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Introduction. In his study of the structure of distribution kernels (center-

ing around his celebrated kernel theorem), L. Schwartz [ll; 13] has

studied the subclasses of regular and very regular distribution kernels, which

may be characterized roughly by the fact that they carry infinitely differenti-

able functions into infinitely differentiable functions. It is our object in the

present paper to extend this study to kernels which are analytically regular,

i.e., which, again roughly, carry analytic functions into analytic functions.

The motivation for such a study is provided by the fundamental solutions of

elliptic equations with analytic coefficients. One consequence of our results

is that for such equations the standard theorems on the analyticity of regular

solutions imply the analyticity of the fundamental solution.

The principal tool in our investigation is the general theory of topological

vector spaces (particularly in certain forms given to it by A. Grothendieck)

and especially the theory of topological tensor products. In §1.1, we summa-

rize the definitions from the theory of topological vector spaces which we shall

use. In §1.2, we give a brief summary of the definitions and principal results

of Grothendieck'stheory of topological tensor products. In §1.3, we summarize

the results of Schwartz's study of distribution kernels, at least insofar as they

relate to the generalizations to be given to analytic kernels. §11 is devoted to

an intensive consideration of the space <&iK) of real analytic functions on a

compact subset of Rn. §111 states and proves our principal results on analytic

distribution kernels.

The writer should like to thank Professors L. Nachbin and F. E. Browder

for discussion, suggestions, and criticism. The results of the present paper con-

stitute a portion of the writer's Doctoral Dissertation [l] at the University

of Säo Paulo, prepared while in residence at the Institute for Pure and Ap-

plied Mathematics, Rio de Janeiro.

I. Preliminaries

1. Topological vector spaces. We shall follow the definitions and notations

of the treatment of topological vector spaces given by Bourbaki [3] and

Grothendieck [8].

Let £ be a topological vector space of R, the field of the real numbers, or

C, the field of the complex numbers.

A subset A of E is called circled if X^4 EA for all scalars X such that

|X| gl.
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We say that A absorbs B if there exists a real number «>0 such that for

all X with |X| <e, we have \BEA. The subset A is called absorbing if it ab-

sorbs every xEE. A is called a bounded set if every neighborhood of zero in

E absorbs A.

We say that A is a convex set if, for all x, yEA, Xx + (1— X)yEA, lor all X

such that 0<X<1.
By the circled convex hull of A, T(A), we mean the smallest circled convex

set which contains A. T(A) is, obviously, the set of all finite sums "^¡KiXi,

with XiEA and the scalars X; such that X)|X,-| 3s 1.

The topological vector space E is called locally convex if its topology ad-

mits a fundamental system of neighborhoods of zero consisting of convex,

circled and absorbing sets. In this case the topology of E can be defined by a

family of semi-norms. All the spaces to be considered will be locally convex

and separated.

Let E' be the dual space of E, i.e., the space of all continuous linear

functionals on E. Let A be a subset of E; the polar of A is the set of all ele-

ments x'EE' such that:

|(x,x')|   â 1

for all xEA, where (, )denotes the pairing between E and £'. We denote by

A° the polar of A. An analogous definition may be given for the subsets of E'.

Let © be a set of bounded subsets of E; the ^-convergence topology on E'

is defined by taking as the fundamental system of neighborhoods of zero, all

the finite intersections of non-null homothetics of polars of elements of ©.

If © is the set of all finite subsets of E (resp. E') the ©-convergence topol-

ogy on E' (resp. E) is the weak topology of E' (resp. E). We denote by s(E', E)

(resp. s(E, E')) this topology and by E, (resp. £/) the space E (resp. E')

with the weak topology. If © is the set of all bounded sets of E, the ©-con-

vergence topology on E' is the strong topology.

A locally convex topological vector space E is said to be reflexive (resp. a

Montel space) if every bounded subset is weakly relatively compact (resp.

relatively compact).

A Fréchet space, (J)-space, is a locally convex topological vector space

which is metrisable and complete.

The space E is called almost-complete if every bounded closed subset of E

is complete. Every complete space is, obviously, almost-complete.

If M is an equicontinuous subset of E' (i.e. M is the polar of a neighbor-

hood of zero in E), M is bounded in every ©-convergence topology on E',

where © is any family of bounded subsets of E. In particular, M is weakly

bounded and strongly bounded.

The space E is called almost-barrelled if every strongly bounded subset M

of E' is equicontinuous. E is called barrelled if any weakly bounded subset M

of E' is equicontinuous. All barrelled spaces are almost-barrelled.
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E is called a bornological space if every convex circled subset of E which

absorbs the bounded subsets of £ is a neighborhood of zero in E. If E is

bornological, every linear mapping from E into a locally convex space P

which maps the bounded sets of E into bounded sets of P is continuous [8,

p. 200, Definition 4 and Proposition 6].

Let A be a convex, bounded and circled subset of E; by EA we mean the

vector subspace of E spanned by A, with the topology defined by the semi-

norm:

||x|| = inf{ | A | : xE\A].

If in addition A is complete, then Ea is a Banach space [8, p. 190,

Lemma l]. It is obvious that the topology on Ea induced by the containing

space E is weaker than the topology of Ea.

Let (P¿),6/ be a family of locally convex spaces, E a vector space, («,),£/

a family of mappings of £,• into E such that the union of the images w,(£¿)

is E. The inductive limit topology on E is defined as the strongest of the locally

convex topologies on E for which the mappings w¿ are continuous. A funda-

mental set of neighborhoods of zero is obtained by taking all convex and

circled subsets F of E such that «j-l(F) is a neighborhood of zero on £,-, for

all iEL

It is always possible to restrict this general definition of inductive limit

topology to the case where the spaces £,• are subspaces of E the union of

which is E, the index set / is a directed set, and if £¿C£y the identity map-

ping from Ei into E¡ is continuous. It is obvious that if £,C£ the topology

of Ei is stronger than the induced topology of E.

It is easy to show that if the spaces P¿ are barrelled (resp. almost-barrelled,

resp. bornological) then E is barrelled (resp. almost-barrelled, resp. borno-

logical).

By a generalized (£$) -space we mean a locally convex separated space E

which is the inductive limit of a sequence (£,) of (ff)-spaces by linear mappings

Ui. We may always suppose that (£,•) is an increasing sequence of (ff)-spaces

contained in £ such that its union is £ and such that the identity mapping

from Ei into £,+i is continuous.

The definition of (£î)-space given by Dieudonné and Schwartz in [6]

corresponds to the special case in which the induced topology of £<+i on £,•

coincides with the topology of Ei. For such spaces, one may prove that £ in-

duces on Ei the topology of £,■; if the spaces £,• are complete, it follows that

£ is complete and every bounded subset of £ is contained and bounded in

some Ei. These conclusions are not known for generalized (£$)-spaces. In

§11, however, we shall consider a case in which these last two conclusions are

verified for a generalized (£7)-space which is not an (£fF)-space in the sense

of [6].



428 J. BARROS NETO [September

2. Topological tensor products (Grothendieck [7], Schwartz [12]).

Let E and F be two locally convex separated spaces and let E®F be

the tensor product of these spaces. It is always possible to define on E®F

various topologies which agree with the vector space structure on E®F. We

are interested in only two of these, namely, the 7r-topology and the «-topology

whose principal properties we give, briefly, below.

There is a unique locally convex separated topology on E®F such that

for every locally convex space G, the space L(E®F, G) oí all continuous

linear mappings from E®F into G, coincides with the space B(E, F; G) of

continuous bilinear mappings from EX F into G. In this identification, to an

equicontinuous subset of L(E®F, G) there corresponds an equicontinuous

subset of B(E, F; G) and conversely. In particular, the dual space of E®F

coincides with B(E, F), the space of all bilinear continuous functionals on

EXF. We denote by ir this topology, by E®TF the space E®F with the

7T-topology and by E®TF its completion. A fundamental system of neighbor-

hoods of zero in the ir-topology is obtained by taking the circled convex hulls,

T(U®V), of U® V, where U (resp. F) runs through a fundamental system

of neighborhoods of zero in E (resp. F). The x-topology is the strongest one

on E®F for which the canonical mapping (x, y)EEXF—>x®yEE®F is

continuous.

Let $$(Ei, F¡) be the space of bilinear functionals continuous in each

variable separately on E't XF¡. This space coincides with the space L(F¡, Ei)

of linear continuous mappings from Fi into E, and also with the space

L(Ei, Fs). Let us denote by E, (resp. E't) the space E (resp. E') with the

Mackey topology t(E, E') (resp. t(E', E)) of uniform convergence on the

convex circled weakly compact sets of E' (resp. E). It is well known that

L(F', , Ei) coincides with the space L(F[, E) of linear continuous mappings

from Fl into E [8, p. 151, Corollary 2]. In addition, if $ee(E¡, Fi) denotes

33(£/, Fi) with the topology of the uniform convergence on the product of

all equicontinuous sets of E' by all equicontinuous sets of F' and if Le(F't , E)

denotes L(Fl, E) with the topology of the uniform convergence on the equi-

continuous sets of F', then we have the identities:

».(£,', F¡) = L.(Fl, E) = Le(El, F).

It is easy to see that E®F can be identified to a subspace of $8(Ei , Fi).

Wedenote by E®tF the space E® F with the induced topology of ^8e(Ei, Fi)

and by E®,F its completion. When E and F are complete spaces, then

Sc(£,', Fi) is complete; hence, E®fF may be considered as a subspace of the

preceding one. The canonical bilinear mapping (x, y)^>x®y from EXF into

E®tF is continuous, which proves that the 7r-topology is stronger than the

e-topology. These two topologies do not coincide in general.

A separated locally convex space E is said to be nuclear if E®CF = E®TF

lor all separated locally convex spaces F. The spaces £>(F), £(F), £'(F) and
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£)'(F) of the infinitely differentiable functions with compact support, in-

finitely differentiable functions, distributions with compact support and dis-

tributions, respectively, on a differentiable manifold F are nuclear [7,

Chapter 2, §2, No. 3, Theorem 10]. If F is a complex manifold, the

space 3C(F) of holomorphic functions on F is nuclear [7, Chapter 2, §2,

Theorem 10, corollary].

If £ is a separated locally convex space, let us denote by £/ the dual

space of £ with the topology of the uniform convergence on the compact

sets of £. El is stronger than £/, and weaker than £/ ; hence the dual space

of £c' is £. It is well known that P(PC', £) can be identified with the linear

subspace of P(P,', £s) (hence of P(P/, £)) of all continuous mappings from

FI into £, which transform the equicontinuous sets of F' into relatively com-

pact sets of £ [12, exposé 8, Proposition 4].

On the other hand, E®F can be identified to the subspace of L(P«', £)

of linear continuous mappings from P/ into £ of finite range and then

E®tF will be a subspace of P<,(PC', £). If £ and P are complete, Pe(Pc', £)

is complete [12, exposé 8, Proposition 5]; hence, E®,F can be identified

with a linear subspace of Pe(Pc', £). It is obvious that E®(F coincides with

Le(Pc', £) if and only if E®F is dense in LtiFl, £).

We say that a separated locally convex space P verifies the approximation

property if the subspace E®E' of £(£, £) of mappings with finite-dimen-

sional range is dense in £(£, £) with respect to the topology of the uniform

convergence on the convex compact sets of £. A separated locally convex

space £ verifies the approximation property if and only if, for every locally

convex space P, E®F is dense in L,iF¡¡, E) [12, exposé 14, Theorem 2]. If

£ and P are complete and if £ verifies the approximation property, then

£è.P = P.(Pc,,£).

The spaces 2)(F), S(F), 8'(F), S)'(F) and 3C(F) verify the approximation

property.

If £ is a complete separated locally convex space, the space 6(F, £) of

infinitely differentiable functions defined on F with values on £ with the

topology of the uniform convergence on compact subsets of the function and

all its derivatives can be identified with S(F)(g>T£ [7, Chapter II, p. 81,

example l]. Since 8(F) is nuclear (hence verifies the approximation property

[12, exposé 17, Proposition 4]) we have:

8(F, E) = 8(F) ®E = L.(El, 8(F)).

In particular, if E = Z(W) we have:

8(F X W) = 8(7, 8(W0) = 8(F) ® 8(IF) = LS(8'(IF), 8(F)).

In the same way

3C(F X IF) = 3C(F, KiW)) = 3C(F) ® 3C(TF) = L.(3C'(IF), 3C(F)).
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In §11 we discuss an analogous situation for the spaces of analytic func-

tions on compact subsets of a real analytic manifold.

3. Distribution kernels. Let F be an w-dimensional orientable differenti-

able manifold, IF another such manifold of dimension m. Let D(FXIF) and

£( FX W) he, respectively, the corresponding spaces of infinitely differentiable

functions on FX1F; let S)'(VXW) and S'(FXlF) be the space of distribu-

tions and of distributions with compact support. We use the topologies on

these spaces defined by L. Schwartz in [l0]. We remark that, since there

exists on F an infinitely differentiable «-form o>, different from zero, the

mapping /£8(F)—►/•«ESD'(F) gives an imbedding of £(F) into SD'(F), two

of such imbeddings being isomorphic. (If F is an analytic manifold, w may

be chosen analytic by the imbedding theorem of Morrey and Grauert and the

family of analytic distributions is also uniquely defined.)

Definition 1. The elements of £>'(VXW) will be called distribution kernels

or kernels on FXIF.

To a given distribution kernel KXfV there corresponds: (1) a linear con-

tinuous map Lr from SD(IF) into S)'(F) defined by

(LK(g),f)= (Kx.y,f(x)®g(y))

for all/GD(F) and all gE%>(W); (2) a linear continuous map lLK from SD(F)

into 2D'(IF) (the transpose of the preceding one) defined by

('LK(f),g)= (Kx.y,f(x)®g(y))

for all fE ©(F) and all g G £>( IF).
We have remarked that SD'(F) is a nuclear space. Since it is complete we

have

3)'(F) ® S)'(W) = Le(T>(W), 3D'(F)).

To each kernel Kx,y there corresponds a one-to-one mapping

Kx,y E £>'(F X W) -+LkE ©'(F) ® &(W).

Thus £>'(VXW) can be identified with a subspace of £)'(V)®£)'(W).

The kernel theorem of L. Schwartz [13] asserts that every linear continu-

ous mapping from £>(W) into SD'(F) is defined by a unique kernel. In other

words S)'(VXW) can be identified algebraically and topologically with

S>'(V)®£>'(W).

Definition 2. A kernel Kx,y is called semi-regular in y if the mapping

Lr: 3)(IF)—>D'(F) can be extended to a linear continuous mapping from S'(IF)

into SD'(F).

It is easy to show that 2D'(F)®£(1F) is the subspace of the kernels which

are semi-regular in y.

Definition 3. A kernel Kx,y is called semi-regular in x if the mapping

LK: £>(W)-*5)'(V) maps £>(W) into 8(F).
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It follows by the closed graph theorem [8, p. 271, Theorem 2] that LK

is a continuous mapping from 2)(IF) into 8(F), for, LK being a continuous

mapping from £>(1F) into 2D'(F), its graph is closed in 3D(IF)XSD'(F) and, a

fortiori, in SD(IF)XS(F). The topological tensor product S(F)¿2D'(1F) is the

space of all the kernels which are semi-regular in x.

Definition 4. A kernel Kx,y is called regular if it is semi-regular in x and

in y.

The space of regular kernels coincides with the intersection of

&iV)®X>'iW) and &(V)è&(W),

which contains, obviously, the space S(FXIF)=S(F)®8(IF).

Definition 5. Suppose V=W. A kernel Kx,y is called very regular if:

(1) Kx,y is semi-regular in y;

(2) for each PGS'(F), Pk(P) is an infinitely differentiable function on

every open set of V on which T is infinitely differentiable.

The following theorem is well known [10, 2e edition, p. 139].

Theorem 1. A kernel Kx,y is very regular if and only if it is regular and

Kx,y is an infinitely differentiable function in the complement of the diagonal of

vxv.
In §111, we discuss the analogous problem for analytic kernels.

II. The space of real analytic functions defined on a
COMPACT SUBSET OF Rn

Let K be a compact subset of Rn, U an open neighborhood of K in Cn.

To each complex analytic function defined on U there corresponds a real

analytic function defined on the open neighborhood UC\Rn oí K and, con-

versely, each real analytic function defined on an open neighborhood of K

in Rn can be extended to a complex analytic function defined on an open

neighborhood of K in C".

Let us consider the family of vector spaces 3C( U) of complex analytic

functions defined on U, when U runs through all open neighborhoods of K

in Cn. We say that/£3C(i/) is equivalent to g£3C(F) if and only if/ coin-

cides with g on U(~\ V and we denote by ft(PJ) the vector space of the classes

of equivalent functions. The elements of ft(A) will be called analytic func-

tions on K and we denote by u the natural mappings of 3C(Î7) into ft(A).

We define on Ct(PJ) the inductive limit topology of the spaces 3C(i7) (we

suppose defined on 3C(£7) the topology of uniform convergence on compact

subsets of U) by the mappings u. It is easy to see that this topology can be

obtained by taking an increasing sequence of spaces 3C( U3) with the mappings

My, where (£7¿)/_i,j,... is a decreasing sequence of open neighborhoods of K

on Cn, such that, if U is an open neighborhood of K, there exists a j such that

UDUj.
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We can also suppose that each of the connected components of U¡ con-

tains at least a point of K and in this case the mapping u¡ will be one to one.

Finally, since K is compact, we can take the U¡ to be relatively compact open

sets of Cn. In this case the inclusion mapping v¡ from 3C(Z7y) into X(Ui+i) is

a compact mapping.

Let IFy be a zero neighborhood in 3C(t/y) such that fy(IFy) is a relatively

compact subset of 3C(i/y+i); let .4y+i be the convex circled closed hull of

Vj(Wi) and B1+i the vector subspace of X(Uj+i) spanned by ^4y+i. With the

norm defined by ^4y+i (see §1.1), .By+i will be a Banach subspace of 3C(i/y+i).

One can show easily that the topology of d(K) defined above coincides with

the inductive limit topology of B¡ by the mappings My.

An important property of d(K) proved by Köthe [9] is that d(K) is

complete. The following theorem, a particular case of a more general one

proved by Grothendieck [8, p. 268, Theorem l] gives a characterization of

the bounded subsets of Q(K).

Theorem 1. If A is a bounded subset of &(K), there exists an index k such

that A is contained in the image of X(Uk) by uk and ufl(A) is bounded in

X(Uk).

Proof. We may suppose without loss of generality that A is a complete

convex circled bounded set and then consider the Banach space Ea (see

§1.1). Let us denote by <p the identity mapping from EA into &(K).

If there exists a k such that EAEuk(3C(Uk)), then by the closed graph

theorem [8, p. 271, Theorem 2], <b which is a continuous mapping from Ea

into (x(K) will be a continuous mapping from Ea into uk(y¿(Uk)) with the

image topology defined by «». Hence A will be a bounded subset of uk(Vi(Uk)).

Thus, we have to prove that such a k exists. First of all, let

Ej = EAr\uj(5C(Ui)).

Since a(K) = Uy My(3C( U,)), it follows that EA = Uy £y and since Ea is a Banach

space, it follows that there exists an Ek which is of second category. Let, now,

G i = 1 (f, g)EEAX X(Ui):p(f) = Ui(g)}

and py be the projection of EaX'K.(UÍ) on EA; we have py(Gy) =£y. We know

that Gj and Ea are (i)-spaces. By the Banach homomorphism theorem, it

follows that if py(Gy) = £y is distinct from EA, then £y is of first category. But,

since for some k, Ek is of second category, then Ek must equal £¿ and Ea is

contained in uk(5C(Uk)).

Corollary. &(K) is a Montel space.

Proof. II A is a bounded subset in Ql(K), then by the preceding theorem,

there exists an index k such that ufl(A) is bounded in X,(Uk). Since 5C(Uk) is

a Montel space, then u¡rx(A) will be relatively compact, so A will be relatively

compact in d(K).
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Since &ÍK) is the inductive limit of a sequence of nuclear spaces, Ct(PC)

is itself a nuclear space [7, Chapter II, p. 48, Corollary l] and, hence, Ot(A')

verifies the approximation property. It follows from the remarks of §1.2

that if £ is a complete topological vector space, then

a(K) ® E= L.(Ei,a(K)).

If, in particular, £=rl(L), where L is a compact subset in £'", then the

topological tensor product tt(A) ® a(P), can be interpreted as a space of con-

tinuous linear mappings, more precisely, as Pe(et'(L), ß(A)).

Let K (resp. L) be a compact subset of Rn (resp. Rm) and Ct(AXP) be the

space of classes of complex analytic functions defined on open neighborhoods

of K X L in Cn X Cm with the inductive limit topology. Since 3C( U X V)

= 3C(C/)ê3C(F) (§1.2), the topology of (xiKXL) is the inductive limit topol-

ogy of 3C(l7)®X(F) by u®v, where u (resp. v) is the restriction mapping

from 3C(t/) (resp. 3C(F)) into 6LÍK) (resp. ffi(P)). As we have remarked, this

topology can be obtained by taking a sequence 3C(L7,)<2i3C(F,) of spaces and

the corresponding mappings u,®Vi, where (¡7¿X F,),_i,2,... is a fundamental

decreasing sequence of open neighborhoods of KXL in CnXCm.

It is easy to see that the tensor product ft(A) ® Ct(P) is a dense subspace,

of &ÍKXL). On CtíPT) ® a(L) we have defined two topologies: the ir-topology,

and the induced topology of ß(PJXP). We want to prove that these two

topologies coincide.

Theorem 2. On a(A)XCt(P) the ir-topology coincides with the inductive

limit topology of 3C([7,)(g)3C(F¿) by u{®Vi.

Proof. It suffices to show that the dual spaces of Ct(A)<g>a(L) with the

7T-topology and the inductive limit topology are the same with the same equi-

continuous sets. As we know (§1.2), the dual space of Ct(A)0,0(1.) is the

space BidiK), ft(P)) of all continuous bilinear functionals on a(A)XCt(P).

If M is an equicontinuous set of P(Ct(Pv), <2(L)), there exists, by definition, a

neighborhood W (resp. IF') of the origin in Ct(A) (resp. ß(7L)) such that

\u(f, g)\ gl for all fEW, gEW and uEM. But, for all i, u7l(W) (resp.
v^iW')) is a zero neighborhood in 3C(t/;) (resp. X(F<)). Then, we have:

\uiuiif), Viig))\ gl for all fEuTx(W), gEv~l(vV') and uEM, which means

that the set {uo (uí®v¡):uEM] is an equicontinuous set of linear func-

tionals on 3C(i/,)®3C(F,). Hence, M is an equicontinuous set of linear func-

tions with respect to the inductive limit topology of Ct(A) <g>a(L).

Let now M he an equicontinuous set of linear functionals on ft(A) ® (2(P)

in the inductive limit topology. Since this topology is also the inductive limit

topology of the spaces 3C(£/,)(§>3C(F,-) by the mappings Ui®v¡, for all ii, j)

the set {uo (uí®v,):uEM] is an equicontinuous set of linear forms on

3C(c7,)®3C(Fy). There exist IF¿ and Wj , respectively, zero neighborhoods in

KiUi) and 5C(Fy) such that |»(«,■(/), fy(f))| gl for all /GIF,-, gEWj and
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uEM. Let IF=r(UyMy(IFy)) and W = T(UjVj(Wj)) be, respectively, the

convex circled hulls of the union of images of W¡ and Wj by Uj and v¡. The

sets IF and IF' are zero neighborhoods in Q,(K) and d(L). Since fEW and

gEW' can be written as
p p

f = I] akujk(fjk), g = ¿Z ßkVlk(gik),
k=i k—i

where Y*-i |«*| =1 and £*-i \ßn\ ál, we have:

I «(/, s) I = £ I «* I I ft I I «(«/*(//*), »>«&•)) I = i

for all fEW, gEW and uEM, which proves that M is an equicontinuous

set of B(a(K), a(L)); q.e.d.
Let K he a compact subset of Rn and L be a compact subset of i?m; we

denote by Cfc(i£, <x(L)) the space of classes of complex analytic functions de-

fined on open neighborhoods of K on Cn, taking their values in Q(L), any

two such functions being identified if they coincide on a neighborhood of K.

We remark that if U is an open subset of C" and £ is a complex topological

vector space, then by a vector complex analytic function we mean a function

f defined on U, taking its values in £, which can be represented by a uni-

formly convergent power series in the neighborhood of each point of U.

Analogously, one can define the concept of a complex weakly analytic

function. This means a function/ defined on U, taking its values in £, such

that, for each e'EE', the complex-valued function fe<(z) = (f(z), e') is analytic

on U. It is well known that when £ is an almost-complete space these two

notions coincide.

For our later argument, it is useful to state the following lemma. Its proof

is standard and is left to the reader.

Lemma. Let E be a topological complex vector space and (apzp) be a sequence

of elements of £, where p= (pi, • • • , pn) is an n-tuple of nonnegative integers,

Zp = zvi1 • • • zl" with (zi, ■ ■ ■ , zn)EC" and ap = aPl...p„EE. Suppose that there

exists an n-tuple r = (ri, ■ ■ ■ , r„) of real numbers r¿>0 and a complete bounded

circled convex set A of E such that aprpEA for all p. Under these assumptions it

follows that the power series ^p apZ" is absolutely convergent in the Banach

space Ea, for all \z\ <rand uniformly convergent on all closed subsets of \z\ <r.

A fortiori, the series will be uniformly convergent in the topology of E, on all

closed subsets of \z\ <r.

Corollary. Let E be an almost-complete topological vector space and

y,„ apZp a power series with values in E. Suppose that there exists an n-tuple

ß=(ßi, • • • , ßi) of complex numbers, ßi9£0, such that the sequence (apßp) is

bounded in E. Then, if 0 <rt-< [ j8,-|, the power series ^2P <xp3p will be absolutely

and uniformly convergent in a suitable Banach space EaEE, for \z\ =>. A

fortiori, the series will be uniformly convergent in E,for \z\ =>.
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Proof. The closed circled convex hull A of iapßp) is bounded since, by

hypothesis, the sequence iapßp) is bounded. Since £ is almost-complete, A is

complete and we can apply the results of the lemma to the space Ea.

We now prove the following theorem.

Theorem 3. The space Ct(A", Ct(L)) can be identified with the space (L(KXL).

Proof. Let fE&iK, «(£)) and /G3C(l7, Ct(Z,)) be a representative of/de-

fined on the open neighborhood Uof K. If ZoEU we have

/(z) = 2 <*p(z - «o)*
p

where apE(x(L), the series being uniformly convergent for \z—Zo\ ûr. For

all z in this hyper-cylinder the sequence (aPiz—Zo)p) is bounded in Ct(L), so

that by Theorem 1, it follows that there exists an open neighborhood V oi L

in C" and representatives âpG3C(F) of ap such that the sequence (<7P(z —zo)p)

is bounded in 3C(F). By the corollary of the lemma, the power series

"^pâfiz—zo)p is uniformly convergent in 3C(F) for \z—zo\ gri<r. Since Zo

is a fixed but arbitrary point in U we conclude that to each /£û(rî, Ct(P))

there corresponds a function /of 3C(t7, 3C(F)) represented on a neighborhood

of a point zoG Í7 by the series

2 ä„(z - zo)p.
p

Since we know that 3C([7, 3C(F)) =3C(i/X F), this function / defines an ele-

ment of &ÍKXL). We obtain in this manner a mapping from &ÍK, Ct(P))

into GiiKXL) and it is easy to see that this mapping is one-to-one and onto;

q.e.d.

Summing up our results, we can write the following identifications be-

tween the spaces of analytic functions:

aiK XL) = aiK, aiL)) = aiK) ® a(z) = z.(a'(P), aiK)),

which state for these spaces the same properties as for the spaces of infinitely

differentiable functions.

The result of this section can be extended to the spaces of real analytic

functions defined on compact subsets of a real analytic manifold by using the

notion of complexification of a real analytic manifold [5].

III. Analytic distribution kernels

Let F be a paracompact real analytic manifold of dimension n, K a com-

pact subset of F and (XiK) the vector space of analytic function with the

inductive limit topology described in the preceding section. Since &ÍK) is

contained in 8(A) and this last space can be identified with a subspace of

2D'(F) (§1.3), Ct(A) itself can be considered as a space of distributions on F.

The elements of 3D'(FXF) will be called, as in §1.3, distribution kernels.
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We want to define and study properties of analytic kernels like those of the

very regular kernels.

Definition 1. A kernel Kx,y is called analytic in x (resp. y) if the following

two conditions are verified: (1) KXiV is semi-regular in y (resp. x); (2) for all

TE&'(V), Lk(T) (resp. 'Lk(T)) is an analytic function on every open subset

of V, on which the distribution T is an analytic function.

Definition 2. A kernel Kx.y is called analytic if it is analytic in x and in y.

Theorem l.IfKx,y is an analytic kernelinx (resp. y) then Kx,yE<x(A) ®&(B)

(resp. Kx,yE&(A)®(L(B)) for all disjoint compact subsets A and B of V.

Proof. Suppose Kx,y an analytic kernel in x, A and B two disjoint com-

pact subsets of F. If TE&'(B), then from condition (2) of Definition 1 we

have that LK(T)E&(A). Since Kx¡y is a semi-regular kernel in y, LK will be

a continuous map from 8'(P) into Q(A) with the induced topology of 3D'(F).

It follows that the graph of LK in 8'(B) X Q,(A) will be closed. But &'(B) is a

bornological space [8, p. 320, Corollary 3] and it is a complete space [8,

p. 207, Exercise 7]. We may, then, apply the closed graph theorem stated

by Grothendieck [8, p. 271, Theorem 2] and conclude that Lr is a continuous

linear map from &'(B) into &(A), which means by the remarks of §1.2 that

Kx,yEQ>(A)®&(B). An analogous proof can be carried through when Kx,y is

an analytic kernel in y and we conclude in this case that Kx, yE&(A) ® Q(B).

Corollary. 7/ Kx,y is an analytic kernel, then KXtV is a very regular kernel.

Proof. Since Kx,y is a regular kernel, all we have to prove is that Kx,„ is

an infinitely differentiable function in the complement of the diagonal of

FX F (§1.3, Theorem 1). With the same argument as in the preceding theo-

rem we can prove that Lr is a continuous linear map from &'(B) into 8(^4),

in other words that Kx,yE&(A)®&(B) =&(A XB).

Kx,y being an analytic kernel, we remark that, if x0, yoGF, Xo^yo, it

follows from Theorem 1 that Lk(8(VI¡)) =KX:Vo is an analytic function in xo

and, also, that KXo,y is an analytic function in yo. We conclude from this fact

that Kx,y is an analytic function in each variable separately, outside the

diagonal of FX F. We have, in fact, the following more precise result.

Theorem 2 [2]. If Kx,y is an analytic kernel, then KXiV is an analytic

function outside the diagonal of FX F.

Proof. Since KX,VE [a(A)®&(B)]r\[&(B)®a(A)] lor all disjoint com-

pact subsets of F, and since a(A)®&(B) =&(B, &(A)) and &(A)®a(B)

= &(A, a(B)) (§1.2), the sets M={K.,y:yEB] and N={Kx,.:xEA] are
bounded sets in &(A) and &(B), respectively, because A and B are compact.

There exist, by Theorem 1 of §11, two open neighborhoods Ui and i/2 of A

and B, respectively, in a fixed complexification of F, such that the functions
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of M and N can be extended to complex analytic functions on Ui and £/2, and

the sets so obtained are bounded in 3C(t/i) and 3C(Í72), respectively. There

exists, then, a positive constant C such that | Kz,y\ g C for all zE Ui and yEB

and | Kx,„\ g C for all xEA and wE U2.

Under these conditions, Browder [4] has shown that Kx,y is an analytic

function in both variables. (Essentially, this result states that [aG4)¿>8(P)]

r\[&(A)®G(B)]-a(AXB)).
We give now a partial converse of Theorem 1 of Section I.

Theorem 3. Let Kx,y be a kernel verifying the following conditions: (1) Kx,y

is semi-regular in y (resp. x) ; (2) for all disjoint compact subsets A and B of

V, Kx,vE<xiA)®&iB) iresp. Kx,yE&iA)®aiB)); (3) if gG3)(F), LK(g)
(resp. lLKÍg)) is an analytic function on every open subset of V, where g is

analytic.

Then Kx,y is an analytic kernel in x (resp. y).

Proof. Suppose KXtV is a kernel, semi-regular in y and verifying the analytic

conditions (2) and (3) of the theorem in the x variable. We have to prove

condition (2) of Definition 1. Let P£8'(F) be analytic on an open subset 0

of F; w a relatively compact open subset of 0 such that ¿CO and aE2D(0)

equal to 1 on an open neighborhood IF of ¿>. We have

T = aT+ (1 - a)T.

Since aT is an infinitely differentiable function with compact support,

which is analytic in w, it follows from (3) that LKiaT) is analytic in o>. On

the other hand, (1— a)T is a distribution with compact support k contained

in the intersection of the support of T with the complement of IF; hence k is

disjoint of w. Let us set A = ü and B = k. By condition (2), above, we

have Kx,yE<x(A)®&iB). It follows, then, that LKiil-a)T)E(x(A), hence

it is analytic in co. We conclude that Pk(P) is analytic in co. Since w is an

arbitrary but relatively compact subset of 0, Pk(P) is analytic in 0. The

same proof holds when Kx,y is a kernel, semi-regular in x and verifying the

analytic conditions above in the y variable.

Corollary. Let Kx,y be a kernel satisfying the following three conditions:

(1) Kx,y is regular;

(2) Kx,y is an analytic function on the complement of the diagonal on VX V;

(3) if g€E 2)(F), then Lx(g) and 'Lnig) are analytic functions on every open

subset on which g is analytic.

Then Kx,v is an analytic kernel.

The corollary establishes in the analytic case, the analogue of the suffi-

cient condition of Theorem 1 in §1. We remark that, to obtain this parallel

conclusion, we need to impose another condition, namely condition (3),

which in the infinitely differentiable case is contained in the assumption of
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regularity of the kernel. The following example shows that condition (3) is

essential.

Suppose V=Rn and take Ix,y to be the kernel

</..»*(*, y)>= f Ht,t)dt

for all $G£>(£nX£"). Ix,y represents the unit mass on the diagonal. Since

its support is contained in the diagonal, Ix,y can be identified to the zero func-

tion off the diagonal. Let a(x) be an infinitely differentiable function defined

on Rn and let Kx,y = a(x)Ix,y be the kernel defined by

(Kx,y,$(x,y))=  j    a(x)$(x,x)dx
J R"

for all $E£>(R"XRn). We have, obviously, LK(g) =a-g for all gG£>(£") and

we see that condition (3) does not hold if a is not analytic.
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