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1. Introduction. In this paper we consider the problem of solving the

Cauchy problem for the partial differential equation

d2u      d2w du du
(1.1)    Lu = K(y) — + —- + a(x, y) — + b(x, y) — + c(x, y)u = f(x, y)

ox'      dy' dx by

by finite difference methods. We assume that K is a monotone increasing func-

tion of y with K(0) =0. For y <0, the equation (1.1) is hyperbolic, with char-

acteristics given by the two families

(1.2a) dy/dx = (-K)-1'2,

(1.2b) dy/dx= - (-.fiT)-1'2.

Let A and B be two points on the x-axis with xA<xB. We denote by D

the open domain bounded by the segment AB of the x-axis, the character-

istic I\ of the family (1.2b) passing through A, and by the characteristic r2

of the family (1.2a) passing through B. We assume that K is of class CZ(D),

a and b are of class Cl(D) and c is of class C(D). The Cauchy problem which

we investigate is that of finding a solution of (1.1) in D which satisfies the

initial conditions

du
(1.3) u(x, 0) = Pi(x),       — (x, 0) = Pi(x),

dy

on the parabolic segment AB.

An approximation U to the solution u of (1.1) is found as the solution

to an initial value problem for a difference equation on a mesh region depend-

ing on the original domain D. If u exists and belongs to class C2(D) and if the

solution of the difference equation satisfies a maximum principle for all

sufficiently small mesh widths, it is shown that U tends uniformly to u as

the mesh size tends to zero. As in the author's [l ] investigation of the Tricomi

problem, it is found that the conditions for a differential-equation maximum

principle, as found by Weinberger [2] and Protter [3], imply the conditions

Received by the editors February 8, 1961.

(') This paper is part of a doctoral dissertation presented at the University of California,

Berkeley. The author is indebted to his thesis director, Professor M. H. Protter, for his valuable

advice and encouragement.

395



396 HAJIMU OGAWA [September

for a difference-equation maximum principle, except near the x-axis where

additional conditions are required.

2. The difference problem. We write the characteristics of (1.1) in the

form

(2.1) x - xo= ± G(y)

where

(2.2) Giy) =  f°[-Kir,)]^dr, y gO.

Let —H(x) he the inverse function to Giy). Then the relation between iiand

K is given by

(2.3) H'ix) = [-Kiy)]-^

at each point (x, y) of the curve y= —H(x). Thus H has four continuous de-

rivatives and i7(x)>0, iP(x)>0 and H"ix) <0 for 0<xg(xB-x^)/2.

We divide the segment AB into N equal parts, each of length h and

through each of the points xk = xA+kh (fe=l, 2, • ■ ■ , N—l) on AB we

draw both characteristics. These characteristics, together with the character-

istics Ti and T2, intersect at the points

(2.4) (xk + — ,   -y\ ; k = 0,l, ■■■ ,N -n;n =1,2, ■■■ ,N,

with the ordinates satisfying

nh
Gi-yn) = — ; n = 1, 2, • • • , N.

Let us denote by Dh the set of points given by (2.4) together with the points

Xk (k=l, 2, • • • , N—l) on AB. If we take yo = 0, and associate with each

point (xk-\-nh/2, —yn) the pair (k, n) we see that each point of Z7ft may be

uniquely represented by a pair of integers. We take as the boundary i\ of

Dh the points in the top two rows of Dh; that is, Th consists of the points

ik, 0) for ¿ = 1,2, • • • , A-land (k, 1) for k = 0, 1, • • • , N-1. The interior
region Dh is the set of points of Dh which do not belong to the boundary IV

At each point ik, n) of Dh we define a difference operator Lh, operating

on any function U defined on Dh, by

1       /       2Xn 2X„_! \
LhUk.n = -( - Uk+l,n-i H-Uk,n —   U/c,n-l —  Uk+l,n-l J

Xn-lXn \Xn-l + Xn A„-l + An /

1 1
(2.5) + ak,n —• (£7fc+i.»-i — Uk,n-i) + bk,n-—— (Uk+i,n-i — Uk,n)

h Xn-l + Xn

+ Ck,nUk,n,
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where X» = y„—y„_i and £/*,„= U(xk+nh/2, —yn), ak,n = a(xk+nh/2, — y„),

etc. The difference problem corresponding to the Cauchy problem is that of

finding a solution to

(2.6) LhU=f

on Dh, which takes on the initial values

Uk,o = Pi(xk); k = 1, 2, • • ■ ,N - 1,

Uk,i = pi(xk) - yip2(xk);        k = 0, 1, • •• , N - 1.

Theorem 2.1. Let u be of class C2(D). Then at each point of Dn, Lhu^>Lu

uniformly as h—>0.

Proof. By Taylor's theorem, we find that at a point (x, — y„) of Dh,

d2u\
Lu — LhU\  = \K( — y„) +

4X„_1Xn dx2

(2.8)

+ ( 1 H-— ) «s +  I a |e4 + I b I e6

h2 h
H-«i -\-a

4X„_iXJl 2A„_i

\        Xn_i/ '

Here the functions denote values at (x, — y„). The quantities ei, e2, 63, e4 and e5

are the moduli of continuity of d2u/dx2, d2u/dxdy, d2u/dy2, du/dx and du/dy,

respectively.

From estimates obtained in [l ], we see that each term on the right side of

(2.8) tends to zero uniformly as h—>0.

3. A maximum principle. We denote difference quotients by subscripts,

with unbarred subscripts indicating forward difference quotients and barred

subscripts indicating backward difference quotients, as follows:

1 1
Uxk,„   =   ~T (Uk+l,n  ~~   Uk.n), ^**,»  =  ~T (Uk.n —   Uk-l,n),

h h

1 1
Uvk.n  —  :-"TT- (Uh+l.n-1 —   Uk.n), USk„  =-——- (Uk.n —   i/fc-l.ti+a) ,

X»-l + A„ Xn+l + An+2

1 1
U>u,n   =   -  (Uk+l,n—l   —   Uk.n), Uitn   =   - (Uk,n  ~   Uk-\,n+i),

Xn X„+l

1 1
Utk,n   =   — (Uk.n-1  -   Uk,n), Ulk.n   =   -  (Uk,n  -   Uk.n+i).

X„ X„+l

In terms of difference quotients, (2.5) becomes

1
,,    . LhUk,„ = -        —— (UShn_, — U¡k¡n + Utk+ln^ — ItkJ
(3.1; A„_i + a„

+  ak,nUXk.n_,  +  bk,vUykn  +  Ck.nUk,n.
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Let ik, n) be any point of Dh, and consider the sum

(3.2) HiXj-i + ^LhUij,
Th

where P« is the set of points of Dh which lie in the closed region bounded by

the characteristics passing through ik, n) and the line y= — y2. Substituting

the expression (3.1) into (3.2) we find that the contribution of the terms in

U, and Ut is given by

2 (u¡m+ilt + utkHj - Ê (cw,-., + uHii).
•-i y=2

The second of the above sums, in turn, may be written

È (#.*.-,., + Ut„) - - Z (- - -—) (uk+n-}J + uk,,)
y-2 j—1 \Xy        X,+i /

+ — iUk+n-i,i + Uk,i)-Uk,n.
Xi Xn

In (3.2), the sum involving 77x is first taken over the points in P„ for which

y= —ym. For each m with m = 2, 3, ■ ■ ■ , n, these sums are of the form

n—m

(Xm-1 + Am) ¿_i ah+i,mUXk+im_1  =   —   (Xm_i + Xm)

• \   ¿_l atk+, mUk+i,m-l   —   ~~~ ak+n-m,mUk+n-m+i,m—i H-ak,mUk,m—i > .

We thus have

£ (X,-i + \j)OijUmiJ_, =  -  £ (Xi + Ay+iK^.^t/i.y

1    n-l

+ T ^ (A>' "T" Vfl)(afc+n-y-l,j+l£^M-n-;..í  —   ak,j+lUk,,),
h  y_i

where Pa is the set of points of Dh which lie in the closed region bounded by

the characteristics passing through (k-\-l, n — 2) and the line y= —yi. Sim-

ilarly, summing the terms involving Uv, we find that

£ (Ay-i + \)bijUyi,j = - 23 (Xy+i + Xy+2)ôj<,/c7i,J-
Th Th'

n-l n-l

—   2-( (bk+n-j.jUlc+n-jJ + bkjU/cj)  +  ¿_i ¿*+«-l,2?/*+»■ 0
y=i <-i

n-2

+ ¿_, ¿*+i,li7*+».l + Ö*+„_i,ii/*+n-).l + bk,iUkíi — bk,nUk,n.
í-1
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Substituting these expressions into (3.2), we obtain

X (Xy-i + Xy)Lfci7,-,;- = /J {(X/-i + ^j)ci,i — (\i + XJ+i)aiiij+1

- (Xi+i + Xj+i^JU,

»-W1       1      x,- + xm )
t ¿^ \-        -       r ■       :        ak+n-j-i,i+i — ok+n-j,i> Uk+n-j,j

y-i tXy       Ay+i n )

.  v/1        1       X' + Xj+1 a   lr;+ ¿^ )--:-:-ak,i+i - bk,j> Utj
y=l \\j        Aj+i It )

n—1

+  Z^l   (X;-l + ^l)(Ck+n~j,iUk+n-i,i + Ck.jUk.j)

(3.3)

J = 2

n-1

+ 2_) (Usk+i,„ + Utk+ii0 + bk+i-i,iUk+i,o)
¿-i

n-2 /  1 \

+    ¿-I   (bk+i,l    —   ̂ lCk+i,l)Uk+i,l   —    Í-6i;+„_lTlJ   t/fc+n_l.l
¿=1 \Xi /

— (-bkfiJ Uk,i + \-¿>*,n + (X„_i + \n)ck,n> Ukn.

In the first sum on the right side of (3.3), we take Xo = 0.

For convenience, let us define the sets D{ and D* by

Di =Dhr\D,        Dh* = {(x, -yn) EDh\n=l,2,---,N-l\.

Theorem 3.1. Let LnU^0 on Dh with

(3.4) Uk.o Ú 0,        U.tit = 0,        ?7iM ̂  0; k = 1, 2, ■ ■ ■ , N - I.

Assume that the conditions

(3.5) ck.n = 0 on Dh*,

(3.6) bk,i = 0, k = 0,1, ■ ■ ■ ,N - 1.

(3.7) 8k.i-Xia.ia0, k = 1, 2, • ■ • ,N- 2.

(3.8) lAi- 8Mê0, fe = 0, 1, • • -,N- 1,

(3.9) 2/X» - bk.n + (Xn-i + X„)a.» > 0 on Dh,

(3.10) 1/X„ - l/Xn+i + (X, + \n+i)ak-i,n+i/h - bk.n Ú 0 on Dh*,

(3.11) 1/A„ - l/Xn+i - (Xn + X„+i)a*,B+i/Â - 6i,B = 0 on Dh*,

(3.12) (X„_i + \n)ck,n — (X„ + X,l+i)aifcn+1 — (X„+i + X„+2)ôyiin ̂  0 on D{ ,

are satisfied. Then the maximum of U is attained on the boundary r„.

Proof. Let us denote the maximum value of U on I\ by M. Then M^0
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by (3.4). Suppose that the maximum is not attained on the boundary. Then

it must be attained at some point Q in the interior Dh. If UiQ) > 0, then there

is a point P in Dh such that UiP) >0 and £/g0 at every point in Dh above P.

Solving for Uk,n= UiP) in Í3.3) we find that by the hypotheses of the theo-

rem, UiP) gO, which contradicts the assumption that f/(P) >0. If UiQ) gO,

then we consider the function Ui=U— M, which satisfies L*£7ig0 and the

conditions (3.4). Furthermore, UiiQ)>0 by hypothesis. Hence there is a

point P in Dh such that £/i(P) > 0 and Z7i g 0 at every point in Dh above P.

Again, the hypotheses of the theorem lead us to the contradictory result,

i/i(P) gO. Therefore the maximum of U must be attained on the boundary.

We next find, in terms of the coefficients of the differential equation (1.1),

sufficient conditions for (3.5) through (3.12) to be satisfied. First of all, it is

clear that if

(3.13) c g 0 on D,

(3.14) b < 0 if -5 g y g 0 on D for some 5 > 0,

then the conditions (3.5) through (3.9) are satisfied for all h sufficiently small.

Theorem 3.2. Suppose that

d   r
(3.15) — [i-K)1'2] ± a - bi-Ky2 < 0

dy

for y<0 on D, and

(3.16) ya(x, y)[-A(y)]1'2-+0 as y-*0

uniformly on D. Let the function H', defined by (2.3), have the form

(3.17) H'ix) = x'"Hix)

near x = 0, where 0<a<l and B is a function having three continuous deriva-

tives with Hix)^m>0 for x^O. Then the conditions (3.10) and (3.11) are

satisfied for h sufficiently small.

We omit the proof, which is the same as the proof of Theorem 3.5 of [l].

Theorem 3.3. Let

da      db
(3.18) c-<0

dx     dy

on D. Then for each 5>0, the condition (3.12) is satisfied for h sufficiently small,

provided yn ̂  S.

Proof. Since a and b are assumed to be continuously differentiable on D,

the difference quotients ax and by tend uniformly to da/dx and db/dy as h—>0.

But for y»^S,
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Xn + Xn+1 Xn+1 + Xn+2
-> 1   and-» 1
X„_i + Xn Xn-1 + X„

as Ä—>0. This implies that the left side of (3.12) divided by X„_i-r-X„ can be

made uniformly close to the left side of (3.18) for h small, provided yn^S.

We note that the conditions (3.13), (3.14), (3.15) and (3.18) are essen-

tially the conditions, obtained by Weinberger [2] and Protter [3], under

which the differential equation has the maximum property. It is also of inter-

est to observe that the restriction (3.16) is precisely the condition which

Protter [4] found guarantees the solvability of the Cauchy problem for the

differential equation (1.1).

4. The existence of the solution to the difference equation.

Theorem 4.1. Let the conditions (3.5) through (3.12) be satisfied. Then the

difference equation (2.6) with initial conditions (2.7) has a unique solution for

arbitrary values of f, pi and p2.

Proof. The system (2.6) and (2.7) is a system of P linear algebraic equa-

tions in the P unknown values of U on Dh. We first consider a solution F of

the homogeneous system which results when we set f=pi=p2=0. For this

system, the hypotheses of Theorem 3.1 are satisfied by both the functions F

and —V. Therefore the maximum principle implies that F=0 on Dh. But

this means that for arbitrary values of/, pi and pi, the system has a unique

solution.

5. A priori bounds.

Theorem 5.1. Let the conditions (3.5) through (3.12) be satisfied for h

sufficiently small. Let U be any function defined on Dh and let

N = max]    max   (| Uk,o\ , | U-ttQ\ , | £/iM| ), max | LhU
Ug*âAT-l "h

Y = max | y \ .
D

Then for h sufficiently small,

(5.1) | U\   g Ne»Y

on Dh, for some fixed p>0.

Proof. Choose p so large that ju = l> and on D

M»-2|i|/i-4|c|   fc 1.

We now define a mesh function E(y) on £>„ by

£(0) = 1,        Ei-yn) = (1 + MAn)£(-yn-i).

Then E(y) ^ 1 and
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E(-yi) - ft (1 + MXy) = exp( ¿MXy) = **.
y-i \ y=i      /

It is easily seen that E-Sk0 = E¡k0 = — píí — 1. Finally,

I   2Xn_i              /          Xn_iX;l      \
LhE(-yn) = <--—— /x2 - ( 1 +-—— u ) bk.„ß

tXn_l + Xn \ Xn-1 + Xn      /

+ (1 + (iK)(l + MX„_i)a,»> E( - y»_2).

If we now choose h so small that pX,i= 1, we have

LhE(-yn) > m2 - 2 | b\p - 4\c\   =1.

We now consider the functions

F = U - NE,

W = - U - NE.

From the definition of N and E it is easily seen that both F and IF satisfy

the hypotheses of Theorem 3.1. Therefore, the maxima of F and IF are at-

tained on the boundary. Since F = 0 and IF g 0 on the boundary, the bound

(5.1) holds for U.
6. The convergence theorem.

Theorem 6.1. Suppose that the differential equation (1.1) has a solution u

satisfying the initial conditions (1.3), such that u is of class C2(D). Assume that

the conditions (3.5) through (3.12) are satisfied for h sufficiently small. Then the

solution of the difference equation (2.6) with initial conditions (2.7) tends uni-

formly to u as h—>0.

Proof. Given e>0, by Theorem 2.1 we may choose ho>0 so small that

for 0<h^h0,

I Lu — LhU |   < ee~ßY,

where p and Y are as defined in Theorem 5.1. But since Lu = LhU=f on Dh,

this estimate may be written

| Lh(U - u) |   < te-»Y.

Furthermore,

Uk.o = Uk.o = Pk(xk),

hi h    \ ( h\

h        / h    \ / h\
U-h.0 = — Pi [Xk + - 02 j + Pi \Xk + yj ,
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with O<0i<l, O<02<1. On the other hand,

h   du ( h \     du / h \

*" = 2ji TxVk - 7 ai> V + d-yVk - 1'  -ßiyi)>

h   du ( h \      du ( h \

Mi- = - iy7 Tx\Xk + 7a2' V + Yy\Xk + 7'ß2yi)'

for some numbers ai, a2, ßi, ß2 between 0 and 1. Therefore we see that

Iff«..-«Cm I   <^r,

I  ff«*.o - ««*.. I    < «-xy,

for 0<AgAi. Applying Theorem 5.1 to the function   U—u, we find that

| U—u\ <é on Dh, if A g min (ho, h).
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