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Introduction. Consider the following general problem: Let P be a func-

tion-theoretic property which holds at the points of a (local or global)

Euclidean space En and which can be stated, formally, for points of a Rie-

mannian space R„. Find a statement Q which is an intrinsic (geometric)

property of P„ such that P implies Q and Q implies P. Conversely, given Q,

one may look for P.

In this paper we solve particular problems of the above type. We take

for Q the statements that P„ (which is always assumed to have a positive

definite metric) is an Einstein space, an harmonic space (to be defined in §3)

with a particular fundamental solution, and a space with constant curvature.

P then stands for various statements about the mean value of solutions of

certain equations. Denoting by M(u, x°, P) the mean value of u on the geo-

desic sphere with center x° and radius P we obtain the following results:

An Einstein space is characterized (in §1) by

d
(0.1)     M(u, x°, P) = «(x°)(l + O (R3)),      -M(u, x°, R) = u(x°)0(R2)

dR

for every w^O, Aw = 0 in a neighborhood of any of its points x°, where A is

the Laplace-Beltrami operator. Its scalar curvature p is determined (in §2)

by (2.28) which holds for any u¿¿0, Aut*0, A2m = 0 in a neighborhood of any

of its points x°.

The characterization of an harmonic space by

(0.2) M(u,x°,R) = u(x°)

for every solution u of Am = 0 in a neighborhood of any of its points x° was

already proved by Willmore [13 ]. The fundamental solution d>(r) of an har-

monic space is determined (in §3) by a function A(r) via the equation (3.4),

whereas A (R) is characterized by the mean value formula

(0.3) M(u, x°, P) = u(x°) + A(R)Au(x°)

which holds for every solution u of A2m = 0 in a neighborhood of any point x°.

A space of constant curvature K is characterized (in §4) by (0.3) with

A(R) defined by
rRrsm(RK1ii)l''-1

^_A'(R) - /. b^rJ *■  ^<0) - °-
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In §5 we discuss the characterization of Einstein metrics by means of

mean value theorems with regard to solutions of Au+\u = 0 (X constant)

and also with regard to the set of eigenfunctions of A. Analogous results are

derived in §6 for harmonic metrics.

General assumptiofis and notations. All the spaces are assumed to have a

positive definite metric. The metric tensors are assumed to be sufficiently

smooth. The dimension n is taken to be ^3; all the results however can easily

be extended to the case w = 2. We denote by P„ a Riemannian space, by A»

an Einstein space, by Hn an harmonic space and by Kn a space of constant

curvature. All the considerations of this paper are local.

1. Characterization of Einstein spaces. Let (g,-,) be the metric tensor of

P„. The Laplace-Beltrami operator is defined by

1     d   ( du\
Au = g^2 !x~\gl'Yi Tx~i) = t%ii    {g = det(**y))

where "comma" denotes covariant differentiation. Let x° be a fixed point in

P„ and let r denote the geodesic distance from x° to a variable point x in

P„. Since our considerations are local, we shall assume, for simplicity,

throughout this paper, that r exists for all x°, x in P„. We say that P„ is

Einsteinian at x° if

where P,j- is the Ricci tensor and A is a constant.

Lemma 1. Pn is Einsteinian at x° if and only if

n- 1
(1.1) Ar = -+ ßr + F

r

where ß is a constant and F = 0(r2) as r—»0.

Remark. The lemma and the proof are valid also when the metric of P„

is indefinite.

Proof (2). Let ©* be the unit vector at x° tangent to the geodesic which con-

nects x° to x. Then

(1.2) xl = ©iz-

are normal coordinates of x about x° as the origin. Let (g„) be the metric

tensor  in   the  x*  coordinates. Denoting  by   (g,-,-)o  the  value   of   (g,y)   at

x° ((g>j)o=(gij)o) we have [ll, p. 96]

(1.3) r2 = (gi^ox'x' = gijx'x'

and

(2) The author thanks the referee for suggesting the present proof which is somewhat

simpler than the author's original proof.
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(1.4) rr,i = (giA0x> = g,7xJ (r'* = ^)'

Hence,

(1.5) rr¡ = x*       (H-jWf.í).

Differentiating (1.5) covariantly we get

(rr),i = z5y + v\jX

where T^ are Christoffel's symbols with respect to (go).

Contracting i, j:

i i   if

(1.6) rAr + rfir  = n + r*,* .

Using r,,ri= 1 (which follows from (1.4), (1.3)), we get

(1.7) rAr = « - 1 + t'uX.

But

-) x + 0(rTki= (r*,)o+   -r)x +0(r)
\ dx' /o

and

dT<°*       1   „
-= — Rkj at x°
dx'        3

(which follows using the identity dr]m/dxk-\-dTimk/xh+dTch/dxm = 0 at x°; see

[4, p. 52]). Hence we obtain from (1.7)

»-1       1
(1.8) Ar =-h — (i?!7)o©f0'> + F,       F = 0(r2).

r 3

Using (1.8), the proof of the lemma follows easily.

Indeed, if P„ is Einsteinian at x° then

(1.9) (Py)o = KgiAo (A = const).

Since, by (1.2), (1.3),

(l.io) (*,7)oe<e> = i,

(1.1) follows with ß = A/3,
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Conversely, if (1.1) holds, then by (1.8)

j (Ra)&W = ß

for all ©* satisfying (1.10). Hence (1.9) follows with A = 3/3. This completes

the proof of the lemma.

Let ua (a= 1, ■ ■ • , n— 1) be local coordinates on the unit sphere. Then

r, ua form polar geodesic coordinates about x°, and we have

(1.11) ds2 = dr2 + yab(r, uc)duadub,

1     d /        dU\        1      d   / dU\
(1.12) AU =-1 71/2 — 1 H-( y11 V*— I,

71'2 dr\ dr/      y1'2  dW\ dub)

where 7=det(Y0&). Hence,

1    ÓV'2      d
(1.13) Ar - —-—= -(logT1'*).

y11*    dr        dr

The last two formulas will be needed later on.

Let Sr be the geodesic sphere r = R and denote its interior by Dr. The

mean value of a function u is defined by

(1.14) M(u, x°, R) =   f udo /   f do
J Sr I      J Sr

where da=yll2dul ■ ■ • dun~l is the surface element of area. For brevity we

also set

(1.15) M(R) = M(u, x°, R),       S(R) =   f da.
¿SR

Theorem 1. A necessary and sufficient condition that Rn be Einsteinian at

a point x° is that for every solution u of Au = 0 in some neighborhood Dru of x°

such that u^O in Dr ,

a
(1.16) M(u, x°, R) = u(x°)(l + 0(R3)),       -M(u, x°, R) = u(x°)0(R2)

dR

for P=P„, where 0(Rk) (A = 2, 3) is defined for R^RU and \0(Rk)\/Rk^A

where A is a constant independent of u, R, Ru.

Proof. Differentiating M(R)fsRdo-=fsRudcr and using (1.13) and fDsAudV

= fsR(du/dv)do-, where v is the outwardly directed normal to Sr, we obtain

(1.17) S(R)M'(R) + M(R)  f  ARdo --=   f  uARda +   f   AudV.
J SR J Sr J Dr
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This identity holds for each point x°£P„ and for any function u (it was used

by Willmore [13]).
Suppose now that Pn is Einsteinian at x°. Then, we can substitute Ar from

(1.1) into (1.17). Using also the fact that Am = 0, (1.17) becomes

(1.18) S(R)M'(R) + M(R)  f  Fda =  f   uFdo.
J SB J SB

Let u 5^0 in a neighborhood Dru of x°. It is enough to consider the case

u>0, since in the case m<0 we first obtain the mean value formula for — u

and then change the sign of both sides. Using m>0 and F = 0(R2) on Sr,

we derive from (1.18),

M'(R) M(R)
-— = 0(R2),   or   log —— = 0(R*).
M(R) M(Q)

Since M(0) =m(x°) and exp{0(P3)} = 1+0(PS), we get

M(R) = w(x°)(l + 0(R*)).

Substituting this into (1.18) we find (using: m>0) that M'(R)=u(x°)0(R2),

and the proof of (1.16) is completed.

Suppose conversely that (1.16) is satisfied. Then, (1.17) yields, if Aw = 0,

5(P) c r
(1.19) u(x°)S(R)0(R2) + —- I    uda- =   j   uARdo-

S(R) J sB J Sr

where

(1.20) 5(P) =   f ARdo-.
JsB

Expressing u(x°) (by (1.16)) in terms of M(R), we get

(1.21) f u \AR-+ H(R, m")I do = 0
Jsb   I S(R) ']

and | H(R, ua)\/R2^Ao, where A0 is a constant independent of u, P.

By Lemma 1, all we have to prove is that (1.1) holds (where ß is a con-

stant). If (1.1) does not hold then, using (1.8) and 8(r)/S(r) = (n-l)/r + k0r

+ 0(r2), &o = const. (which follows (1.8), (1.20)), we conclude that there

exists a cone K with positive opening and vertex x° such that

S(r)
(1.22) Ar - ■-> t0r       (or g - t0r) in K,

S(r)

where é0>0. It will be enough to consider the case >€(¡r.
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Set Kr = KÍ^Se, K(R) =area of KR and let gR be a non-negative smooth

function defined on SR such that gR= 1 on KR and gR = 0 outside a sufficiently

small neighborhood of KR (on SR) in which the first inequality of (1.22) still

holds. Let uR be the solution of Amjj = 0 in DR which assumes the values of

gR on SR. Then uR is positive in DR, and an application of (1.21) gives

(1.23) P(P)e0P - S(R)A0R2 < 0

which is a contradiction if P is sufficiently small.

Using Ar = («— l)/r-\-0(r) in the proof of the first part of Theorem 1, we

get:

Theorem 2. At any point x" of P„,

(1.24) M(u, xf>, R) = u(x°)(l + 0(R2)),       -M(u, x\ R) = u(x°)0(R)
dR

for any solution u of Au = 0 in DRu(u¿¿Q in DRJ. 0(Rk) is defined for R^RU

and | 0(Rk) \/Rk^A (k = 1, 2) where A is independent of u, R, P„.

Remark 1. From the proof of the first part of Theorem 1 it follows that

for every P„, if wjäO, Am = 0, then

(1.25) M'(R) + M(R)0(R) = 0.

Suppose now that u(x°)=0. Then j¥(0) = 0 and we can write (1.25) as a

Volterra type integral equation

M'(R) + 0(R)  I    M'(t)dt = 0.
Jo

We conclude that M'(R)=0 and, hence, M(P)=0. Since w^O, it follows

that w = 0. We have thus proved: In every R„, if u(x°) =0, w^O, Am = 0, then

u = 0. This is the well known maximum principle for solutions of the Laplace-

Beltrami equation.

Remark 2. From the proof of Theorem 1 it follows (see (1.23)) that for

the "sufficiency" part of the theorem it is enough to assume that (1.16) holds

with 0(R2) and 0(Ri) replaced by o(R) and o(R2), respectively.

Remark 3. The conditions (1.16) are consequences of the single condition

«- 1
(1.26) LM(R) m M"(R) +-M'(R) = M(R)0(R).

R

Indeed, integrating (1.26) we get M'(R) = (f^M(t)dt)0(R). Hence, M(R)

= u(x°) + (f%M(t)dt)0(R2). This leads to M(R) = w(x°)(l+0(P3)). Finally,
M'(R) = (J*M(t)dt)0(R) =u(x°)0(R2).

Note that L is the radial part of the Laplace operator in » variables.
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2. Determination of the scalar curvature. In this section we assume that

Pn is Einsteinian at a point x° and determine the scalar curvature at this

point. We shall need a well known integral formula (see [3, p. 112]) which

holds in any P„: Let

d
y(x, x°) = ynr2~» + 0(r3~"),       —- y(x, x°) = (2 - n^r^x* + 0(r2~n)

dxl

as r—>0, where 0(r°) is always understood to mean O(log(l/r)), and where

1 27r"/2

7n   =-—- > 03n   =
(n - 2)wn r(«/2)

and let Ay(x, x°) be integrable, y is assumed to be smooth for Xt¿x°, x° being

a fixed point in a domain D with smooth boundary B. Then, for any smooth

function m in D+B,

tt(*°) =   f [u(x)Ay(x, x°) - 7(x, x°)Au(x)]dVt

(2.1) ÇV   .      0, du(y) dy(y,xP)l
+      y(y, *°) —-"(y) —:- day

JbL dv dv      J

where d/dv is the derivative in the direction of the outward normal to B at y.

Now let (p(r) be a solution of the equation

(2.2) <b" + (?—- + ßr\<p' = 0

where ß appears in §1. <p is determined up to an additive constant if we require

that #(r)rn-2—»prescribed number, as r—>0. For the sake of definiteness we

always take this number to be 1. Then

(2.3) <b'(r) = (2 - »)r1-» exp Í-|8r2l

and

(2.4) <b(r) = r2-» + 0^-"),       <b'(r) = (2 - «)r1-» + 0(r3~").

By (1.12), (1.13), A\P(r)^"(r)+f(r)Ar for any function $(r). Using

(2.2), (1.1) we find that

(2.5) A<t> = <b" + <p'Ar = <p'F = 0(r3~»).

Applying (2.1) with

(2.6) y(x, xa) = *(r) - $(P)    where    $(r) = y„4>(r)

and with D being Dr, we obtain
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(2.7) u(x°) =   f   Q'FudV -  f   [*(r) - HR)]AudV -  f   \u—1      de,
J Dr J Dr J Sr L       dr Jr-R

since d$/dv = d$/dr on r = R. Taking « = 1 in (2.7) we get

(2.8) 1 + 0(P3) = -|~—-1        f   do.
L dr J r_Ä J sr

Substituting d$/dr from (2.8) into (2.7) we obtain

M(u, x\ R)(\ + 0(R3))

=  U{X")  —    I

^ Dr </Dr

= w(x°) -   f   <¡>'FudV +  f   [*(r) - $(R)]AudV.
J Dr •'Db

In order to evaluate the third term on the right side of (2.9), we introduce

a function v which satisfies:

v" + (--h ßr J v' - *(r) -(2.10) v" + Í-h ßr j v' = *(r) - *(P),

(2.11) HP) = 0,       »'(P)=0.

We can write (2.10) in the form (see (2.2))

(2.12) »»(r) - £^ P'(r) = yn[<b(r) - <b(R)],

or

(2.13) 1~77t)   = T" ~^T _ T» -TTT '
W(r)/ *'(r) *'(r)

Integrating and making use of (2.11) we get

(2.14) -ir» = 7»*'í»   I      -^Ä-7.*W(f) "7-7 =
Jr      *'(X) Jr      *'(X)

,(,)^./Vm(/sí|a)*

/*« / rH d\ \

-'■í*("(Li¡r
(2.15)

Using ow/y the fact that <p satisfies (2.4), one easily derives from (2.14)

and (2.15):

(2.16)     v(r) = 7„.4(P)f2-» + Of/»-»),     v'(r) = (2 - «)7„^(P)r1-" + 0(r2~")

where
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or, equivalently,

(2.18) A'(R) = <t>'(R)  f   <—-,        A(0) = 0.
Jo   «'(A)

Later we shall use the estimate

(2.16') v'(r) = A(R)0(r1--)

which follows from (2.16), noting that (by (2.18), (2.4)) ¿(P)=const. P2

+0(R').
Substituting <j> from (2.3) into (2.18), we obtain

P2 ßB*
(2.19) ¿(P)= —--—-— +O(P').

2»      4w(« + 2)

We now use (2.1) with u replaced by Am, y being v and D — Dr. Using

(2.11), (2.16) and

(2.20) Av(r) = v"(r) + »'(r)Ar = [$(r) - $(P)] + v'(r)F,

we obtain

(2.21) 4(P)Att(*°) =   f   [$(r) - *(P)]A«¿F + f   p'FAm¿F -  f   i>A2MdF.
»'Dr *'.£>« ^ Db

If A2m = 0 then, by comparing (2.21) with (2.9), we get

M(u, x\ R)(\ + 0(R3))

(2 22) C C
= u(x°) -   I    ¿'îm^F-t- A(R)Au(x°) +  J    v'FAudV.

JDr JDb

We now assume that m^O, Am?¿0 in some Dru and take R^RU. We then

have:

-   f   <b'FudV =   (R0(r3-»)( f udo)dr=   f  0(r3~")S(r)M(r)dr
J Db Jo \ J sr       / Jo

= 0(R2)  I    M(r)dr,
Jo

(2.23)

f   v'FAudV =   f   A(r)0(rl~")0(r2)AudV
J Dr J Dr

= A(R) f  0(r*-")( f AudoAdr
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(using (2.16')), and since A(Aw)=0, Au^O, we can apply Theorem 1 and get

(2.24) f   v'FAudV = A(R)0(R3)Au(x°).
J Dr

Substituting (2.23), (2.24) into (2.22), (2.22) simplifies to

M(R) + 0(R>) j  M(r)dr

°      = u(x°)(l + 0(R3)) + 4(P)Aw(*°)(l + 0(R3)).

Integrating (2.25) over P we find that

/.

ä
M(r)dr = u(x°)0(R) + A(R)Au(x°)0(R).

o

Hence, (2.25) reduces to

(2.26) M(R) = w(x°)(l + 0(R3)) + A(R)Au(x°)(l + 0(P3)),

and substituting A(R) from (2.19), we get

zSP4

4»(» + 2)

(P2
(2.27)   M(W, *°, R) = íí(*°)(1 + 0(P3)) + u(x°) <-+ 0(Rt)\

\2n

Note that the proof of (2.27) remains true also in case u(x°)=0, provided

either u = 0 or u^O.

From (1.9) and A = 3/3 it follows that p = 3ßn is the scalar curvature at x°.

We have thus proved :

Theorem 3. Let P„ be Einsteinian at a point x°. Then for any function u

defined in some neighborhood Rru of x° and satisfying w = 0 or m^O, Au 7*0,

A2m = 0 in DRu, we have:

/P2 pR* \
(2.28) M(u, x\ R) = «(«o)(l + 0(R3)) + Au(x")   - + ,„ ,.    ,    - + 0(R>)

\2n     12n\n +2) /

where 0(Rk) (k = 3, 5) is defined for R^R« and satisfies \ 0(Rk) \ /Rk^B, where

B is a constant independent of u, R, Ru. The coefficient p is the scalar curvature

of P„ at x°.

Remark 1. In order to calculate p from (2.28) one should use it with a

function u which vanishes at x°.

Remark 2. Set

/(0) = -J- (Rià&W,      /o = Hm M(f, A R),

(2.29)
/i = g.i.b./(e),       /2 = i.u.b./(0).
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Then, using (2.1) with 7 = r2-" —P2~" we easily obtain, if Am = 0 and m>0,

P2 M(u, x°, R) P2
(2.30)    1+ — (/i ~/o) + O(P') è ,   '      á 1 + — (/,-/») + 0(P3)

27» «(x°) 27„

which sharpens Theorem 2. Note that p = 3«/0.

3. Characterization of harmonic spaces. A Riemannian space P„ is said

to be harmonic at a point x° if the equation A« = 0 has a solution u = <p(r) in

some neighborhood of x°. The space is trivially harmonic (or simply harmonic)

at x° if 0(r) =r2~". If P„ is (trivially)harmonic at each of its points, then we

say that Rn is (trivially)harmonic. It is easily seen that <f>(r) is a fundamental

solution of Au = 0. The theory of harmonic spaces was developed by Ruse,

Walker, Lichnerowicz, and others. For a general survey see [7] and for re-

lated references, see [14]. We mention that Hn is necessarily an An, whereas

every space with constant curvature Kn is necessarily an Hn. For « = 2, 3,

An = Hn = K„. The last statement is also true in the case of indefinite metric

tensors.

Willmore [13] proved that a necessary and sufficient condition for P„ to

be harmonic at a point x° is that for every solution u of Aw = 0, in some

neighborhood of x°,

(3.1) M(u, x°, R) = u(x°).

We now want to find a characterization for the fundamental solution <p(r).

Theorem 4. If P„ is harmonic at a point x°, then for any solution u of A2u

= 0, in some neighborhood Dru of x°,

(3.2) M(u, x°, R) = u(x*) + A(R)Au(x°) (R g Ru)

where A (R) is related to (p(R) by

or, equivalently, by

(3.4) .4'(P) = *'(P)  f    -—-,        .4(0) = 0.
J o    ç> (a)

If P„ is an Hn then [7] <p(r) is independent of the initial point x°. There-

fore, the same is true of A(R).

Remark. Since we assume that <f>(r) is normalized by <p(r) =r2~n+0(r3~n),

it is determined by (3.4) up to an additive constant. Indeed, this follows from

the equation



1961] EINSTEIN SPACES AND HARMONIC SPACES 251

4>"     A" - 1
(3.5) —-

<t>' A'

which is derived from (3.4).

Proof of Theorem 4. The proof is similar to the proof of Theorem 3 and

we therefore only indicate the modifications which one has to make. (2.5) is

replaced by A<¿> = 0 and hence in (2.7), (2.9) P^O. Also O(P3)=0 in (2.8),
(2.9). As for v, the only difference is that instead of (ra-l)/r+/3r (in (2.10))

we now write Ar or —<p"/<p'. Consequently, in (2.20) we have P=0.

Remark 1. Helgason [6] has recently extended Asgeirson's mean value

theorem [l] to solutions of Axu =A„u, where A*, Ay are the Laplace-Beltrami

operators in the x-space and the y-space of «-dimensions. He assumed that

the spaces are two-point homogeneous spaces (and, hence, harmonic). It is

immediately seen (using [13]) that for Asgeirson's theorem to be valid it is

necessary that the two spaces be harmonic.

Remark 2. In 1909 Pizetti proved (see [2, p. 261]) that for any smooth

function u and a non-negative integer m,

1       r /n\™/R\2k      Aku(x°) r
- |    «d<r = T ( — J £ ( — )-i    vmAm+1udV
S(R) Jsr \ 2 ) ¿To V 2 /    A!r(A + m/2)      JDr

where

»o = yn(r2~" - R2-"),

Vk(r) = 7» I    PVk-Áp)[p"~2 — rn~2]dp,

if «7^2. For « = 2 the definition of vk is slightly different. The proof can easily

be extended to P„ harmonic at x°, provided

(3.6) 0 < Ai g rn-l<p'(r) g A2,

(3.7) 0 < A, g r-- [<b(r) - <b(R)] è A,.
R — r

The formula obtained is

(3.8) M(u, x°, R) = 21 Ak(R)Aku(x°) - j    vmA'»+ludV
t-0 J Dr

and

,     % *       Ak(R) t
3.9) 0 < BoBi g - g B2B3,

R2k(kl)2
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(P — r)2m+1    2-

(3.10) 0 < vm(r) â BtBmb r
R(m\)2

where the P¿ are constants depending only on the Ai.

Formula (3.8) with the estimates (3.9) can be used to derive a Liouville

type theorem, namely: if Apm = 0 (p a positive integer) in the whole Euclidean

space, where A is the Laplace-Beltrami operator, and if u is bounded, then

M^const. (We assume that (3.6), (3.7) hold for all 0<r <P< a> and that A

is uniformly elliptic.) The proof is obtained by first deducing that Ap~1u = 0,

Ap_2m = 0, • • • , Am = 0 and then applying Nash's estimates [9] which im-

mediately give m s const.

4. Characterization of spaces of constant curvature. We need the follow-

ing lemma:

Lemma 2. If in a space H„

r        £1/1        -| n-l

(4.1) <b'(r) = (2 - n)\ ———-        ,    K * 0 (K constant)
L sin(rP1/2) J

theft H„ is a space of constant curvature K.

The converse of this lemma is well known [7] and is proved by direct

calculation. Lemma 2 for K = 0 ((4.1) is then understood to mean: <j>'(r)

= (2-n)ri'n) is due to Thomas and Titt [l0].

Proof. Set

<b"(r) 1
xW - - Z17T '       /(°> - r*M + 1    where    Ü = T" '-■

<b'(r) 2

Lichnerowicz [7] (and later also Willmore [12]) proved that for any Hn

5 (/'(0))2
(4.2) -/"(0)+^^0

2 n — 1

and equality holds if and only if Hn is a Kn\ its curvature K is then found to be

3/(0)
(4.3 K =-—-

2(n - 1)

A simple calculation shows that for d>' as given by (4.1) we have

2(n - 1) 8(» - 1)
/'(0) - - K,      f"(0) = - K2.

Hence equality holds in (4.2) and the proof of Lemma 2 is completed.

Combining Theorem 4 and Lemma 2, we get:
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Theorem 5. A necessary and sufficient condition for an Rn to be a K„ with

curvature K is that (3.2) holds at each point x° of Rn and for every solution u of

A2m = 0 in a neighborhood of x°, where A (R) is given by

rR\~ sinf/P1'2) T "-1

<44)      ÄW'I. hsas^] *• •4(0)=0-
Remark. Using (3.5) we have

1 - A"(r) 1
f(ü) = r-hl,        0 = — r2.

A'(r) ' 2

We can use this formula to calculate/'(0),/"(0) in terms of 4<4>(0), Am(0)

(note that ,4<2">+1>(0) =0 for w = 0, 1, 2, • • • ). We then can express (4.2)

as an inequality involving v4(4'(0), ,4<6>(0). In particular, if A^(0)=Aw(0)

= 0 then 77„ is flat.

5. Characterization of Einstein metrics, using solutions of Aw+Xw = 0.

The following theorem can be derived by the method of §1:

P„ is Einsteinian at x° if and only if for every solution m^O of Aw+Xíí

= 0 (X fixed) in some DRu,

(5.1) M'(R) + -— ( S(r)M(r)dr = 0(R2)M(R)
S (R) J o

for R^RU, where | C>(P2)| ?¿AR2, A being independent of u, Pu, P.

Let {Xm}, {fan} be the sets of eigenvalues and orthonormal eigenf unctions

of A on P„, where Rn is, from now on, taken to be a compact Riemannian

manifold. As is well known, the set {fa} is complete in the T,2 sense. Further-

more, from the asymptotic behavior of the X», fa (see, for instance, [8]) it

follows that for every function g on Rn, g= ^amfa (am are Fourier's coeffi-

cients) and the series is uniformly convergent together with any preassigned

number of its term-by-term derivatives, provided g is sufficiently smooth.

We wish to characterize Einsteinian metrics by means of properties of the

fan. Since the fa, however, are not in general non-negative functions, the

above cited theorem is not helpful. We shall instead use the following theorem

whose proof, which is similar to that of the above cited theorem, is omitted.

Theorem 6. A necessary and sufficient condition that P„ be Einsteinian at

x° is that for every solution o/Am+Xzí = 0 in some Dru, (Ru<R,for some R>0)

(5.2) M'(R) +-}- ( S(r)M(r)dr = u(R)0(R2),       u(R) = l.u.b. | u \
S(R) Jo s

for R^RU, where \ OiR^l ^AR2 and A is independent of u, Ru, P.

Remark 1. Theorem 6 remains true if p(R) is replaced by p.(R)

= l.u.b. db|«|. In both cases, the "sufficiency" part remains true if 0(R2) is

replaced by o(R).
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Remark 2. From the proof of Theorem 6 it follows that A and P are in-

dependent of X.

Theorem 7. A necessary and sufficient condition that P„ be Einsteinian at

x° is that {<pm\, {Xm} satisfy for all R<R (for some R > 0)

(5.3) 4r M{-^ x°> R) + 77^ f S(r)M(<t>»> x°> r)dr = /«-(*) 0(R2)
dR S(R)Jo

where jum(P) =l.u.b. sr\ <pm\, | 0(R2) \ ^AR2 and A is independent of m, P.

Proof. The "necessary" part is a consequence of Theorem 6 and Remark 2.

To prove the "sufficiency" part, we need the relation:

(5.4) S(R)M'(R) + M(R)  f  ARda =   f  uARde - X f  S(r)M(r)dr
J Sr J Sr "0

valid for any solution of Am+Xm = 0. Its derivation is similar to that of (1.17).

Taking u = <bm, X=Xm in (5.4) and making use of (5.3) we obtain

(5.5) Mm(R) f   ARda =   f  <bmARdo- + Um(R)0(R2)
J Sr J Sr

where we set Mm(R) = M(<pm, x°, P). Inserting AP from (1.8) into (5.5) and

using the notation (2.29), we get

T— f  f(Q)da] I"- f   <t>m(R, ®)do]
lS(R)JsR 1LS(R)JSR J

(5.6)

= 771T,  ( +»(*> ©)/(©)^ + ^O(R)
¿(Ä) J Sr

for 0<P<Po (for some P0), where /xm = l.u.b.0<R<B0 |0m(P)|.

The function /(©) is smooth in some domain containing £>b0, if P0 is

sufficiently small. Let / be a smooth function on P* which coincides with /on

DRo. Then

J   =   Z-l Cm<Pm,

and the series is uniformly convergent. Hence, for any e>0 there exists a A

such that

(5.7) / — 2./ c™&™

We now multiply both sides of (5.6) by cm and sum over m = l, • ■ • , k.

We obtain
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- f  /^¿ff«][¿/s C/(0) + A.(P, Ö))d«rÄ]
IS(R)JSRJ JLS(P).

(5.8)

= -T-- f  /(©)(/(©) + ht(R, @))do-R + (Z\cm\pm) O(R),
S(R) J Sr \m=l /

where, for clarity, we set da = do-R on Sr, and where \h,(R, @)| <e.

Denoting du = \im r^o (dar/S(R)) and letting P—>0 in (5.8), we obtain

the inequality

( f /(0)á«y+ i I J* /(0)rfco | è J (/(©))2Ao - e j I /(©) I ¿o.

Taking e—>0, we get

(5.9) (Jf(Q)dœJ = J (f(Q))2du.

Noting that du>0, fdu=\, we can use Schwarz's inequality and conclude

that (ffdu)2^ff2du and equality holds if and only if /(©) ^const. In view of

(5.9), /(©) is indeed a constant. Hence, by Lemma 1, P„ is Einsteinian at x°.

Remark. Theorem 7 remains true if, in (5.3), 0(R2) is replaced by o(R).

6. Characterization of harmonic metrics, using solutions of Am+Xm = 0.

Using (5.4) one can show that P„ is harmonic at x° if and only if

(6.1) M(u, x°, R) = ô(R)u(x°) for P < Pu,

for any solution u of Am+Xm = 0 in Dru, where S(R) is defined by

(6.2) &'(R) + —- f S(r)Ô(r)dr = 0, 5(0) = 1.
o{R) Jo

We shall prove:

Theorem 8. A necessary and sufficient condition that P„ be harmonic at x°

is that \4>m}, {X„,} satisfy, for all R<R (for some R>0)

(6.3) M(<bm, x\ R) = UP)4>m(x°)

where 6m(R) is defined by

(6.4) OUR) + — f  S(r)5m(r)dr - 0, 5m(0) = 1.
o (R) J o

Proof. We only have to prove the "sufficiency" part of the theorem. By

[13] it is enough to prove that

(6.5) M(u, x°, R) = u(x°) for R < Ru
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for any solution u of Au = 0 in Dru. Now every local solution can be extended

into a smooth function on Pn. Hence we have

00 00

(6.6) u(x) = Z M>m(x),        Au = - Z Kan<t>m(x) = 0

uniformly in x for 0 ^r 5=PU' for any P,,' <P„ (r is the geodesic distance from

x° to x).

From (6.6) we obtain

00 CO

(6.7) M(u, x°, R) = Z amM(<bm, x\ R) = Z am5m(P)<U*0),

(6.8) M(u, x\ R) - - Z Xmamôm(P)^m(x°) = 0,
m-l

and both series converge uniformly for 0<P<Pu'. Multiplying (6.8) by

S(R)/S(p) and integrating over P, we obtain

(6.9) Z fl-*»(*°) r-=T f^)Sm(P)ápl = 0
m=l LO(p)   Jo J

and the convergence is uniform in p, 0<p^Pu'.

Using (6.4), (6.9) reduces to

00

(6.10) E a-A.'(p)*»(*°) = 0-
m=i

Finally, integrating the series (6.10), which is uniformly convergent for

0<p<Pu', we find that Em-i am5m(R)<pm(x°) is a function independent of P.

Hence, recalling (6.7), the proof of (6.5) follows.

Remark 1. The fundamental solution <¡>(R) can be determined, up to an

additive constant, by the function S(P) defined in (6.2). Indeed, using (2.1)

with y defined by (2.6) and <j> being a solution of A<p+\<f> = 0, we get

w(*°) = - \y,MR)       S(r)M(r)dr - Xy» I    u — do
Jo J Sr      dv

-   f  y(A + \)udV.
J Dt>Dr

Employing (6.1) and (A-t-X)m = 0, we obtain

d<b(R)

dR   ¿SB
f   udo = u(x°) |l + \y,MR)   f   S(r)5(r)dr\.
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Comparing this with (6.1) we get an equation which, after using (6.2),

simplifies to

(6.12) ô'(R)faR) - o(R)fa(R) = —1- ■
7nS(R)

If we can express S(R) in terms of faR), then (6.12) can be used to solve

faR) in terms of S(P). Now setting m = 1 in (6.11) gives

r* l
(6.13) S(R)4>'(R) + X       -S(r)far)dr + — = 0

which can be used to express S(R) in terms of faR).

Remark 2. We have proved in §§5, 6 that some properties of {fa}, {\m}

determine some properties of the metric of the manifold. A direct construc-

tion of the metric from the sequences of eigenvalues and eigenfunctions seems

to be hard to accomplish. All we can prove is: If {fa}, {Xm} are the sequences

of eigenfunctions and eigenvalues of a metric tensor (go) on a compact Rie-

mannian manifold, then the {<bm}, {Xm| determine the metric tensor (g,,) in a

unique manner (i.e., they cannot be the sequences corresponding to another

metric tensor).

The proof is based on the following observations:

(a) The <bM, Xm determine the set of all local solutions (that is: in neigh-

borhoods of a point) by the set of all sequences {am} for which

^,amfa, ^\mamfa are uniformly (locally) convergent and the second

series vanishes.

(b) The local solutions of an elliptic equation determine the coefficients

up to a common factor (this follows from [5, proof of Theorem 2]).

To find this factor one uses the relations Ac6m+Xmc/>m = 0.
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