the subset of H"(M, 21)

consisting of forms which project into 5 under 7r. Since a differentiable mani-

fold is paracompact (by definition), a connection always exists, for any choice

of the principal bundle P—»M. If x is a connection in the given principal

bundle, then all other connections are of the form x + £ where ££P"(M, S1)-

In particular, if P-^Mis the trivial principal bundle, there is one and only one

connection, viz. x = 0-

The curvature form R corresponding to a given connection x is defined by

(61) R = j[x,xh

then REH°(M, E2) by (42) and the fact [2] that

(62) [o, V] = 0, F £ B*.

The covariant derivative is defined by
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(63) £$ = x-<£, $ES*,

for arbitrary choices of the associated vector bundle (&—>M determining S*.

Then, by (39) and (40), we have

(64) £•$ = x-(x-$) = £2*-

For GEGLim, R), the curvature form £ is uniquely determined by the

property (64).

An explicit computation of (61) according to the definition (45) gives, for

u, vEB°,

1
(ur\v,R) = («At,- [x, xj)

(65) ,        ,      i
=   l(«, X),  (f, X)J   -   ([«, Hi X)

= [x A«, x AH - x A [«, H-

That is, the curvature form £ measures the extent to which x: £"—»2° fails

to be a Lie algebra homomorphism. In particular, the curvature of a connection

vanishes if and only if the connection, which is a splitting of the exact sequence

(66) 0 -» 2" -^ 2" -^ B° -> 0

of sheaves of A1'-modules, also induces a splitting of (66) considered as an exact

sequence of sheaves of Lie algebras over R.

A connection x induces a splitting of the sequences (18), q = 0, 1, • • • , n

= dim M, by defining

x:    £«->2«

to be the map which sends VEBq into x A FG2?, since

r(x A F) = xx A F = S A F = F.

Next we note that

£AF=[xAF,x], VEB*,

as is seen by taking cr = r=- x in (58) and using (61), (62), and (40). Then we

compute, for VEBq, WEBr, again using (58),

(£AF)AIF-£A(FAIF) = [xAF,x]AIF- [x K (V 1\ W), x]

= [(x A F) A IF, x] + (-l)«<-»lx A V, x A IF]

- (- 1)«<-»xä[F, IF] - [x A (F A IF), x]

or, since x is of degree 1,
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Wl\V,xJ\W} -xl[V,W] = (-1)'(-1>{(PAF)AIF-PA(FAIF)}
= (-I)r-I{(PAIF)AF-PA(IFAF)}

using (26). This formula reduces to (65) if g = r = 0 since then (P A F) A IF

= (Vi\W, R) and V}\W=0. From (67) we conclude that no additional

curvature forms need be introduced to express the extent to which x: P*—>2*

fails to be a homomorphism of graded Lie algebras and, in particular, that a

connection induces a splitting of the exact sequence (46) of sheaves of graded

Lie algebras if and only if the corresponding curvature form vanishes.

For F£P», Í>£SP, we define the absolute derivative Dy$ of 4> with respect

to F by

(68) W=(x)[I0-*¡

then Dv$ESq+p. By (28), the covariant derivative coincides with Ds. Choos-

ing a = x in (57), we obtain

(69) (xAF)-$ = (x-4>)AF+(-l)'x-(4»AF), V £ P»,

or

(70) Dv$ = (P4>) A F 4- (-1)»P($AF), VEB".

From (24) and (29), we see that the absolute derivative Py coincides with the

(generalized) Lie derivative dv when the associated vector bundle is the

trivial bundle with fibre R, and that the covariant derivative induces the

exterior derivative in this case. In general, we have

DvDw - (-l)qrDwDv ?¿ DiV,w],        V £ P», W E Pr,

the difference being an operator in E»+r given by the right-hand member of

(67) which vanishes, in general, only if P = 0, i.e., if P2 = 0.

Finally, we note that a connection x induces a derivation D of degree 1

in the graded Lie algebra 2*, by setting

(71) Da = [X, a), a £ 2*.

In fact, for o£2», r£2*, we have

(72) D[a,r] =  [Da,r} + (~l)q[a, Dr]

by taking w = x in (41). Moreover,

(73) DV = [R, a],

(74) DX = 2R,

and

(75) DR = 0,

(second) Bianchi identity. These also follow from (41) together with (61).
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*

The operator D satisfies

£2* C E*

and induces the zero derivation on £*, by (62) and (42).

The obvious generalization

Dy<7 = [xAF, a], FG£*,<rG2

satisfies the analogue of (72), again by (41), but does not satisfy the analogue

of (70) (except when restricted to H*). In fact, it follows from (58) that

Dvo = (Da) A F + (- l)«D(«r A F) ± x A [ra, V], V E Bq, <r G 2*.

For the restriction to H*, we have

(76) Dvt = £f£, F G B*, £ G S*.

In particular, the (second) Bianchi identity (75) may equally well be stated as

(77) ££ = 0,

since REH°iM, S2). The fact that £F£ is defined follows from the fact that

the bundle K—>M is an associated vector bundle of the given principal bundle

(with fibre g where G acts on g by the adjoint action). The identity (76) is

easily verified by representing both members of (76) locally, using (47) for

the left-hand side and, for the right-hand side, the analogue of (23) which

corresponds to the adjoint action of G.

Again,

DvDw - i-l)"TDwD7 * Dlv,Wh        V EBq,W E B',

in general, the difference depending on the curvature form £ of the connec-

tion x- An equivalent statement is the following. For the direct sum decom-

position

2* « B* ®A° S*

determined by the connection x, where

<r-+F + £

with

F = ra, £ = <j — x A <r,

the subspace £* does not form a subalgebra, with respect to the graded Lie

algebra structure (over R) induced from 2*, unless the curvature vanishes.

Rather, the induced bracket product of F and WEB* has component

[V, IF]G£* and a component in H* given by the right side of (67).

7. Tangential structure. In this section we shall consider the case that the

given principal bundle P—*M is the principal bundle of the tangent bundle of



532 H. K. NICKERSON [June

M; the associated vector bundles are then the tensor bundles on M. In the

notation of §5, with 03—>M denoting the tangent bundle of M, the sheaf

¡S" denotes the sheaf of germs of p-lorms on M with values in the bundle

of tensors which are contravariant of order s and covariant of order /.

In general, the group of P—»Mis GL(n, R), where M = dim M. If the group

of the principal bundle of the tangent bundle of M has been reduced to a

closed subgroup GEGL(n, R), then M is said to carry a G-structure sub-

ordinate to its differentiable structure. In this case, P—>M will denote the

principal bundle with group G of the tangent bundle of M. We shall assume

that

(78) 2« ®r Bq+1 ~ 3D»

in all cases; this means, in the case of a G-structure on M (with G9íGL(n, R)),

that 3D* has been redefined to denote a graded subsheaf of germs of derivations

(determined by the G-structure on M) rather than the graded sheaf of germs

of all derivations of S (which is determined by the differentiable structure

on M).

In the present case, as compared with the general case considered in §5,

we have certain canonical identifications among the sheaves involved. The

typical isomorphisms are

(79) fi:    B'-^ls1, q = 0,1, •••,» = dimM,

and

0    0 0    1 1

(80) p:    ,5 -*oS  « A .

The two types of contraction, by elements of B*, as in (25), or of ¿S*, as

in (56), are related by

(81) (p*) A F = * V (ßV), 4> £ y, F £ B*.

The natural extension

(82) p:   If-lsT-A"1

of (80) is defined by

(Up+i, p$) = 22 ej.(u„ p(Uj, $))
Jp.t

(83) ^      .= 22<J.(Uj,$)V(ßU,), 4>£ iS",
Jv.>

but is not an isomorphism if p>0. It is easily verified that the identity (81)

is replaced by

(84) (p*) A V - p(* A F) = (- if-* V (MF), 4» £ \s?, V £ Bq+\
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which reduces to (81) for p = 0. It is evident from (84) that a derivation of

S corresponding to contraction by a vector-valued form F is not compatible

with tangential structure. Analogously, we have

(85) <7-(P4>) - p(cr-*) = (-1)*p4-Y(<t-mS), *Elf,<rG2q,

where 8EH°iM, £') is defined by (27). In fact, for F=S, the identity (84)

becomes

p$ = * Y p8, 4> G Is*,

using (28). Then, by property (d) of §5, we have, for ffEZ«, 4>Gi-Sp,

<r-(p4>) = <r-i$)lßS) = (<r-*) Vm« + (-l^YGr-juí)

= p(cr-4>) + (-l)">*Y(<r-/ií).

From (85) and (84) we conclude that a derivation £ G 2D9 of S, correspond-

ing to (T+IFG25 ©/?£3+1, is compatible with tangential structure, that is, satisfies

(86) Dp = pD,

if and only if

(87) uW = - o--n8.

(No further conditions are introduced if we consider the fact that the elements

0)Sp = Ap are to be identified with the elements of P£", for which all opera-

tions are also defined. Here °£° is defined in the same way as P5°, in §5,

using the exterior product in place of the tensor product to construct the

associated vector bundle. This is because all constructions, operations, and

identifications are determined canonically from the case j£"=?5" considered

above.)

We define the torsion form 3<r of <rG2* by

(88) &r = u'^vyA);

the map

3: Z«—>£«+1

defined in this way is clearly .R-linear. The restriction

3:    Es—> Bq+1

is even A "-linear, since £-5 does not involve any actual differentiation,

£GH". We set

(89) L* = ker3 = {<r| <r G 2*, a-y.8 = 0},

and
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(90) A* = ker 3 H ker x = L* C\ E*.

Then P* is a graded subalgebra of the graded Lie algebra 2*, but not a graded

ideal in 2*, and A* is a graded subalgebra (over A") of E*, and of 2*, but not

a graded ideal. However, A* is a graded ideal in P*.

Let c£2« be represented locally by iraEBq and an (MXw)-matrix (a?) of

g-forms, and let ubElS1 be represented by the 1-forms u", /x= 1, • ■ • , n; for

this local representation we have (using Bq~B°®A0Aq)

5 = «„ ® «",

where mm£P" and {«,,} is the dual basis to {w}. Then 3o is expressed by

3(7 = m„ ® (3er)"

where

(91) (3o-)" = dIcu" — o^A co",

by (88) and (23).

Let 3D* denote the subsheaf of 3D* consisting of germs of derivations com-

patible with tangential structure. It is easily verified from the condition (86),

which defines 3D*, that 3D* is a graded subalgebra of the graded Lie algebra

3D*. Combining (87) and (88), we see that under the isomorphism (78) the

elements of 3Dg correspond to elements of the form a — Za, with ff£2»,

3o£P»+1. Thus we have an ¿^-linear isomorphism

This isomorphism

(92) 2* « D*

is not a homomorphism of sheaves of graded Lie algebras if 2* has the graded

Lie algebra structure described in §5, corresponding to the case that o£2*

acts on <££§ to give a-Q. Under (92) an element o£2* determines the de-

rivation in 3D* given by

(93) cr*4> = <r-4> - 4>A3o-, 4> £ S.

In the case of tangential structure, therefore, a second structure of graded

Lie algebra (over R) can be imposed on 2*, corresponding to the action (93).

Equivalently, the new structure is induced from the graded Lie algebra struc-

ture of 3D* by the isomorphism (92). If we denote the new bracket product of

o-£2», r£2r by {a, T¡£23+r, then {a, t} is determined (uniquely, since

JS"C§) by the condition

(94) {a, r} *$ = a* (t * 4>) - (-l)«rT* (<r*4>), 4> £ S,



1961] ON DIFFERENTIAL OPERATORS AND CONNECTIONS 535

analogous to (39). An explicit computation of the right side of (94), using

(93), (39), (25), and (57) shows that

(95) {cr, r} = [<r,r] - (r A 3<r - (-l)»'<r A 3r), „ £ S?j T £ S',

with

(96) 3{<r,r} = - (3TA3r/-(-l)«'3(rA3T)+(-l)'[3ff,TT] - (-l)«r+«[3r, 7r<r].

Clearly, the new graded Lie algebra structure on 2* is not compatible

with the exact sequence (46) of sheaves of graded .4"-modules; that is, S* is

not a graded ideal with respect to this structure, and no graded Lie algebra

structure is induced on £*. From (95) we see that the two graded Lie algebra

structures on 2* coincide on the subalgebra £* of torsionless operators de-

fined by (89). Moreover, the graded submodule A*, defined by (90), is a

graded ideal of 2* with respect to the new structure. In fact, it follows from

(96) and (95) that

3{X, <r}=0,        r{\, a}  = 0, XGA*, o-G2*,

since 3X = 0, 7rX = 0 for XGA*.

In the exact sequence

(97) 0->A*->2*->Ç*->0

of sheaves of graded Lie algebras (new structure), the quotient Q* is iso-

morphic to a graded Lie algebra of derivations of the exterior algebra A * ="5*

on M, as has been pointed out by D. C. Spencer. In fact, it follows from (93)

and (24) that the compatible derivation of A* corresponding to trG2* is

given by

(98) a*p = drj> - Plia, a E 2*, PEA*;

in particular, the elements of 2* which correspond to the zero derivation of

A * are exactly the elements of A*.

We shall verify below that, in the general case: G = GL(m, R), the graded

sheaf Q* corresponds to the graded sheaf of germs of all derivations of A*

(except those of degree — 1, which are not compatible with tangential struc-

ture). In the case of a G-structure on M, the graded sheaf Q* determines a

graded subsheaf of the sheaf of germs of all derivations of A*, constituting

those derivations of A * which are admissible under the given G-structure on

M. The graded sheaf of germs of admissible derivations of A* has been

studied by Kodaira and Spencer [4] in the case that the G-structure on M is

multifoliate structure.

Among the derivations of A*, there is a distinguished (global) derivation,

of degree 1, corresponding to the exterior derivative d. The exterior derivative

is an admissible derivation for a given G-structure on M if and only if there exists

a torsionless connection in the principal bundle of the tangent bundle, cor-
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responding to this G-structure, that is, for the principal bundle P—>M, with

group G, of the tangent bundle of M, there is a connection form x£#°(M, 21)

with 7tx = o£Pi'"(M, P1) which satisfies

(99) 3X = 0.

In fact, if such a connection x exists, then by (98)

X * <t> = dp, PEA*,

since dt = d. Conversely, if d is an admissible derivation on all of M, then for

a suitable open covering { Ui} of M (or any refinement of this covering) there

exist local connection forms Xr£P^°(Pi, 21) with 7TXi = 5and 3xi = 0. If UiC\Uk

9^0, we have

X.-X* = \ikEH\UiC\ f/t.A1),

since irXi = T'Xk, 3xi = 3x*( = 0) °n Uif~\Uk. The sheaf A1 is fine, since M is

paracompact and A1 is a sheaf of germs of ^"-modules (since 3 is A "-linear

on E1); therefore Hl(M, A1) = 0. Thus for the given covering, or a suitable

refinement (denoted by the same symbols), we have

Xa = X* - X„ X, £ H\Ui, A1), X, £ H\Uk, A1),

and

x = x> + X, = x* 4- X*

defines a torsionless connection for the principal bundle P—*M.

We remark that 3x as defined here coincides with the usual torsion of a

connection. If x is represented locally by irx = o and an (MXM)-matrix (of) of

1-forms, and the corresponding representation of uô is given by 1-forms

co", (i=l, • ■ • , n, then (91) gives

(100) (3x)" = du   — ü^Aco', (i = 1, ■ ■ ■ , n.

In the general case, G = GL(n, R), or in the case that the G-structure is in-

tegrable, the local representation may be chosen so that W = dxa, where

(x1, • • • , xn) are local coordinates on M. If we set

oí, = — I tadx ,

then

(3x)   = (T,adx ) A dx , p. = 1, • • • , n;

thus the condition 3x = 0 is expressed by

(101) rKa = ra,,, a, n, v = 1, ■ • • , n.



1961] ON DIFFERENTIAL OPERATORS AND CONNECTIONS 537

For the curvature form £, defined by (61), corresponding to a given connec-

tion form x, we have by (88)

(102) uZR = x-m3x,

which is the (first) Bianchi identity; in the case of a torsionless connection:

3x = 0, the formula (102) gives

(103) 3£ = 0.

In a local representation, £ is given by 7r£ = 0 and an (mXm)-matrix (£?) of

2-forms

£, =  dû), — (dp A UI,   =   2Li £««|9 w    A w ,

say; then, by (91),

(3£)" = - £?Ac/ = - f  E Rtaßcc" t^wß)riw,
\ a<ß I

and (103) gives the usual formula

Rvaß +  Raßv +  Rßva  =   0, ß, V, a, ß   =   1,   ■   •   ■   ,  «.

In the case of tangential structure the exact sequence

(46) 0 -» E* -^ 2* ̂  B* -> 0

of sheaves of graded Lie algebras (over R) has a distinguished subsequence

(104) 0->A*-^£*-^©*-+0

of sheaves of graded Lie algebras (over R) corresponding to the torsionless

operators. (Since A* is a graded ideal in £*, the quotient ©* is a graded sub-

algebra of the graded Lie algebra £*.)

In all cases we have

A° = 0,        L° « 0».

In fact, for 4> = /¿5, the identity (57) becomes

(105) (o--mS)AF- i-l)q'a-uV= ia][V)-ß8+i-l)qß[V,ra],cE X",VEB'+K

For <r = XGA", we have X-m8 = X A F=7rX = 0, or

X-mF = 0, veb*,

which implies X = 0. For aEL", (105) reduces to

(106) a-uV = n[ro-,V], VEB*.

Thus, for VEB*, the action of aEL0 on pV corresponds to the Lie derivative of
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F with respect to 7ro-£0", since the Lie derivative of F with respect to ira is

expressed by the generalized Poisson bracket [2]. For G = GL(n, R), we have

0" = P", as will be seen below. Thus, for each vEB°, there is a unique o-£P"

with ira = v; the right-invariant vector field on P represented by this a is the

vector field on P "associated" with the vector field v on M, in the terminology

of Lichnerowicz [5]. For GEGL(n, R), the elements of 0" are the (germs of)

infinitesimal transformations corresponding to the pseudogroup determined

by the G-structure on M: they are precisely the elements for which the cor-

responding Lie derivation is an admissible derivation, relative to the given

G-structure.

For g>0, it follows from (98) that 6» consists of those elements F of P»

for which the corresponding generalized Lie derivation dv on forms is admis-

sible. In general, however, A»9*0, and there is not a unique c£P» with iro= V.

In particular, there is a torsionless connection for the principal bundle of the

tangent bundle if and only if 5£Pf"(M, 01).

The local study of the above sheaves and maps reduces to the considera-

tion of the solutions of the system

¡IP M

(107) a, A co   = p , p. = 1, • • ■ , n,

of equations for the g-forms of (where {co"} is a local basis (over A°) for A1

= oS' ~0¡S° and where the (g4-1)-forms iA" are given) subject to the side con-

dition, which is vacuous if G = GL(n, R), that the matrix (of) be a g-valued

g-form. The solutions of the homogeneous system (iA" = 0) give the local

representations of the elements of A». Since {co11} is a basis, the local consider-

ation also shows that A" = 0. An element V in P» lies in 0» if and only if there

is a solution of (107) for 1^" = <iyco". In fact, the element cr represented locally

by 7rcr= Fand the (MXM)-matrix (o?) satisfying (107) then satisfies 3cr = 0 by

(91); that is, a£P». A derivation <p—>¿v<p4-<p A W of A*, where F£P«,

IF£P»+1, is represented in the image Q* in (97) if and only if (107) can be

solved when

p» = dvW + W".

In fact, the corresponding o£2» then satisfies 3o= — W by (91), and a *d>

= dvd>+<t>l W.
In the case G = GL(n, R), when the forms of need satisfy only (107), there

are always solutions and we have A»?¿0 for g>0, 0* = P*, and Q* consists

of all derivations of A* (except those of degree —1).

For GEGL(n, R), the solutions a", of (107) are further restricted by the

side condition that the matrix (of) define a g-valued g-form. The nature of

this restriction depends on the choice of GEGL(n, R), and different choices

appear to require separate investigations.

For example, in the case G = 0(n), the side condition is
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M »
(108) a, = — crp, u, v = 1, • • ■ , n.

Thus vEB° lies in @° if and only if, in a local representation, the 1-forms

¿„co" =/?co", say, satisfy /?= — /£. We remark that this condition does not hold

for arbitrary choices of a basis {co"} for 1-forms, but only for a basis which

comes from a choice of coordinate function for the given principal bundle.

In the case G = 0(m), such a basis will be one which is orthonormal relative to

the Riemannian metric on M corresponding to the given 0(w)-structure on

M. For g=l, it can be verified that the solutions of the homogeneous system

(107) also satisfy cr" = cr*, so that we have

(109) A1 = 0

in the case G = 0(n). Again, for q= 1, we have 8EH°iM, 0'), since it is always

possible to write

M M P *

cfjco   = ¿co   = oí, A co ,

where the 1-forms co? satisfy co?= —u^. By (109) the solution cr£ = co£ is the

only solution of the equations

a, A co   = aco , p = 1, • • • , n.

That is, there is one and only one torsionless connection corresponding to a

given O(m)-structure on M.
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