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1. Introduction. We are concerned with single server queueing processes.

Let us suppose that customers arrive at a counter at the instants r*, r*, ■ ■ ■ ,

t*, • • • where the inter-arrival times t*+í — t* (n = 0, 1, 2, • • • , r* = 0) are

identically distributed, independent random variables with distribution

function

i        1£j       (\x)>

d) *.(*) = r~~Zoe"x*7r    iix^°>
10      ' if*<0.

We say that {r*} is an Erlang process. The customers will be served by a

single server in the order of their arrival. Suppose that the server is idle if

and only if there is no customer waiting at the counter. Denote by x* the

service time of the rath customer (n= 1, 2, ■ • • ). It is supposed that jx*} is a

sequence of identically distributed, independent, positive random variables

with distribution function

P{xn*   ÚX}    =   H(X)

and that {x*} 1S independent of {r*}.

Denote by t]*(t) the virtual waiting time at the instant t, i.e., rj*(t) is the

time which a customer would wait if he joined the queue at the instant t.

1?*(0) is the initial occupation time of the server. Define tj* = i?(t* — 0), i.e., 17*

is the waiting time of the nth customer.

Denote by £*(/) the queue size at the instant t, i.e., £*(/) is the number of

customers waiting or being served at the instant /. £*(0) is the initial queue

size. Further let us denote by t{ , t2 , ■ ■ ■ , t», • • • the instants of the suc-

cessive departures and define £* = £*(t„' 4-0), (n=l, 2, • ■ •), i.e., £* is the

queue size immediately after the »th departure. If there is a departure at

¿ = 0 then we write r¿ =0 and £ = £*(+0).

Finally, denote by G*(x) the probability that a busy period consists of n

services and its length is at most x.

We are interested in the investigation of the stochastic behavior of the

waiting time, the queue size, and the busy period of this process. We shall see,
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however, that if we know the stochastic behavior of the process defined be-

low, then that of the above process can be deduced immediately. The second

process is defined in such a way that it has a wider state space than the first

one, i.e., the first process is imbedded in the second one. It is an advantage

that the second process has more Markovian properties than the first one.

To define the second process let us suppose that customers arrive at a

counter at the instants n, Ti, • • • , t„, • • • where the inter-arrival times

Tn+i — Tn (n=l, 2, • • • ; To = 0) are identically distributed, independent ran-

dom variables with distribution function

71 - e-x*       if x > 0,
(2) Fix) = \

I      0 if x < 0,

i.e., {t„} is a Poisson process. The customers will be served by a single server

in batches of size m in the order of their arrival. The server is idle if and only

if fewer than m customers are present. Denote by x« the service time of the

nth batch (»=1,2, • • • )• The service times %n (»= 1, 2, • • • ) are identically

distributed, independent, positive random variables with distribution function

P{xn è x} = H(x)

and independent of {r„}.

Denote by ??(/) the occupation time of the server at the instant /, i.e.,

rjit) is the time which elapses from t until the server becomes idle for the first

time if no customers join the queue after the time t. t/(0) is the initial occupa-

tion time of the server.

Denote by £(/) the queue size at the instant t, i.e., £(/) is the number of

customers waiting or being served at the instant t. £(0) is the initial queue

size. We say that the system is in state Ek at the instant t if £(2) =k.

Denote by r(, tí , • ■ • , t» , • • • the instants of the successive depar-

tures and define £„ = £(t„'+0) (« = 1,2, • • • )• If there is a departure at/ = 0

then we write r0' =0 and £o = £( + 0).

Denote by r/„ (« = 1, 2, • • • ) the waiting time of the customer arriving

last among those who are served in the wth batch. (We note that if rjn denotes

the waiting time of the rth arriving customer among those who are served in

the «th batch, then the sequence {r¡n} follows a similar stochastic law as the

former one, only the initial distribution of 771 is changed.)

Finally, denote by G„ix) the probability that the busy period consists of

« services and its length is at most x.

If we identify every mth arrival in the second process with an arrival in

the first process, i.e., we suppose that T* = Tnm and similarly if we identify

the service time of the «th batch in the second process with the service time

of the «th customer in the first process i.e., x* = Xn (« = 1,2, • • • ) and further

we suppose that the initial states are also in agreement, then the second
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process is reduced to the first one. For, Fm(x) is the wth iterated convolution

of F(x) with itself.

Comparing the two processes we see that the waiting time and the busy

period follow the same probability laws in both processes, namely i)*(t) =y(t),

rlt = Vn whenever £(0)=0 (mod m) and G*(x) =Gn(x). Further, the depar-

tures also agree. However the queue sizes are different, namely

m = m   and   f- - m
L m J LmJ

where [a] means the greatest integer g a.

In the following we shall consider only the second process and determine

the stochastic behavior of the waiting time, the queue size and that of the

busy period.

The transient behavior of the process {7]n} can be deduced from more

general theorems proved by F. Pollaczek [6; 7]. The stochastic law of the

busy period has been given by B. W. Conolly [2] and for a more general case

by F. Pollaczek [8]. The asymptotic behavior of the waiting time and that

of the queue size has been treated by F. Pollaczek [6; 7], A. J. Fabens [3], and

in a special case by R. R. P. Jackson and D. G. Nickols [4).

Notation. Denote by Mj(t) (j = 0, 1, 2, ■ ■ • ) the expectation of the num-

ber of transitions £,—>£,•+! occurring in the time interval (0, t] and denote

by N¡(t) 0 = 0, 1, 2, • • • ) the expectation of the number of transitions

Ej+m—>E¡ occurring in the time interval (0, /].

The Laplace-Stieltjes transform of the distribution function of the service

time is denoted by

/>  CO

e->*dH(x)
o

which is convergent if dl(s) =0. The average service time is

/I  00

xdH(x).
0

The distribution function of the occupation time is denoted by

W(t, x) = p[n(t) = x}

and its Laplace-Stieltjes transform, by

/I 00

e-'HxW(t, x)
o

for 9î(s) — 0. The probability distribution of the queue size is denoted by
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Pfy) = P{m = j} (i= 0,1,2, •• •)

and its Laplace transform, by

IL(i) =   f   e-'lPiií)dl
Jo

for $R(i)>0.

2. An auxiliary theorem. Throughout this paper we need

Lemma 1. // (a) 9î(s)^0, \w\ <1 or (b) 9ï(s)>0, \w\=l or (c) \a>m

and 9î(5) ^0, \w\ ^ 1 then the equation

(3) zm = wPis + X(l - 2))

Äas exactly m roots z = yris, w) (r = 1, 2, • • • , m) in the unit circle \z\ <1. We

have

(4) yr(î, w) = L,-I-J—-—
j-i j\ \ ds'~l }

where er = exp {f2rir/m) (r= 1, 2, • • ■ , m) are the mth roots of unity.

If Iris, w) is defined by (4) for 9î(5) 2:0 and \w\ g 1, then in this domain

jris, w) is a regular function of s and w, \ yris, w) | ^ 1 and z = yr(s, w) satisfies

the equation

(5) 2 = tr[wpis + X(l - 2))]'/"\

r/ie roo/s yris, w) (r = 1, 2, • • ■ , m) are distinct if w^O.

Proof. Incases (a) and (b) we have | w^(s-f-X(l — z)) | <(1 — e)mii \z\ = 1 — e

and € is a sufficiently small positive number. Consequently by Rouché's theo-

rem (3) has exactly m roots in the circle \z\ <1 — e. In case (c) we have

pÇKt) <(1 — «)m if e is a sufficiently small positive number. For, if O^e^l

then ^(Xe) and (1 — t)m are monotone decreasing functions of e, they agree at

« = 0, and their derivatives at « = 0 are —Xa and — m respectively. Hence

| wpis+\il —z))\ ¿p(\e) <(1 — e)m if \z\ = 1 — e and e is small enough, and by

Rouché's theorem (3) has exactly m roots in the circle \z\ <1— e. Forming

the Lagrange expansion of z by (5) we obtain (4). (Cf. e.g. E. T. Whittaker

and G. N. Watson [9, p. 132].) Accordingly, each yris, w) (r=l, 2, ■ ■ ■ , m)

is the only root in z of the equation (5) in the unit circle. Note that the roots

7,(5, w) (r= 1, 2, • • • , m) are regular functions of 5 and w and by analytical

continuation they can be defined also in the case \a^m for 9î(s)S:0 and

. | w\ =1 without changing (4). We have always \yTis, w)\ gl (r= 1, 2, ■ ■ ■ ,m)

if $K(s) ̂ 0 and \w\ ^1. The equation (3) has at most one root (possibly mul-

tiple) on the unit circle \z\ =1, namely 2=1 is a root if wpis) = 1. Note also

that yris, w) = 0 if and only if w = 0. If w ^ 0 then the roots yris, w)

(r= 1, 2, • • • , m) are distinct. This completes the proof.
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Let us introduce the following abbreviations. Let yr(s)=yr(s, 1), gr(w)

= 7r(0, w) and wr = 7r(0, 1) (r=l, 2, • ■ • , m). They satisfy the equations

zm=yp(s+\(l—z)), zm = wp(K(l—z)) and zm = p(\(l—z)) respectively.

Finally, we remark that by forming the Lagrange expansion of

[yr(s, w)]n (r— 1, 2, • • • , m) we can prove the following formula

m W'\»>i-n       /-°°

(6) ¿-i L7r(s, w)\n = n ¿^    - I     e-^+,)xxm'-ndHj(x)
r=i jzn/m j(mj — n) ! J o

where H¡(x) denotes the jth iterated convolution of H(x) with itself. By using

this formula we can obtain explicit formulas for the probabilities considered

in this paper.

Lemma 2. Let wr = 7r(0, 1) where yr(s, w) is defined by (4). If\a>m then

ù>i, íú2, ■ ■ ■ , cúm are the m roots in z of the equation

(7) zm = P(\(l - z))

in the unit circle \z\ < 1. If \a^m then coi, w2, • • • , com_i are the m — 1 roots in

z of (7) in the unit circle \ z\ < 1 while wm = 1.

Proof. WKa>m then by Lemma 1 we have |wr| <1 (r — 1, 2, ■ ■ ■ , m). If

\a^m then it follows from (5) that |cor| <1 if r=l, 2, ■ • • , m — 1 and a

probabilistic argument shows that com= 1 (cf. Remark 4 and Remark 5).

If wm= 1 then using (3) we get

, (a/(\a — m)        if \a < m,
(8) t1(0)= { '       ,g%

\        °o if \a = m,

and

(l/(m-\a)       ii\a<m,
(9) Äm(l) =  <

(        «s if Xa = m.

Remark 1. The functions

(10) tr(s,w) = s + X[l - yr(s,w)¡ (r = 1, 2, • • • ,m)

satisfy in f the equation

C_±f-_T.(11) (^-j   =wP(t)

if 9î(s)£==0 and \w\ ^1. Conversely in cases (a), (b), and (c) it follows by

Rouché's theorem that (11) has exactly m roots in the domain 9î(f)>0 or

f = (X 4- s) - aN(í)]"" (r=l,2,---,m)

has exactly one root f = Çr(s, w) in the domain 9î(f) >0. For,
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.        I /X + s - f\m I
I wPit) |   <   {■-j   |

if 9î(f) = €>0 and e is small enough or 9î(£") ̂  e where e is a sufficiently small

positive number and |f | is large enough.

Let us write Çr(s)=tr(s, 1). Clearly fr(0, l)=fr(0)=X(l-wr).

3. The transient behavior of the process {vit)}. The process {nit)} can

be described as follows. ?/(0) is the initial occupation time of the server and

■qit) decreases linearly with slope —1 until it jumps or reaches 0. The jumps

occur at the arrivals of every mth customer and their magnitude is the

service time of the corresponding batch. If vit) reaches 0 then it remains 0

until the queue size increases to m.

Let us define the random variables vit) (0^¿< <x>) as follows: vit) assumes

only the values 1, 2, ■ ■ ■ , m and £(í)=j»(í) — 1 (mod m). The reason for

introducing vit) lies in the fact that {r/(/)} in itself is not a Markov process,

but the vector process {r¡it), vit)} is Markovian, for which we can apply

standard methods.

Let us introduce the following notation:

WA\t, x) = P{vit) Ú x, vit) = j} ij = 1, 2, • • • , m)

and

e-"d,Ws(t,x) ij= 1,2, • • • ,m).
o

Then we have

m

(12) Wit, x) = 22 Wiit, x)
y-i

and

m

(13) QU, s) = 22 M, s).
y-i

Write Ùjis) = ßy(0, s) and Û(s) = ß(0, s) and introduce the generating func-

tion

m

(14) Ris, 2) = Z Q/*)*^1
j=i

which is determined by the initial condition.

Obviously

(15) Wiit, 0) = Pi-iit) (j = 1, 2, • • • , m)
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because p{v(t) =0, v(t) =j} = P{t(t) =j-l} if j=\, 2, ■ ■ ■ , m.

Finally, for \z\ ^1 let us introduce the generating functions

m—1

(16) P(t, z) = 22 PAW

and

m—l

(17) n(j, z) = 22 ha*)**
i=o

We shall prove

Theorem 1. The Laplace-Stieltjes transform of the distribution function of

the occupation time,

/» 00

€-t*dxW(t, x),
o

is given by

Q(itt)jizm± ^i,m
mP(t)     £  1 - ey[^(r)]»/-

■ïe'>tR(t,ii[p(^)]1^)-tj'  e*i^P(u, e/^)]1'-)«*«]

where

(20) Si = ï-\ + \tj[*(jt)]llm

and ei = exp(2wij/m) (j=l, 2, • • ■ , m). If $t(s)>0 and \z\ ¿1 then the La-

place transform of P(t, z) is

no, z)= f
J 0

<r"P(l, z)dt

(21) °
_   «  R(s + \[l-yi(s)],yj(s))        /   z - yr(s)

i=i s + X[l - Ji(s)] r^i  \7i(s) - yr(s)J

where z = y,(s) (r=l, 2, ■ ■ ■ , m) are the m roots in z of the equation

(22) zm = P(s + X(l - z))

in the unit circle \z\ <1.

Proof. A simple argument shows that

IFi(l 4- At, x) = (1 - \At)Wi(t, x + At) + \At f H(x - y)dyWm(t, y) + o(At)
J n
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and for i = 2, 3, • • • , m

Wjit + At, x) = (1 - \àt)Wiit, x + At) + \AtWi-iit, x) + oiAt),

whence

dWíit, x)    dWi(t,x) rx
(23)        -^— =-^-^ - \Wiit, x) + X       Hix - y)dvWmit, y)

dl dx J o

and for j = 2, 3, ■ ■ ■ , m

dWjit, x)      dWiit, x)
(24)

dt dx
-~ \Wjit, x) + \Wi-iit, x).

These equations hold for almost every / and x. Forming the Laplace-Stieltjes

transforms of (23) and (24) we get for 9î(f)>0 that

(25)
3fli(f,f)

dt
= (f - \)Qi(t, f) + \Pit)ümit, f) - [Poil)

and for j = 2, 3, • ■ • , m

dQi(t,t)
(26)

at
= a- - \)Qiit, f) + \Qi-iit, r) - fPy-i(o.

(27)

and

Now let us introduce the following matrix notation:

(f - x)      o    • • • o    wit)

X (f - X) • ■ • 0 0
.4 =

Q(/, f)

0

Oi(/, f)

Q»(<, f)

ß»(*. f)

0 x a-x)

P(0 =

Po(0

Py(t)

Pm-i(t)

Combining (25) and (26) we get the following matrix differential equation

da(t, f)
(28)

the solution of which is

(29)

73/
= Aait, f) - fP(/),

(/,f) = ̂ '«(r) - r f ^<«-«)p(«)¿«,
•7 o
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where

0(f) = £2(0, f)

is determined by the initial condition and Pit) is yet to be determined. Pit)

can be obtained by the requirement that

/>  QO

e-"Qil,
a

ï)dt

is a regular vector function of f if 9î(f) ^0 and 81(5) >0. Forming the Laplace

transform of (29) we obtain

(30) j   tr«a(t, ()dt =[A- sIYA&F) - i J   e-"Pit)dt\,

where J is the im, m) unit matrix. To determine the components of (30) ex-

press A in canonical form. The characteristic equation of A is

I A - sl\   = ft - X - j)" - (-l)mX"V(f) = 0

and hence the proper values of A are

(31) f, = iy(f) = t - X + \tjW)]Um (; = 1, 2, • • • , m)

where ej = exp(2rij/m) (7 = 1, 2, • • • , m) are the mth roots of unity. A simple

calculation shows that

(32) A = ||aiyHA||(8>t||

where A is the diagonal matrix [si, s2, • • ■ , sm] and |[a,y|| and \\ßjk\\ are in-

verse matrices for which

(33)

and

(34)

aii      \X + Si - t)

1 /X 4- Si - ¿y

m \       X       /

Thus

(35) [A - si}-1 = ||a„-|| [A - j/h'HfttH = ||y,*||

where

(36)
»   aaßik      1 A/X + íí-fX*"'      1

r« = 2--= — 2-1-:-)    7-
J=l   îy — 5 m   y=i \ X / is i -

Finally by (30) we get
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f-'Qi(i,i;) dt =22 Tit[ô»(f) - fnw(i)]
0 *=1

'X + *i - A*-i [&Ü") - ¿TW*)]
(37)

W  fc.1 y=i \ X /

= 1 y /A + 5> - *V
m y=i\       X       /

. [4^-4^]
(Si - s)

The Laplace-Stieltjes transform (37) is a regular function of f if 9î(f) 2:0 and

9î(s) >0. If f = fy(s) (j= 1, 2, • • • , m) is that root in f of the equation

C-^O"*(rt
\ A /

for which

x + s - Us) - x*6Kb(*))]l/"

then by (31) 5y(fy(s))=s and sr(ryCs)) J^s if r?¿/. Therefore the coefficient of

l/(sj — s) on the right side of (37) must vanish if f = f¿(s) = s4-X[l — Y,-(s)], i.e.,

(38) [s + X[l - 7;0)]}n(5, 7j(s)) = R(s + X[l - y,«], y,!»)

if j = 1, 2, • • • , m. The function II(s, z) in z is a polynomial of degree m—1

and by using the Lagrange interpolation formula we obtain from (38) that

m   n(,,.)-z«, + xVT*V'('))n(,~T'(') Y
y_l Î 4" X[l  - 7y(i)J W \7j(i)  - 7r(i)/

This proves (21). Using the representation (32) we obtain from (29) that

(40) Qi(t,[) = - 22 E (-—■L)       «'''«»(f) - f       «*'MPt-i(«)á«
»» y-it-i \        X        /     L Jo J

and finally (19) can be obtained by (13). This completes the proof of the

theorem.

Remark 2. By (13) and (37) it follows that

(41) e—Q(l, i)dt =--^- 22 --—r1-
Jo mp(Ç)      y=i (X - s,)(s - Si)

■[R(ï, íytXr)]1"") - mo, l[Ht)]l,m)]

where Sj is defined by (20) and 11(5, z) is given by (39).

Further, we remark that if the initial condition is £(0)=0 then rj(0)=0

and R(s, z) = 1. In this case
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m*,,) -    1    h - n ( xl'7yÁ—)\ ■
s + X(l - 2) I jJi \s + X[l - yiis)}})

11

s + x(i - 2) r   ti \í + x[i

This follows immediately from (38). Now we have

m

[s + x(i - *)]n(í, 2) - i = eis) IJb- 7,-W]
y=i

because the left side vanishes if z = yy(s) (j=l, 2, • • • , m). The constant

Cis) can be obtained by the substitution z= (X+5)/X.

If specifically £(+0) =m and / = 0 is a departure point then P{i?(0) ^x}

= Hix) and i?(s, z) =pis). In this case

(43) n(j, 2)
i

S + X(l - 2)
-ny-i

r,W

i X + 5
7yW

Remark 3. The above method can be applied word for word to determine

the distribution of the virtual waiting time in the case of cyclic queues. In this

case we suppose that the inter-arrival times {dn} and the service times {x«}

are independent sequences of independent positive random variables with

distribution functions

'{On g x} = |
if x ^ 0,

if x < 0

and

P{x«èx} = Hiix) (j = 1, 2, ,m),

when n=j (mod m). In determining the Laplace-Stieltjes transform of the

virtual waiting time we obtain again the matrix equation (28) in which

(f - XO 0       • • • 0 Xm^m(f)

XiWf)     (f - X2) ■ • • 0 0
A =

0 0 Xm_i^m_i(f)    (f — xm)

where piis) is the Laplace-Stieltjes transform of H¡ix). In this case the char-

acteristic equation of A is:

\ A - sl\ = it - \i - s) ■ ■ ■ it - \m - s) - \i ■ ■ ■ KPiit) ■ ■ ■ pmit) = 0.

4. The probability that the server is idle. First of all we shall prove the

following auxiliary theorem which we shall need in the sequel.
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Lemma 3. The limit Y\mt„xPj(t)=P* (j = 0, 1, 2, • • • ) always exists and

is independent of the initial state.

Proof. By the theorem of total probability we can write for k = 0, 1, • • • ,

m — 1 that

(44) Pt(t) = Pk(0)e-*> +  f e-^'-^dNk(u) + f r*<*-">¿Jf»_i(f»),

where the last term on the right side is zero if k = 0, and for k = m + 1,

m + 2, ■ ■ •  that

PÁ0 = 22 îAt)<ru
i=m (k-j)\

(45) + 22)    [1-H(t- «)]i^«-«> ̂ --~ dNi(u)
i-m J 0 (k   - j) !

f'r n [\(t -  U)]k-m
+       [1 - H(l - M)]e-X(,-U) —,-~i-dMm-i(u)

Jo (k — m) !

where q¡(t) is the probability that the initial queue size is j and there is no

departure in the time interval (0, /].

In proving (44) we take into consideration that the event £(t) =k (k<m)

can occur in the following mutually exclusive ways: the initial state is Ek

and there is no arrival in the time interval (0, t], or at the instant u (where

O^u^t) there occurs a transition Ek+m—*Em or Ek-i-^>Ek if k>0 and there

is no arrival in the time interval (u, t]. Finally we get (44) if we keep in mind

that the transition Ek+m-^>Em and Ek-i—>Ek may be the wth (n=l, 2, • • • )

departure or arrival respectively. Similarly in proving (45) we take into con-

sideration that the event £(/) = k (k = m) can occur in the following mutually

exclusive ways: the initial state is E¡ (j = m, ■ ■ ■ , k) and in the time interval

(0, t] there is no departure and k—j customers arrive, or at the instant u

(where O^u^t) there occurs a transition £y+m—*£y (j = m, m + 1, ■ ■ ■ , k) or

a transition £m-i—*Em, the service starting at this instant u does not end

in the time interval (u, t] and during this time interval (u, t] respectively

k~j (j — in, m + 1, • ■ • , k) or k — m customers arrive. Finally, we get (45)

if we keep in mind that the transition Ej+m—*Ej and £m_i—>.Em may be the

wth (n=l, 2, • ■ • ) departure or arrival respectively.

The transitions £m+y—>£y 0 = 0, 1, 2, • • • ) and similarly the transitions

.Ey—>Ej+i (j = 0, 1, • • • , m — 1) form a recurrent process. The distances be-

tween successive transitions are identically distributed independent random

variables having nonlattice distributions. Therefore by a theorem of D. Black-

well [l ] it follows that the following limits exist for every h>0 and agree with

the respective right hand sides:
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■•     NÁt + h) - Niit) NAD
(46) hm - = lim - ij = 0, 1, 2, • • • )

<—» h i-.«      /

and

Miit + h)-Miit) MM
(47) hm- = hm- (j = 0, 1, • • • , m - 1).

!->» Il !-»« /

Furthermore these limits are independent of the initial condition.

Forming the Riemann-Stieltjes sums approximating the integrals (44)

and (45) respectively and using the relations (46) and (47) we obtain that

the limit liirií,«, P¡it) =Pf (j = 0, 1, 2, • • ■ ) always exists irrespective of the

initial state.

Specifically we have for k = 0, 1, • • • , m — 1

(48) Pt = — iNk + Mk-0
A

and for k — m, tn + 1,

P** = í>y f"[l - Hix)]e->

(49)

i\x)»-'
Xl-dx

+ Mm-i        [1 - Hix)}e-** -^—-
J o ik — i

áx

where we used the notation

Njit) MM
lim-= Nj   and     lim-= M¡.
<->»      / i-»«      /

Now let us denote by Qit) the probability that the server is idle at the

instant t. Clearly Qit) = P{£(/) <m}, i.e.,

m-l

Q(t) = E Pi(t).
y-o

Hence for ?H(s)>0

(50) f   *-«0(/)áí = E Hy(*) = n(5, 1)
J o y-o

where 11(5, z) is given by (21).

If specifically £(0) =0 then by (42)

«        />'*-7r-SC-^)f
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Theorem 2. If\a<m then

\a
(52) lim Qit) = 1-

<->» m

and if\a = m then

(53) lim Qit) = 0

irrespective of the initial condition.

Proof. Referring to Lemma 3 it is sufficient to restrict ourselves to the

case when initially the server is idle. Let us denote by p the expected number

of services in a busy period (possibly p = °°). The starting points of the busy

periods agree with the transitions Em-i—>Em. It is easy to see that the ex-

pectation of the distance between two successive transitions £m_i—>Em is

mp/\. Hence by the theorem of D. Blackwell [l] it follows that for every

h>0
,   s Mm-iit + h) - Mn-iil)       .     Mm-iil)       X
(54) hm - = hm -= -

i->» h !-»«        / mp

irrespective of the initial state. We note that p< «> if \a<m and p= «> if

\a = m. This can be seen as follows. If a busy period terminates, not more

than m customers may arrive before the beginning of the next one. Conse-

quently we have the inequality

m m
pa < p — Ú pa -\-

X X

whence p^ 1/(1 —Xa/m) if \a<m and p= » if \a^m.

If G(x) denotes the distribution function of the length of the busy period

then we can write that

(55) Qit) = 1 -  f   [I- Gil- u)]dMm-iiu).
J o

If p< oo then obviously

/I 00

[1 - Gix)]dx = pa
o

and by using (54) we obtain from (55) that

\a
(56) lim Qit) = 1-

i->» m

irrespective of p.

Since evidently
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k

Mk(t) - 22 Ni(t)
3=0

<   1 (k = 0,1, ■ ■ ■ ,m - 1)

holds for all t = 0 we get by (54) that in case p= <»

,.      Nk(t)              Mk(t)
hm- = hm-= 0
t—> » t t—* « t

and by (44)

lim Pk(t) = 0

(k = 0, 1, 2, • • • , m - 1)

(k = 0, 1, • • • , m - 1)

irrespective of the initial state. Hence

(57) lim Q(t) = 0
¡-.00

if p = œ. This completes the proof of the theorem.

Remark 4. We have seen that lim^*, Q(t) =Q* always exists irrespective

of the initial state. In this case obviously

1   r<
lim -       Q(
(->«>    t  J o

u)du = Q*

also holds. Hence we can conclude that

/> 00

e-*lQ(t)dt = Q*.
o

Thus by (51) we get

Q* = 1 - lim
X[l - 7»P)]

s^o j 4- \[l — ym(s)]

because |7y(0)| <1 if j=l, 2, • • • , m-1. If now |7»(0)| <1 then Q* = 0. If
7m(0) = 1 and \a^m then by (8) we get

1 \a
Q* =-=1-

1 - X7;(0) m

Since we know that Q*=l —\a/m if \a <m therefore 7m(0) = 1 must hold

if \a<m.

Finally we prove

Theorem 3. If \a^m then P* = 0 (k = 0, 1, • ■ ■ ,m — l) and if \a <m then

"!l^ /       \a\ "£} / z - u,\
(58) n*0) = Z ftv =   i - -) II (--)■

A=0 \ mf    y_i \ 1 — 0)y/
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Proof. If Äa^M then p = °° and by the preceding Pk* = 0

(k = 0, 1, • • • , m — 1). If \a<m then, Pfc* being independent of the initial

state, we get by (42) that

•T^ / Xa\   m^l  / 2 - 0>y\
22 W = Hm ín(5, 2) =   1 - -) n (---)
k~0 '^0 \ mf    y_i   \ 1 — COy/

which proves (58).

5. The asymptotic behavior of the process {r\it)}.

Theorem 4. If\a<m then the limiting distribution lim,J00 Wit, x) = W*ix)

exists irrespective of the initial distribution. The Laplace-Stielt]es transform of

W*ix) is given by

/> 00

g-t'dW*ix)
0

*"\ [i - *(fl] A _f_
tn)    mm     ¿Í {f - X[l - ey^if))'/-!}

where coi, oj2, • • • , co,„_i are defined in Lemma 2. IfXa^m then limÍJ00 Wit, x)

= 0 for every x.

Proof. We shall write

W*ix) = ¿ Wfix)•-i

where

Wfix) = lim ITy(/, *)

and

0*(f) = E Qy*(f)
-i

where

«/(f) =   f   e~rWy*(x).
•7 o

Further we shall use the following vector notation :

(59)
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Po*

p*

p *
ïm-l

Thus we have

(60) lim û(/,f) = Û*(f).
Í-.00

First consider the case \a<m. Then

limPy(0 = P/>0 0=0, 1, • • -,m- 1)
¡-.00

exists and is independent of the initial state. If we restrict ourselves to

imaginary f then by (40) it can be proved that linii^ Q(t, f) = £i*(f) exists

if |f | <a, where a is a sufficiently small positive number, and that ß*(f) is

continuous at f = 0. Hence it follows by a theorem of A. Zygmund [lO] that

the limit lim,,«, PFy(í, x) = W*(x) exists and further that the Laplace-Stieltjes

transform of W*(x) is ñy*(f) =lim¡,00 ñy(í, f) defined for 9î(f)^0. Thus

lim,.^ û(t, f) = Q*(f) also exists and by (28) we get that ft*(f) satisfies the

equation

(61) Aa*(t) = fP*.

Since \a\ 9^0 if f/^O, this equation has one and only one solution if f^O.

Using the canonical decomposition (32) of A we get explicitly

w        m).L±±(i±ïzîf!±
m   k=i y=i   \ X / Sj

■ 1¿1(_!_rn.(> + ''--r)
m y=i Sj \X + Si - f/ \       X        /

where sy is defined by (20) and ll*(z) by (58), whence for f 9^0

m

Z Q<*(f)
1=1

f[1 - f(f)J A      «j[*(f)]1/m_n*(ej[p(n¡llm)

mp(t)   ¿i {i - •iEW)]1"*| {f - x[i - e^(r))1'-]}

and clearly Í2*(0) = 1. This proves (59).

If \a^m then Py* = 0 0 = 0. h ■ ' • . w-1) and Um,.. Q(i, f)=0 for
9î(f) ^0, whence lim^,« W(t, x) =0. This completes the proof of the theorem.

û*(r) =

ü,*(r)

p*

o*(f)

(63)
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6. The transient behavior of the process {r¡n}. Let us define dn = r(n+i)m

— Tnm (»=1, 2, ■ ■ ■); then obviously

(64) rjn+l   =   [fin +  Xn   -  &n] +

where [a]+ = max(a, 0). Here {xn} and {dn} are independent sequences of

identically distributed, independent random variables with distribution func-

tions P{xn = *} =Hix) and P{dn^x} =Pm(x) defined by (1).

We need

Lemma 4. Let £ and 6 be non-negative, independent random variables for

which P{d = x} =Fmix) defined by (1). Define

(65) 4>(i) = E{e-<t}.

If 9í(í) =0 then we have

E{e-*[f-e]+}

(66)

z
y-o

Proof. We have

m-i (_i)y#(y)(x)
\m$(s) - e-lÀmO - s)¡ - H'(* - <¡)m]

y-o Í!

(X - s)«

(_l)»$(i)(X)

if s ^ X,

if 5 = X.

/" (X-y)™-1
e-.(x-»)e-x„_iz:—

o (m — 1) !

m—1

(67)

(\x)'
X¿y

\me-.X   _   ^ e-Xx_ [x»i(5  _  X)»  -  X'(j  -  X)m]

y=o

(X - *)•

(X*)'

if 5 5= X,

if 5 = X,
i. y=o j-

whence (66) follows.

Theorem 5. Let

(68) Ün(s) = E{e-^} (»=1, 2, •••)•

//, in particular ?n —0, /Äe» we have for 9î(s) ^0 awá I wl <1 ¿Aa¿
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where z = gT(w) (r= 1, 2, ■ • • , m) are the m roots in z of the equation

(70) zm = u>P(\(l - z))

in the unit circle \z\ <1.

Proof. By (64) and (66) we can write for s^X that

/      X"V0)o»0) - äC_iO)
®n+l(s)   =-

(X - s)m

where Cm-i(s) is in s a polynomial of degree m—l. Hence

(X - s)müi(s) - îCm-i(i, w)
(71) 22 o-O)»"-1 =

(X - s)m — w\mp(s)

where Cm^i(s, w) is in s also a polynomial of degree m — l. The left hand

side of (71) is a regular function of s if 9î(s)=0 and |w| <1. In this domain

the denominator of the right hand side of (71) has m roots

s = X[l - gr (w)] (r = 1, 2, • ■ • , m).

These must be also roots of the numerator. Therefore the polynomial

Cm-i(s, w) is determined uniquely. If W9±0 then these roots are distinct and by

the Lagrange interpolation formula

tin     r     i      ^      ~ ^M1 - êr(w)])[gr(w)}™       (s - X[l - g.(w)]\
(72) C^iO, «0 = 2--r.-7T]-II j—rr-7T~\ ■

r=l [1   -  MW)J v*r    \     g,(w)   ~   gr(w)      )

If, in particular 771 = 0, i.e., ñi(s) = l, then we obtain immediately that

(73) Cm-i(s,W) = ii(x - 5)" - X-n (l - ,**,  ,)) ■
S    ( r=l\ X[l   -  gr(w)\/)

If w = 0 then (71) reduces to ñi(s). This proves (69).

7. The limiting behavior of the process {»?„}. Let

P{Vn   èx}    =   W„(X).

Now we shall prove the following theorem which is a particular case of a more

general theorem of F. Pollaczek [7].

Theorem 6. If \a<m then the limiting distribution lim,,..,«, Wn(x) = W(x)

exists and is independent of the initial distribution. The Laplace-Stieltjes trans-

form of W(x) is
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where coi, co2, • ■ • , com_i are the m — i roots in z of the equation

(75) zm = *(X(1 - 2))

in the unit circle \z\ <1. If\a = m then lim»..«, Wnix) =0 for every x.

Proof. The statement concerning the existence of the limiting distribution

is a consequence of a theorem of D. V. Lindley [5]. It remains only to find

the explicit form of ñ(s) in the case \a<m. ß(s) is independent of the initial

distribution. If we suppose that r;i = 0 then from (69) by using Abel's theorem

it follows that

m  I              s       \
ms\m-1 TTl1-)

(76) 0(5) = Hm (1 - w) E OnW^"-1 = (1 - -)-——-
»-1 _i \        ml        X^is) - (X - s)m

because g'm(l) = 1/im — Xa).

Remark 5. If \a = m then iî(s)=0 and therefore it is impossible that

|wr| <1 (r= 1, 2, • • • , m). This proves that um= 1 if \a = m.

8. The transient behavior of the queue size. It is easy to see that the se-

quence of random variables {£„} forms a homogeneous Markov chain, namely

we have

(77) £re+i = % - m}+ + vn+i

where vn denotes the number of customers arriving during the «th service.

The {vn} is a sequence of identically distributed, independent random vari-

ables for which

(78) P{vn=j\Xn = x} =e-^-
yi

and unconditionally

i\x)'

/1 OO

e-^^-dHix).
0

Write

yi

pTk}= p{f» = *|{o = »}.

Theorem 7. If \z\ =l and \w\ <1 then

*wi-,»n(i^i)
(n)    n k r=l \ 1  - griw) //„„x v» v»   y.n>  " K(80) EIíi«=l--

.-0 k=o wpiXil - z)) - zm

where z = griw) (r = 1, 2, • • • , m) are the m roots in z of the equation
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(81) zm = ttV-(X(l - »))

in the unit circle \z\ <1.

Instead of proving this theorem we shall prove the following more general

theorem, from which it can be obtained as a particular case.

Theorem 8. Let us define

(82) U»(s,z) = E{e-"*'z**\,

for '¡R(s) 2ï0 and \z\ SL If we suppose that ¿(0) =0, then we have for 9i(s) ^0,

|z| SI and | w\ <1 that

™   /    X[z — 7,(î, a»)    \
ttV-0 + X(l-8))Il( ^r, J

,„, A _,   .       . _ r-I  \i 4- XI  - 7r0, «0  /
(83        2-, #»0. z)w =-,,   , w<-r:-

n=i zm - wp(s + x(i - z))

where z = yr(s, w) (r= 1, 2, ■ • • , m) are the m roots in z of the equation

(84) zm = wp(s + X(l - z))

in /Äe mjhí circ/e |z| <1.

Proof. Now we can write that

(85) £„+i = [£„ - m]+ 4- ^,

and

[m-inl+      ..,

(86) T„+i   =  Tn + Xn+1 4"        E      #»+1
;-l

where {x»} (»-1, 2, ■ • • ) and {#£?} («=1, 2, • ■ • ; j= 1, 2, • • • , m) are

independent sequences of identically distributed, independent random vari-

ables with distribution functions P{XnSx} = H(x) and P{dni)x%\x}=F(x)

defined by (2). The random variable v„ depends only on Xn and its distribu-

tion is given by (78).

Since

£{«-«x-Z'«} = p(s + X(l - 3)),

we get by (85) and (86) that

m-l

Un (s, z) -  E C„y0)z

Un+l(s, Z) = P(s + X(l - z))

where

y=o m-1 I       A      \m-,

+   ZCni(s) (—— )
j_o \\ + s/      I
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Hence

(87)

where

LAJOS TAKÁCS

diis)   =   P{tn=j}E{e-"»'\tn=j}.

[July

E Unis, Z)W"
zmUois,z) - wPis + X(l - z))dniz, s, w)

zm  _   ̂ (j _|_ X(l   _  ¿))

Cmiz, S,W)   =   22 Y,   Cniis)wn     Z> - Zm (- )
n=0 y=o L \X + 5/        J

is in z a polynomial of degree m and Cmiz, s, w) vanishes if z= (X+s)/X.

The left side of (87) is a regular function of z if \z\ ^1, 9î(s)^0 and

\w\ <1. In this domain the denominator of the right hand side of (87) has

exactly m roots z = yr(s, w) (r=l, 2, • • ■ , m). These must be also roots of

the numerator. Thus the polynomial Cmiz, s, w) is determined uniquely. If

we exclude the trivial case w = 0 then the roots yris, w) are distinct and

Cmiz, s, w) can be obtained explicitly by the Lagrange interpolation formula

Uo(s,yris,w))[s + \il - z)]       /    2 - 7,(5, w)      \

,*r \yr(s, W)   - 7,(5, W)J
(88)   Cmiz, s,w) = 22

r=l 5 +  X[l   —   7rU, W)\

If, in particular r0' =0 and £o = w, then 770(5, z)=zm and we obtain im-

mediately that

(89) Cmiz, S, W)   =   2" IT
2 - 7,(5, W)

1
X + 5

7r(5, W)

If £(0) =0 then Un(s, z) (« = 1, 2, • • • ) obviously agrees with the Unis, z)

calculated by the assumption c70(s, z) = (X/(X+5))mzm. In this case we obtain

immediately that

(90)
/   Xz   \m       ™  /

cmiz,s,w) = (—-) -n
\X  +  5/ r=l \

X[2 - yTjs,w)\

5 + X[l  — 7r(5

2J Y
,">)]/

This proves the theorem. If we write s = 0 in (83) then we get (80).

Remark 6. We have the obvious relation

(91) '{{»«i} = f  e-* — d[Wn(x) * H(x)],
Jo 1\

whence

(92) E{z*«} = 0„(X(1 - z))Pi\il - z)).

Now using (69) we can prove (80) also in this way.
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Theorem 9. Let

(93) n»0) =  f   e-»Pk(l)dt
J o

for 9tp)>0. // we suppose that £(0)=0 then we have for 9îp)>0 and \z\ SI

that

k-o s + X (1 - z)

(94)
I        (1 - s-WP 4- X(l - z))  "   /    X[z-7rQ)]    \\

' t z™-^ + X(l - z))    Ü \5 4- X[l - 7r0)]/i

where z = yr(s) (r = 1, 2, • • • , m) are the m roots in z of the equation

(95) zm = P(s + X(l - 3))

in the unit circle \z\ < 1.

Proof. Let us form the Laplace transforms of (44) and (45) in this special

case ; then we get easily that

m—l 1 / m—1 f\ oo m— 2 /% oo \

(96) E n*P)z* =-i 1 + Z> I    C'dNAt) + z E 2''       e-«dMAt) \
k=o \ + s (        y=o     «J o y=o     •/ o /

and

1 - *P 4- X(l - z))

S + X(l  — 3)
En*P)z* =

(97)
oo *% oo /» oo \

E z' I    e->ldNi(t) + zm I    e-stdMm-i(t) > .
. y=m        «^ 0 «J 0 /

Since clearly

00

(98) Ni(t) = Ep{tÎ. S/,«,=./}
n=l

we obtain by (83) that

00 /*  °°

E z!' I    e-"dNi(t)
y=o     •/ o

(99)
»/       X[i-7r0)]       \

^o + x(i-3))n     ' J
A  TT   .       . r=l\S +  X[l   -  7rO)]/

=   2-  L'nOl Z)   =  -
»tí 3™ - P(S + X(l  - Z))

Further, since
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(100) M jit) = X f  Piiu)du ij = 0, 1, 2, • • • )
J o

we get by (42) that

m—1 /» oo \

E ■*       e-»dMiit) = xn(5,2) = ——-
(101) "       J° 5 + X(l-2)

h-fl(xls-yÁS)] )\.
I        ÍLi\j + X[1-7,(j)]/Í

From (101) we get

/» 00 m      / X \

í-dif^!«) = ní-TTÑ—ttt)
o y=i\5 + X[l  - 7rWj/

and from (96) and (101)

m—1 /» oo

E *' I    e-"dNiit)
y=o     «7 o

(103)

~ UV* + X[l - yr(s)}) " ÜV» + X[l - 7rW]A

Comparing the above formulas we obtain (94) which was to be proved.

9. The limiting distribution of the queue size.

Theorem 10. If \a<m then the limiting distribution liin„<0O P{£„ = £}

= Pk ik = 0, 1, 2, • • • ) exists and is independent of the initial distribution. We

have

"izi / 2 — coA
(1-*)*(A(1-*))II(--)

,        N A  „   , / X«\ r-l \ 1 - cor/
(104) E-P*2t = w(l-)-

M V »/ 2- - *(A(1  - 2))

wÄere au, w2, • • • , w«-i are the m — 1 roots in z of the equation

(105) zm = ^(X(l - 2))

in the unit circle \z\ <1. IfXa^m then lim„_w P{£„ = &} =0 for every k.

Proof. The sequence {£„} is an irreducible and aperiodic Markov chain.

Therefore lim,,^ Pj£„ = &} =Pk always exists and is independent of the initial

distribution. Either every P*>0 and {Pk} is a probability distribution, or

every P* = 0. By using Abel's theorem we have

oo oo        oo

E Pk 2 = lim (1 - w) E E pt^w",
k-0 to-»l n-0 fc=0

and the right hand side can be calculated by (80). This proves (104).
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Theorem 11. If \a<m then the limiting distribution lim,^ P{¡¿(t) =k}

= P* (fe = 0, 1, 2, • • ■) exists and is independent of the initial distribution. We

have

(106)

— (Po 4- Pi +
m

+ Pk) if k < m,

m
(Pk-m +  Pk-m+l +   ■   ■   ■   +  Pk) ifk^m

where the distribution {Py} is defined by (104). IfXa^m then limi<00 P{£(t) =k}

= 0 for every k.

Proof. Obviously

Mk(t) = X J    Pk(u)du.
J o

We have proved that limt^x Pk(t)=Pk* (k = 0, 1, 2,

hence
.     Mt(t)

lim-— = \Pk*.
¡-.00 /

On the other hand we can see easily that

) always exists and

Mk(t) E    Ni(t)
j=k—m+l

S 1

for all t = 0. Here Afy(i) =0 if j<0. Thus

ao7)
1         Mk(t) 1       *

Pk* = — lim-— = lim —    E    Nj(t).
Xl-»« / ¡->»   \t j=k—m+l

Now let us denote by N(t) the expected number of departures occurring in

the time interval (0, t\. By the theory of Markov chains it follows that

lim -^^- = Pi
i—   N(t)

0 = 0, 1, 2, • • • )

and therefore

(108)
N(t)1 /      * \ N(

Pk* = —(      E    Pi) Hm —
X   \ y=*_m+l        /   <->«       t

where Py = 0 if j<0. If we suppose that \a<m then by (58) and (104) we

obtain that Po/Po* = m and hence if we write & = 0 in (108) we get

,.     N(t)      X
hm-= —
i-»«     t m
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and by (108)

1 k

(109) Pk* = —    E    Pi
m   i=k-m+l

for every k. If \a}tm then every Py = 0 and since limt^M Nit)/t is evidently

finite by (108) P* = 0 for every k. This completes the proof of the theorem.

10. The stochastic law of the busy period. Now we shall prove the follow-

ing theorem of B. W. Conolly [2]. A more general theorem has been proved

earlier by F. Pollaczek [8].

Theorem 12. The Laplace-Stieltjes transform

/i  OO

er'*dG„ix)
o

is given by the generating function

oo m

(in) E r,(i)w = i - n [i - yr(s, te»)]
n—1 r—1

for 9î(s) ^0 a»d | w| =T wAere 7,(5, w) (r = 1, 2, • • • , w) are defined in Lemma

1.

Proof. Denote by GB*(x) the probability that the busy period consists of

at least « services, the total service time of the first « batches is at most x, and

at the end of the wth service k customers are present in the queue. Then

evidently

m—1

Gnix)   =   E Gnkix).

If we write

then

/» 00

e-,xdGnkix),
0

r«W = E Tnk(s).

Now by the theorem of total probability we can write that

(Ay)*

and

/(Xy)*
^v~r^(y)

0 £!
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m+k       /% x i\y\k—r+-m

Gnk(x) = E        Gn-i,r(x - y)e-*y —^-dH(y)      (n - 2, 3, • • • ).
r-m J o (k — r + m)\

Forming Laplace-Stieltjes transforms we get

(Xy)*

0

C°° (Xy)*
ru0) =  I    e-^8'« — dH(y)

Jo k\

and

T„k(s) = E r„_lir0)       c-km.-UÍ--dff(y).
r=m J 0 i-f   +   W    !o (i-r + m)!

If we introduce the generating function

00

(112) C,0, z) = E r,aO)a*
4=0

then we have

(113) Ci(s,z) =P(s + X(l-z)),

(114) ¡rco, z) = *o + x(i - 3)) ic-iO, z) - E r-U*)*].

Hence
oo    m—1

zm - E E r„,ro)3rw"

(115) EC„0,z)w» = ^0 4-X(l-3))-~h^i-¡T
n-1 Zm - Wp(s + X(l  - 3))

The left hand side of (115) is a regular function of a if |z| SI, 9îp) ^0 and

|w| <1. In this domain the denominator of the right hand side has exactly

m roots z = 7r(s, w) (r=l, 2, • • • , m). These must also be roots of the

numerator. Thus the numerator, being a polynomial of degree m, is deter-

mined uniquely, namely

00   m—l m

(116) Zm -  E E  r„(s)zrW*   =   II   [Z -  TrO, W)].
n=l r=0 r=l

If 3=1 in (116) then

oc m

(117) E r.0)w- = 1 - II [1 - 7,0, w)]
n=l r=l

for \w\ <1 and this is also true for \w\ =1, which can be shown by analytical

continuation. This completes the proof of the theorem.

Theorem 13. If G(x) denotes the distribution function of the length of the

busy period, then we have
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if Xa ^ m

if Xa > m

where «i, w2, • • • , com are the m roots in z of the equation

(119) zm = PiXil - z))

in the unit circle \z\ <1.

Proof. Let

r(i) =  f   e-**dGix)
J o

be the Laplace-Stieltjes transform of the distribution function of the length

of the busy period. By (111) we have

m

(120) T(5)   =   1   -  II   [1  - 7r(i)].
r=l

Hence
m

lim G(x) = lim r(s) = 1 - U il - ooT),
X—* W 8—*0 T^l

where wm= 1 if Xa^m, as was to be proved.
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