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In this paper, we continue the work in [4] and [3] on ordinal multiplica-

tion of reflexive relations. In particular, we are concerned with the problem

of unique factorization of a relation into indecomposable relations. A type a

is called indecomposable with respect to ordinal multiplication (or simply, inde-

composable) if a5^0 and whenever a = ß-y, then either |3=1 or y = l. We let

IT denote the class of indecomposable types. We define recursively the opera-

tion n«en at by setting JJiso a, = * an<^ IT«ep+i «> = (IT»ej> «•) -a,. A type a

has the strict unique factorization (SUF) property if whenever

(A) a = II ßi, ßi £ IT for each i E »,
¿en

and

(B) a = U yh y¡ E IT for each / E m,
j€m

then m = n and ßi = yt for each iEn. A type a has the weak unique factoriza-

tion (WUF) property if whenever (A) and (B) hold, then m = n and there

exists a permutation /of n such that j3,=Y/(,) for each iEn. We shall see that

there exist finite types which do not have the WUF property. After introduc-

ing the notion of a canonical factorization (CF), we shall prove that each

finite type different from 0 and 1 has a unique CF. We shall also give char-

acterizations of those finite types which have the SUF property as well as

those finite types which have the WUF property(2).

The plan of the paper is as follows. We begin by proving a refinement

theorem for ordinal products. This will require some extensions of results in

[3]. We then prove some consequences of the refinement theorem when we

progressively increase the restrictions to finite types. Among these results is

a characterization of those finite types which form a permuting pair with
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respect to ordinal multiplication. We conclude the paper with a complete

solution of the factorization problem for finite types.

We assume thorough familiarity with the notation and contents of [3]

and [4]. We call special attention to the introductory pages of [3] and we

henceforth adopt the notation and conventions of that paper. For instance,

by a relation or type we mean a reflexive relation or type. We let the Greek

letters p, v (with appropriate subscripts) range over the class of all cardinals

(finite and infinite) and, as in [3], we let pc and p' denote the cardinal and

square type with cardinality p. As in [4], we let the symbols -f-c, +*, and +

denote the respective operations of cardinal addition, square addition, and

ordinal addition; the symbols 22c> 2". and ¿Zi,s (S a simply ordering rela-

tion) shall denote the respective generalizations of the three additions. Also,

we let the symbols CIT, SIT, and OIT denote the classes of types which are

indecomposable under the respective modes of addition. As a consequence of

the unique decomposition theorem [4, Appendix B], every type a has a

unique representation as a sum of indecomposable types in each of the three

modes of addition. To be more specific, every type a can be represented as a

cardinal sum,
c

(C) a = J^ßi-v'i, where  for  each  i E v,  /?,• E CIT,  ß{ ̂  ft if  i j* j,  and

v = 0, Vi > 0 are cardinals,

as a square sum,
e

(D) a = 2 ytHi,  where for each i E m, y i E SIT, 7, s¿ y¡ if i 1* /, and
»s».

p = 0, pi > 0 are cardinals,

or as an ordered sum,

(E) a = 23 5„ where for each i E F(S), 5, E OIT, and S is a simply ordering
i,S

relation.

In each of the above cases, the representation is unique in their respective

senses. If a is finite, the cardinals v, j», in (C) and p, pi in (D) as well as the

relation 5 in (E) are all finite. More significantly, (E) can be written as

(F) a = 2 <«■«;,
i,T

where each «j is an integer. We let CIT(a), SIT(a), and OIT(a) denote the

sets of types which belong to CIT, SIT, and OIT, respectively, and which

also occur in the corresponding decompositions (C), (D), and (E) of a. By

the uniqueness of the decompositions, these sets are well-defined.
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As was pointed out in [4], each one of the four operations, +', +*, +,

and • is a special case of the general sums of types p\- over a relation T, in

symbols E«".r ß*- From the associativity of this general sum, we see that the

following (left) distributive laws hold:

c e

«• Zßi = Z*-ßi-

s s

(G) a-Zßi=*Z"-ßi-
¿6/í »£í»

«■ Zßi= Z<*-ßi-
i.S i,S

A moment's reflection will show that the corresponding right distributive

laws will not hold. However, in the special cases a£CT and a£ST, we have

also the following:

(H)

If a £ CT, then (ZßXa = ¿ (ft-a)

If a £ ST, then ( ¿ft)-a =  ¿ (ft-a)

A type ß is a ¿e/i (right) divisor of a if there exists a type y such that

a = ß-y(a = y-ß). Every type is a divisor of 0 and 1 is a divisor of any type.

The property of being a left (or right) divisor is reflexive and transitive. It

follows from [3, Theorem 19] that the set of left divisors of a finite type is

simply ordered by the < relation among types. From the previous discussion

on distributivity, it follows that for each one of the three additions, if a is a

left divisor of each summand, then a is a left divisor of the sum. In the special

case that a£CT(a£ST), if a is a right divisor of each summand, then a is

a right divisor of the cardinal (square) sum.

Although ordinal multiplication is in general not commutative, there are

special subsets of types among whose members ordinal multiplication is com-

mutative. Examples of such sets are CT, ST and finite types of OT. We can

verify quite easily that the classes CT, ST, and OT are each closed under

ordinal multiplication and the taking of left or right divisors.

The first two lemmas are simple observations and will require no proof.

Lemma 1. Let a^O.

(i) //a£CIT, then a£SITn01T.
(ii) 7/a£SlT, <Ae» aGCITnOIT.
(iii) If aEOIT, then aeClTr\SlT.
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Lemma 2. Let a^l and ß?*0.

(i) aGCITîJ/3-aGCIT.
(ii) aGSITîJ/3-aeSIT.
(iii) «GOITíJ^-aGOIT.

In terms of the defined notion of CIT(a), we see that if a^O then by con-

ditions (C), (G), (H), and Lemmas 1 and 2, the following hold:

(J) a E CT if, and only if, CIT(a) = {l}.

(K) If 1 E CIT(a), then CIT(/3) C CITO?-a).

(L) If a G CT, then CIT(0) = CIT(/3-a).

(M) If 1 G CIT(a) or if ß E CIT, then CIT(,3-a) = {ß-a^aiE CIT (a)}.

(N) If ß is finite, then a G CT iff CIT(ß-a) = CIT(/3).

Each one of the conditions (J)-(N) remains true if we replace cardinal

notions by square notions or ordinal notions.

The next lemma is a restatement of [3, Theorem 11 and Lemma 15].

Lemma 3. Let a, ß, y, S be types different from 0. If a-5=|8-7 and a</3,
then there exist a relation V and, for each iEF(V), types y, and 5, such that

(0 7 = ¿Zi.v "Yi and 5 = Yl<.r 5¿,
(ii) for each iEF(V), a-8i=ß-yi,
(iii) for each iEF(V), S.GCTVJSTWOT.

Proof. Excepting for a slight change of notation, the lemma follows from

the indicated results.

Lemma 4 is an analog of [3, Lemma 5] and is another generalization of

Euclid's Theorem.

Lemma 4. Let p and q be relatively prime positive integers.

(i) If pe-a = qcß, then there exists y such that a = q'-y and ß = pc-y.

(ii) If p' • a = q' ■ ß, then there exists y such that a = q'-y and ß = p'-y.

(iii) If p<,-a = q0-ß, then there exists y such thata = q"-y and ß = p0-y.

Proof. We shall first prove (i) and then give indications of the other

proofs. Assume that pe-a = qc-ß, p>q>l, and a, ß different from 0. By

Lemma 3, there exist a relation Fand, for each iEF(V), types a< and p\ such

that

(1) « = £ a.    and   ß = £ ßi}

(2) for each i G F(V), />c-a, = qc-ßt,

(3) for each i E F(V), «¡6CTUSTU OT.

We first show that



1961] ORDINAL FACTORIZATION OF FINITE RELATIONS 263

(4) for each i E F(V), a¡$STU OT.

Assume that a<(EST. Representing both sides of (2) as square sums of types

belonging to SIT, we see that since pc, c/'GSIT

SIT(p<-a<) = [p<\

and

SIT(q°'ßi) = [cr'y;yeSlT(ßi)f.

Since SIT(/>c.o!i)=SIT(2e-/3,.), it follows that q\p: a contradiction. Assume

«¿GOT. Representing both sides of (2) as ordinal sums of types belonging

to OIT, we have

OIT(p°-aA = {/>«}

and

OIT(q°-ß<) = {q°-y;yEOlT(ßA}.

Thus again q\p and a contradiction. Thus (4) is proved. From (2), (3), and

(4), we obtain a,£CT. This implies /3,£CT for each iEF(V). Using the

commutativity of types in CT, and  [3, Lemma 5], we have

(5) for each iEF(V), there exists a 7, such that

«. = q'-y,   and    ßi = pc-yi.

Let y= £*i,r1fi- By the distributive law (G) and (5), we obtain the conclu-

sion of (i).

The proof of (ii) is entirely analogous.

To prove (iii), we first eliminate the possibility that «¿CTWST. Thus for

each iEF(V), «¡GOT, ßiEOT, and p°-ai = q°-ßi. Using the discrete proper-
ties of p° and qa, and remembering that in the proof of [3, Theorem 11 ] a,

and ßi are components of a and ß under the equivalence relations 77 and K,

we see that this implies a¿ = c/° and ßi = p°. Now y — r(V) is the required type

such that a = q°-y and ß = p<*-y.

Lemma 5. Let p, q be positive integers and l£CIT(e). Then pc is a left

(right) divisor of qc-\-ce if, and only if, p\q and pc is a left (right) divisor of e.

Proof. In the case that p\q and pe is a left (right) divisor of e, clearly pc

will be a left (right) divisor of qe+ee. Assume that pc is a left divisor of

qe+ce, i.e., pc-y = qc+ce for some y. We write y = ucjr':y' where ucECT and

l($CIT(y).Thusi!>':.7 = />';.M<!+'!/>c-7'. Since pc-ucECT and l$ClT(p"-y'),

we have

(1) pc-uc = qc    and    p°-y' = e.

Assume that pc is a right divisor of c2c+ce, i.e., y ■ pe' = qc+ce for some y. Again,
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writing y=ßc+cy', we have ype=p,e-p°+<!-y'-p".   Since p.c-pcECT and

l£CIT(7'-^e), we arrive at

(2) nc-pc = q°    and    y'-pc = e.

(1) and (2) prove the lemma.

Lemma 6. Let p, q be positive integers and 1 £SIT(e). Then p' is a left (right)

divisor of g*+*e if, and only if, p\ q and p' is a left (right) divisor of e.

Proof. Analogous to the proof of Lemma 5.

Lemma 7. Let a, ß, y be different from 0 and let ß be finite. Assume that

a-p' = ß-y and p is the least positive integer q such that ß is a left divisor of

a-qc. Then for each cardinal v, ß is a left divisor of a-Vs if, and only if, p is a

divisor of v.

Proof. Assume the hypothesis of the lemma. If p is a divisor of v, then

clearly ß is a left divisor of ct-vc. Assume that ß-b = a-vc for some 6. If v is

infinite, then v' = p"-ve and p divides v. If v is finite, let r = (p, v) and for some

m and n, (m, w) = l, p = rm, and v = nr. We have

ß-o-mc = a-v'-m" ~ a-p"-ne = ß-ync.

Since ß is finite, by [3, Theorem l],

5-mc = yne.

from [3, Lemma 5], there exists an e such that

5 = €•«"    and   y = e-mc.

Hence,

a-r°-nc = a-vc = ß-d = ß-e-nc.

Cancelling nc from the right [3, Lemma 4], we see that ß is a left divisor of

a-r". Thus r = p and p\v.

Lemma 8. Let a, ß, y be different from 0 and let ß be finite. Assume that

a-p' = ß-y and p is the least positive integer q such that ß is a left divisor of

a-q". Then for each cardinal v, ß is a left divisor of a-vs if, and only if, p is a

divisor of v.

Proof. Analogous to the proof of Lemma 7.

Lemma 9. Let a, ß, y be different from 0 and let ß be finite. Assume that

a-p° = ß-y and p is the least positive integer q such that ß is a left divisor of

a-q". Then for each positive integer n, ß is a left divisor of ct-n° if, and only if,

p is a divisor of n.



1961] ORDINAL FACTORIZATION OF FINITE RELATIONS 265

Proof. Analogous to the proof of Lemma 7. Notice that here we cannot

conclude that p° is a left divisor of an arbitrary infinite order type.

Lemma 10. Let a, ß, y be different from 0 and let ß be finite. Assume that ß

is not a left divisor of a. Then the following two conditions are equivalent :

(i) a-pe = ß-y where p is the least positive integer q such that ß is a left divisor

ofa-q".
(ii) There exist types a', e and a positive integer q such that (p, q) = l,

1 GCIT(e) and

a = a'-(qe+cpc-t),

ß = cc'-r,

y = q° +" fpc-

Proof. Assume (i). We write 7 = gc+c5 where 1GCIT(5) (q will prove to

be a positive integer) and represent a, ß, and 5 as cardinal sums of indecom-

posable types as in (C) :

(1) a= ¿2 «••"<•
«e»

c

(2) i=Eft-»,'
ien

c

(3) S = £ h'ß'it s< ̂  1 f°r each * G p.

From (1), we obtain

(4) ClT(a-pc) = CIT(o) = [of, iE»}.

From (2), (3) and the distributive law (G), we obtain

CIT(/9-y) = {ß-5i-,iEn}  if g = 0
(5)

- {ß-Sii íEp}V ClT(ß) if q * 0.

Since ß is finite, {j3-5¿; iGm}^CIT(/3) =0 and, by [3;Theorem l], /3-5,-^/3-Sy
if tV/. From (1) and (4), we see that each type a,- is repeated v\-pc times.

From (2), (3) and (5), we see that each type ßi is repeated n\-qc times, and

each type ß- 5¿ is repeated p° times. By the unicity of the representation, each

ßi is divisible by p and each n(-q is divisible by p. Hence

(6) pi = pi -p for some pi

and

(7) n¡-q = ni -p for some »/.
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Let é= Xï» 5.-(m<')c. We deduce from (3), (6), and (H) that lGCIT(e) and

c c

o = ¿_, Si-pi = 2J (Srpi)-p = tp .

Hence y = qc+ee-pc. If g = 0, then a-pc = ß-y=ß-cp". Cancelling p' from the

right, we have the contradiction that ß is a left divisor of a. If q is infinite,

then qc = q"-pc and

a.pc = ß.y = ß.(qcpC+cf.pc) = ß.(q»+»f).p;

We now reach the same contradiction after cancelling p" from the right. Thus

qy^O and q is finite. Let (p, q) =r, p = s-r, q = t-r, and (s, t) = 1. Then

a-sc-rc = a-pc = ß-y = ß-(tc-rc +<t-sc-rc) = /J-í/" +" ese)-re.

Cancelling rc from the right, we see that ß is a left divisor of a-sc. Since £ is

the least positive integer with such property, p = s and r — 1. Thus (£, g) = 1.

Going back now to condition (7), we see that each w, is divisible by p, say

Hi = mi-p for some »i,-. Let a'= £<en 0» ™\- Then by (2), ß=a'-pc and, by

(G) and (H),

a.pc = ß.y = a'.p'.(q' +cfpc) = a'-(qc + " pc • e) ■ pe.

Cancelling pc on the right we obtain a = a'-(q"+"£"•«). Thus (ii) has been

proved.

Assume (ii). It is evident that (ii) implies the equality a-pe = ß-y. Assume

that p does not satisfy the minimality condition. Let « be the least positive

integer such that ct-nc = ß-y' for some y'. By Lemma 7,

(8) p = n-r for some r,

and by what we have already proved,

(9) there exist types a", e' and a positive integer m such that («, m) = l,

lGCIT(e'),and

q = a"-(m" +c «c•«')»

0 = a"»«,

7 = (mc +ct'-ne).

Now, from (8) and (9) and the hypothesis,

a"-ne = ß = a'-pc = a'-rc-;ic.

Therefore, a"=a'-rc and

a'-(qc +' pc-e) = a"(mc + nc-e') = a'-rc-(mc -p «c-e')

= a'-(rc-mc +c pc-t').
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Since ß is finite, a' is finite, and by [3, Theorem l] we cancel a' from (10) on

the left, leaving us the equality

qc _f-c pc.f  m  rc.mc _|_c pc.t>

Using the uniqueness of the representation, qc — rc-mc. Since (p, q) = l, we

conclude by (8) that r = 1. Hence p = n and (i) is proved.

Lemma 11. Let a, ß, y be different from 0 and let ß be finite. Assume that ß

is not a left divisor of a. Then the following two conditions are equivalent :

(i) a-p° = ß-y where p is the least positive integer q such that ß is a left

divisor of a ■ q'.

(ii) There exist types a', e and a positive integer q such that (p, <z) = l,

1$SIT(«), and

a = a'-(qs +' P'-e),

ß = a'-p;

y = qs +* t-p*.

Proof. Entirely analogous to the proof of Lemma 10.

Lemma 12. Let a, ß, y be different from 0 and let ß be finite. Assume that

ß is not a left divisor of a. Then the following two conditions are equivalent :

(i) a-p° = ß-y where p is the least positive integer q such that ß is a left

divisor of a • q°.

(ii)  There exists a finite type e and a positive integer q such that (p, ?) = 1 and

a = e-q°,

ß = *-p°,

7 = 9°.

Proof. Assume (i). By (E), we represent y as an ordinal sum of types in

OIT as follows:

(1) 7 = X* Yi where S is a simply ordering relation.
i.S

Using the refinement law for ordinal addition, we see that the equality

a-p"=ß-y with p^2 leads to the following two cases:

(2) There exist simply ordering relations U and F such that

S = U + F   and   a = ß- £ yf.
i.U

(3) There exist simply ordering relations U and  V and nonzero types ßx

and ß2 such that
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S = U + 1 + V,      ß = ft + ft,

ct = (ß-Z y>) + ft.

a-(p- l)« = ft + ft Et,-.

Condition (2) leads to the contradiction that ß is a left divisor of a. Therefore,

we assume (3) to hold. We shall prove:

(4) For some positive integer q, 7=2°.

If U = 0, then a=ft and a is finite. Assume that for some iEF(V) y^l. Since

ft7iGOIT03-7), ß-yieOlT(a-p'>)=OlT(a). But K(j3-70>/c(j3)>K(a) which
is impossible. Thus for each i£P(F), 7, = 1, and since a is finite, (4) holds. Let

us now assume that Uy^O. Since ß is finite, the last two equations of (3)

lead to:

(5) There exist simply ordering relations U' and V such that

U - 1 + W,       V = 1 + V,

« = /3+(ft E7<) + ft,

a-(p-l)9 = ßt + ß+ Et,--
i.V

From the last two equations of (5), it follows immediately that

(6) ft + ft = ft + ft.

Now, independently of the precise value of p, the last equation of (3) yields

the following:

(7) there exist a simply ordering relation W and types ft and ft such that

IF is a final segment of V,

ß = ft + ft,

« = ft + ft  E 7¿.

!
By the same reasoning that established condition (3), we can prove that

ft7^0 and ftt^O, and, furthermore, W^O. Using the next to the last equation

of (3), namely,

a = ft E 7< + ft

and the last two equations of (7), we can establish (after a simple induction)

that either
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(8) there exists a positive integer « such that t(U) =«° and

7¿ = 1 for each i E F(U),

or else

(9) for each positive integer « there exists a nonzero simply ordering rela-

tion Un such that

iA= U,

Un   =   1  +   t/„+l +   1,

£ t. = i + ( £ y) + i.
i.Vn N<.f„+l      /

Let us consider condition (9) first. From the results and discussions in [4]

(more specifically, [4, Postulate IV, p. 8] and [4, p. 71]) we see that (9)

implies the statement that

(10) there exists a type y' such that £ y i = w + y' + co*.
i.U

Furthermore, from the discussion on [4, p. 26] and [4, Postulate II'] and

condition (6) above, we see that

ß-co* + ßi= (ßi + ß2)-w* + ßi

- (Ä + /3i)-u* = ß-u*.

Now, (3), (10), and (11) imply

a = ß- T,yi + ßi = ß-(a + y' + a*)+ßi
i.U

- ß-u + ß Y + ß-u* + ßi

= ß-u + ß-y' + ß-u*

i.U

This is of course a contradiction to the assumption that ß is not a left divisor

of a. Hence (9) fails and (8) must hold. From (8) it is easily seen that each

type in OIT(a) must have cardinality at most k(/3). So 7<=1 for each

iEF(S). Since (8) also implies that a is finite, we conclude that S is finite and

(4) is now proved. Finally, if (p, q)9i\, then we can cancel their common

factor r° on the right and violate the assumption (i). Thus (p, q) = \ and (ii)

follows from [3, Lemma 5].

Assume (ii). It is clear that (ii) implies a-p° = ß-y. Suppose that n is

the least positive integer such thata-«c = /3-7' for some y'. Then by Lemma 9,

(12) p = n-r for some r,
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and, by what we have already proved,

(13)    there exist a finite type «' and a positive integer m such that (m, «) = 1

and

a = e'-m°,       ß = «'•«",        y' = m0.

Now, (12) and (13) yield the equation

e'-w° = ß = e-/>° = e-r0-«0

which implies e' = e-r°. Thus e-q° = ct = t'■m° = e-r0-mù. Cancelling e on the

left we have q = r-m. Since (p, q) = 1, we have r= 1. (i) now has been proved.

We pause here to mention that, by a technique similar to (but easier

than) the proof of (ii) from (i) in Lemma 12, it is now possible to establish

the conjecture C.2 of [3, p. 180] in the affirmative. As was pointed out in

[3, p. 181 ], all we have to show is that under the conditions a<7 and ccßi

= y-8i where ßi = n° for some positive integer «, we must either have 7<a or

y = a. Suppose 7<a, then by the type of reasoning used in the proof of

Lemma 12 we first see that 5.GOT and then we see that 5i = «°. Thus, after

cancelling «° on the right, we have a=y.

Theorem 13 (The Refinement Theorem). Let a, ß, y, S be different from

0, a</3, ß and 6 be finite, and a-8=ß-y.Then one and only one of the following

possibilities can hold.

(I) There exists an e ̂  0 such that a = ß-e and e • 5=7.

(II) There exist positive integers p, q with p}z2 and (p, g) = l, and types

a'7*0, 7VO, and t such that lGCIT(e), K(qe+'pc-e) >p, and

a = a'-(qc+cp°-e),

ß = ct'-p°,

y = (q°+°e-pc)-y',

ô = pc-y'.

(III) There exist positive integers p, q with p^2 and (p, q) = \, and types

a'^0, 7V0, and e such that 1 GSIT(e), K(q,+,p'-e)>p, and

a = a'-(q' + 'p'-e),

ß = «'-p;

7 = (ql +'€•/>•) -y',

8 = p"-y'.

(IV) There exist positive integers p, q with ps^2 and (p, q) = l, and types

7'?í0, 6 5^0 such that e is finite, q>p, and

\
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a = «y,

,9 = <•/>»,

7> q°-y',

Ô = pOy'.

Proof. From the hypotheses and Lemma 3, there exist a relation V and,

for each iEF(V), types y, and Ô, such that 7= 2«.v7»> ^ = S».v S,- and, for
each iEF(V), a-ei=ß-yi and 5.GCTUSTUOT. If ß is a left divisor of a,

then (I) will follow trivially. So we now assume the negation of (I) and con-

sider the following three possibilities:

(1) For some i E F(V),        5< E CT.

(2) For some i E F(V),        5, E ST.

(3) For some i E F(V),        5,- E OT.

Since we have assumed that ß is not a left divisor of a, in each of the three

cases (l)-(3), 3, must be the cardinal or square or order type of a positive

integer greater than 1. Suppose condition (1) holds. If p is the least positive

integer such that ß is a left divisor of a-pc, then by Lemma 10,

(4) there exist types a', e and a positive integer q such that (p, g) = l,

1 EClT(e), a = a'-(qc+cpe-e), and ß = a'-pc, and a-pe = ß-(qc-\-ct-pc).

From Lemma 7,

.   . e      c

(5) hi = p ■ ni for some positive integer «,.

Putting (4) and (5) together, we have

ß-yi = a-Si = a-p -nt = ß-(q  +   e-/»)-«,.

Cancelling ß on the left, we obtain 7,- = (qc-\-ce-pc) -n\. Summarizing our con-

clusions when (1) holds, we have

(6) there exist positive integers p, q, nt with /> j=2 and (p, q) = 1, and types

«V0 and « such that 1 £CIT(í) and

a = a'-(qc+cpc-t),

ß = a'-pc,

7i = (q   +   tp )•»,-,

C C

5, = p   «j.

In case condition (2) holds, then in an entirely analogous manner we obtain
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(7) there exist positive integers p, q, ni with p^2 and (p, q) = i, and types

«Vu and € such that 1 £SIT(e) and

a = a'-(q' + '/>'•«),

ß = a'-p;

y¡ = (? + «•/>)•»,-,

Again, in case condition (3) holds, we have by Lemmas 9 and 12,

(8) there exist positive integers p, q, ni with p ja 2 and(p, q) = 1, and a finite

type «7^0 such that

a = «y,

0 = fp",

o    o
7 = P •»»,

Using now the hypothesis that a<¿3 again, we see that (6) and (7) imply

(9) if « = 0,    then    q > p.

(9) can be expressed by the inequalities K(q'+epc-e)>p and n(q'+'p'-e)>p.

In a more straightforward manner, (8) implies that q>p. Thus, if (1) holds

then a£CIT, if (2) holds then a£SIT, and if (3) holds then a£OIT. By
Lemma 1, one and only one of the conditions (l)-(3) can hold. Therefore,

either

(10) for each i £ F(V), Í, £ CT,

(11) for each i £ F(V), «,- £ ST,

or

(12) for each i £ F(V), St £ OT.

Assume that (10) holds. By (6), each 8i = pc-nc( for some »,-. Let y'= Z<.v n\-

We have

« = E ^ = Zp'*''* pc,y'
i.V i,V

and

Er,  c       c e.       e-, ,  c       c c.       ,

[(q  +  e-p)-m] = (q  +   t-p)-y'.
i.V
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These last two equations and (6) prove (II). In an analogous manner, (III)

follows from (7) and (IV) follows from (8).

It now only remains to prove that each of the conditions (II), (III) and

(IV) precludes the possibility of (I). Assume that (II) holds and also that

a=ß-ß' for some ß'. Thus

a'-(qc +cpc-t) = a = a'-p'-ß'.

Cancelling a' (which is finite) on the left gives us

{'ff'' - P°-ß'-

Since lGCIT(e), 1 GCIT(£e-e). Hence, by Lemma 5, p\q, which is a con-
tradiction. Similarly the case (III) is handled by Lemma 6. Finally, due to

the finiteness conditions, condition (IV) obviously implies the negation of (I).

The next few lemmas are essentially in the nature of corollaries to Theo-

rem 13.

Lemma 14. Assume the hypotheses of Theorem 13. Then the following hold:

(i) If either a G CIT, or 0 G CIT, or 7 G CT, or S G CT, then only conditions
(I) and (II) of Theorem 13 can hold.

(ii) // either «GSIT, or ßGSIT, or 7GST, or SGST, then only conditions
(I) and (III) of Theorem 13 can hold.

(iii) If either «GOIT, or ßGOIT, or 7GOT, or 5GOT, then only condi-
tions (I) and (IV) of Theorem 13 can hold.

(iv) // either a or ß has cardinality greater than 1 and belongs to CITHSIT

nOIT, then only condition (I) of Theorem 13 can hold.

Proof. By inspection of the conclusions of Theorem 13. In cases (i)-(iii),

we can obviously eliminate the two undesirable conclusions. In case (iv),

only conclusion (I) holds.

Remark. We notice that while the conclusions of Theorem 13 are entirely

symmetrical, due to the noncommutativity of ordinal multiplication the

formulation of Lemma 14 is not symmetric.

Lemma 15. Let 7, S, e be different from 0 and let 5 be finite. Assume that

lGCIT(e) and p^2 and (p, q) — i. Then the following two conditions are

equivalent.
(i)  (q°+ce)-8=p°-y.

(ii)  There exist types 7VO, eVO such that 1 GCIT(é').

e = p°-e',

y = (q°+ct'-p°)-y',

5 = pc-y'.

Proof. Obviously (ii) implies (i). Assume (i). Since «5^0, (qe+ee) <pc.

Since (p, </) = !, by Lemma 5, pe is not a left divisor of (q'-\-ct). Therefore, by
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Lemma 14 (i), there exist types aVO, y'j^O, e'j^O and integers « and m

satisfying condition (II) of Theorem 13. In particular,

(1) (qc+ce) = a'-(m"+cnc-t'),

(2) pe = a'-nc,

(3) 7 = (mc +U'-ne)-y',

(4) 8 = n'y'.

From (1) and (2) we see that a' divides qe and a' divides p". Therefore since

iP, q) = 1

(5) a' = 1, p = n, q - m, and pc-t' = t.

(3), (4), and (5) yield the desired conclusions of (ii).

Lemma 16. Let y, 8, e be different from 0 and let 8 be finite. Assume that

1 (£SIT(é) and p^2 and (p, ç/) = l. PAe« the following two conditions are

equivalent:

(i)  (q'+'e)-8=P'-y.
(ii)  There exist types 7VO, eVO such that 1 £SIT(é'),

c- = />'•€',

7 = (q'+'e'-p')^',

5 = p'-y'.

Proof. Entirely analogous to the proof of Lemma 15.

Lemma 17. Let ß, 7, 5 be finite types different from 0, p^2, and ic(ß)^p.
Then the following hold.

(i) If either pc- 8 =ß-y or 8-pc = y-ß, then ßECT.

(ii) If either p'-8= ß-y or 8-p* = y-ß, then ßEST.

(iii) If either p°-o = ß-y or 8-p° = yß, then ß GOT.

Proof. As usual, cases (i) and (ii) are so similar that we shall only prove

(i). Assume pc-o=ß-y. Since a(ß) ^p, certainly pc<ß. Therefore, by Lemma

14 (i), either ß is a left divisor of p" or pc = a' • (mc+cnc ■ e) and ß = a' -mc for

some appropriate a', m, n, and e. We see clearly that in either case ßECT.

Assume y-ß = b-pc. Since n(ß)^p and all types involved are finite, we have

k(ô) ^zc(y). Thus 7<5. By Lemma 14 (i) again, either ß is a right divisor of

pc or pc = (mc-\-ct-nc) -y' and ß = m°-y' for some appropriate 7', m, «, and e.

In either case we obtain 0GCT. Cases (i) and (ii) have been proved.

To prove (iii), assume p°-8 = ß-y. Then either ß is a left divisor of p° or

else p° and ß are finite ordinal (right) multiples of some common type e.

Clearly, this implies j3£OT. Assume ö-p°=y-ß, then either ß is a right divisor

of p°, or else p° and ß are finite ordinal (left) multiples of some common type e.

Again, ßEOT.
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The next few lemmas are concerned with the commutativity of finite

types. We shall rely heavily on the finiteness condition. In fact, most of our

proofs are by induction. Lemmas 18 and 21 are the main lemmas leading to

Theorem 22. As in most preliminary results involving mathematical induc-

tion, some of the following lemmas (Lemmas 19 and 20) are stated and

proved in a stronger form than it appears necessary for their intended applica-

tions. However, this is apparently unavoidable.

Lemma 18. Let p, q be positive integers such that p>q, and let a be a finite

type. Then the following hold.
(i) pc-a-qc = qc-a-p° if and only t/a£CT.

(ii) p'-a-q" = q,-a-p' if and only if a£ST.
(iii) p°-a-q° = q''-a-p0 if and only if a<E.OT.

Proof. We prove (i) by induction on the following statement:

(1) For each finite a, if k(o) £n, and pc-a-qc = qc-cfpc, then a£CT.

The cases when n = 0 or n = 1 are trivial. Assume that (1) holds for n. Let a be

such that

(2) k(o) = n + 1    and    pc-a-qc = q'-a-p'.

If K(qc-a) ¿p, then by Lemma 17, gc-a£CT and a£CT. Therefore, assume

n(qc-a) >p and, hence, qc-a<Ç.pc. By Lemma 14 (i), we see that either

(3) qc-a = pc-e   and    tpc = a -q0 for some e,

or else
qc-a — a'-(mc +'»'•<),

pc m a'.nc

(4) /   . 1.       A    ,

pc = »«.7',

for some appropriate a', y', e, m and n.

If (3) holds, then since p>q, we have n(e) <k(cx) and

pc-t-qc = qc-a-qc — qc-t.-pc.

This together with the inductive hypothesis lead to the fact that e£CT and,

hence, a£CT. If (4) holds, then we see that a', y'£CT, a' =y', and

a'-mc-qc-\-c pc-e-qc = qc-a-qc = qc-mc-y' +c qc-t-pc.

Since a'• m''• qe = qc'• me-y', we cancel it on the left and obtain

(5) pc-t-qc = qc-t-pc.

Clearly, n(pr-e-q°) ÛK(q'-a-q°), and  since p>q, K(e)<K(ct).  The inductive
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hypothesis and (5) yield the conclusion «GCT and «GCT. Thus, (i) has

been proved. The proofs of (ii) and (iii) are entirely analogous to the proof

of (i).
Lemma 18 implies, of course, that any finite type which permutes with a

finite type in CT or ST or OT must itself belong to the corresponding set of

types.

Lemma 19. Let p, q, r be positive integers such that p^2 and (p, q) = 1. Then

the following hold.
(i) There do not exist finite types ÔV0 and e^O, and a non-negative integer

m such that lGCIT(S), lGCIT(e), and

pc-(5-qc +c[rc +c8-(pm)c]-pc-e) = (e-re +e [qc +cpc-e-(pm)c]-6)-pc.

(ii) There do not exist finite types 6V0 and e^O, and a non-negative integer

m such that 1 GSIT(5), 1 GSIT(e), and

p'-^-q' +* [r> +'8-(pm),]-p,-t) = («-r» +• [q' +' p'-t-(pm)']-8)-ps.

Proof. We prove (i) by contradiction. Suppose there exist finite types

5 7^0 and e?¿0 such that the conclusion of (i) holds for some m. We may

assume 5 and e are such that whenever 5' and e' satisfy

8' ^0,        t' 9* 0,    and   k(8') + «(«') < k(8) + n(t),

then for no m does (i) hold for 5' and e'. We represent 8= £j6s 8,-sl and

«- £Í£< «r< as in (C). Thus CIT(S) = {S<; iEs} and CIT(e) = {$"-, iEt}. We
see that Si^l and 6<l*l. By inspection of the equation in (i), we obtain

ClT[pc-(8-qc +c [re +c 8-(pm)c]-pc-e)]

= {p'-*ï,i G s) \j{r-[r°+<8-(pmy}-pc-*ùiet),

and

ClT[(t-r' +< [q* +'p'-t-(j>")<]-Í)-p<]

= W,iEt\ V {(qc+cpc-e-(pmy]-8i;iEs\.

Since every indecomposable type in the right-hand side of (1) is of the form

pc-ß for some ßEIT, by the uniqueness of the decomposition, (1) and (2)

imply

(3) for each i El,       «¿ = />"•«/ for some e/

and

(4) for each i E s,      [qc + c P"-e-(Pm)c]-8i - pe-yi for some 7,.

Let t' = £íe) e/ -t\. We easily see that (3) gives us

(5) e = p<-i', íVfl,lí CIT(e'), and k(<') < «(e).
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Now, 1 GCIT(/>c-e-(/>m)c), hence by Lemma 15, (4) yields

(6) for each i E s,       5, = pc-8i  for some I/.

Let 5'= £fes 5/ »4 (6) implies that

(7) 8 = p°-8',   JVO,    1 G CTT(S'),    and   k(8') < k(8).

Using (5) and (7), we rewrite the left-hand side of the equation in (i) as

follows:
pc-(S-qc +c [rc +c8-(pm)c]-pc-e)

= pc-(pc-8'-qe +c [rc +cpc-8'-(pm)e]-pc-pc-e')

(a)
= p°-(p°-8'-qe + 'p'-[rc +c8'-(pm+1)c]-pc-t')

= pc-p'-(8'-qc +" [rc +c8'-(pm+l)e]-pc-e').

Similarly, the right-hand side of the equation in (i) can be transformed.

(e-rc +e [qe +' Pc-c(pm)c\-8)-pc

= (p'.¿-r'+'[q'+'p* -p°■t'-(pm)°]-p°-«')• Pc

= (pc-t'-rc +c pc-[qc -r-c/»<:-€'-(/>m+1)c]-5')-/',!

= pc-(t'-rc +c [qc +c pc-t'-(pm+l)c]-8')-pc.

Equating now the last line of (8) with the last line of (9), and cancelling pc

on the left we obtain

p°-(8'-q* +' [f +»r-(f^»)«]-^0
= (e'-rc +c [qc +c pc-e'-(pm+1)c]-8')pc.

(10) implies that (i) holds for 5', «' and (m + 1) when K(8')+ic(e') <K(8)+n(e).

This is a contradiction to the minimality conditions satisfied by 5 and e.

Hence (i) has been proved. The proof for (ii) is entirely analogous to the

proof of (i).

Lemma 20. Let p, qbe positive integers such that p^2 and (p, q) = l, and let

( be a finite type different from 0. Then the following hold.
(i) If 1 GCIT(i), then there do not exista finite typeS^Oand a non-negative

integer m such that 1 GCIT(Ô) and

(£m+l)c.5.(?c _pe)  _  (?«+«e).(£•»)«.J.p«.

(ii) If 1 GSIT(i), then there do not exist a finite type ÓV0 and a non-nega-

tive integer m such that 1 GSIT(5) and

(/>"•+!)».5-(q> +'e) = (q' +'e)-(pm)'-8-p".

Proof. We prove (i) by contradiction. Suppose there exists a finite type 5

such that the conclusion of (i) holds for some m. We may assume that S is

such that whenever 8' satisfy
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i' A 0,       1 £ CIT(á'),   and   «(«') < k(S),

then for no m does (i) hold for Ô'. We represent 5 = E«e« 5< • i< and e = E'ei€» ' '<

as in (C). By inspection of the equation in (i), we obtain

(i)   crT((r+1)c-«-(<r +c<)) = {(pm+1)c-&>; iEs}v {(p^y-ô-a; i e /}

and

(2) CIT((g°+cí) •(/»-)•• 5•/>«) = {(gc+c í) •(/>"•)'• o\-;¿£ s}.

Since the left-hand sides of (1) and (2) are equal, we have

(3) for each i £ 5, there exists a ft such that

(j* +•«)•(#-)••«<« (pm+iy-ßi.

Since (/>m+1, g) = l, by Lemma 15 and (3), we have

(4) for each j £ i,       (/>m)c-5¿ = (pm+1)c-ô! for some «/.

Let S'= E<e« ¿/ "4 Cancelling (pm)c on the left in (4), we have

S = p°-ô',       6' -A 0,        1 £ CIT(5'),    and   «(8') < *(«).

Substituting £c-5' for S in the equation in (i), we obtain

(pm+2Y-b'-(qc +U) = (qc+ce)-(pm+l)c-ô'-p':.

This implies that (i) holds for 5' and (m + i) where k(5') <k(Ô), which is a

contradiction to the way 5 was picked. Hence (i) is proved. The proof for (ii)

is entirely analogous to the proof of (i).

Lemma 21. Let p, q be positive integers such that p^2 and (p, q) = l, and let

e be a finite type different from 0. Then the following hold.
(i) If l£CIT(e), then there does not exist a finite type yAO such that

pc-y • (qc+cpe■ e) = (qe+cpc■ e) -y p°.

(ii) If l£SIT(e), then there does not exist a finite type 7^0 such that

P'-y (q'+'p' ■ e) = (q'+'p' -e)-yp'.

Proof. We prove (i) by contradiction. Suppose there exists a finite type

7^0 satisfying the equation of (i). We represent y — rc+c8 where 1 £CIT(5).

If 5 = 0, then we would have the equation pc-rc-qc-T-cPc-rc-pe-e — qc-rc-pc

-\-cpe-e-rc-pc. From this, we obtain

pc-rc-pc-e = pctrcpc.

Cancelling pc on the left, we see that e permutes with (p-r)c. Hence, by

Lemma 18 (i), e£CT, which is a contradiction. Therefore, we assume 5^0.

If r = 0, then we have the equation

pc-S-(qc +cpc-e) = (qc +c pc-t)-S-pc,
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which is impossible by Lemma 20 (i), with w = 0. Therefore, 8^0 and r^O.

After multiplying out the equation in (i) and cancelling the term (p-r-q)e,

we obtain the equation

peA\8-qc+°[rc+co]-pc-t) = (i-r° +c [qc +cpc-«]•«)■ p",

which is impossible by Lemma 19 (i), with «i = 0. Thus in each case we have

reached a contradiction and (i) is proved. The proof for (ii) is entirely analo-

gous to the proof of (i).

Theorem 22. Let a and ß be finite types different from 0 and 1, and let n be

a positive integer. Then an ■ ß = ß ■ an if, and only if, one of the following four con-

ditions holds:

(i) aECT and ßECT.
(ii) «GST c«ci/3GST.
(iii) aEOTandßEOT.
(iv) a = yp and ß = yq for some type y and integers p and q.

Proof. It is clear that each one of the four conditions (i)-(iv) will imply

a • ß=ß • a and hence an-ß — ß-an. We complete the proof in the other direction

by establishing the following statement by induction.

(1) If a and ß are finite types different from 0 and n(an-ß) ^m, then one of

the conditions (i)-(iv) holds.

The cases where m = 0 and «i = l are trivial. Assume (1) holds for m. Let a

and ß be finite types such that n(an-ß) ûnt+1 and

(2) «-(a--1^) = ß-a*.

We now apply Theorem 13 to the equation of (2) and consider the following

nine possible cases.

Case 1. k(o:)=k(<3). In this case, by [3, Corollary 20], a — ß and clearly

condition (iv) is satisfied.

Case 2. n(a)>K(ß). By Theorem 13 we divide this into four subcases.

Case 2a. a=ß-e for some type e. Since zc(/3)è2, we see that K(e)</c(a).

Now (2) implies

(ß-*)*>ß - ¿-CM».
Using the associative law, we can write the above as

ß-(e-ßY = ß-(ß-t)\

Cancelling ß on the left yields the equation

(3) (i-0)" = (ß-e)\

Applying [3, Corollary 3] to (3), we see that e-ß = ß-e. The commutativity

of c and ß implies that tn-ß=ß-tn. Since K(tn-ß) <ic(an-ß), by the inductive
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hypothesis we conclude that one of the conditions (i)-(iv) holds for e and ß.

It is now immediate that the same condition will hold for a and ß.

Case 2b. For some appropriate a', t, p and q,

(4) a = a'-(qe-r-'p'-t)   and   ß = a'-p>.

Equations (2) and (4) give

a'-(qc +c pc-e)-an-l-a'-pc = a'■ pe• a""1 • a'• (qc +'P'-e).

Cancelling a' on the left and applying Lemma 21 (i) with 7=aB-1-a', we see

that e must be 0. Hence

5«.(a»-i.a').pc m p'-(a»-l-a')-qe

and, by Lemma 18 (i), an_1-a'GCT. This leads to the conclusion (i) that

a, jSGCT.
Case 2c. For some appropriate a', e, p and q,

a = a'-(q' +' p'-e)    and   ß = a'-p'.

The argument here is exactly the same as in Case 2b, except for using Lemmas

18 (ii) and 21 (ii). This will lead to the conclusion (ii).
Case 2d. For some appropriate e, p, and q,

(5) a = €-ç°    and   ß = e-p°.

Equations (2) and (5) give

e-ço-a"-1-«-/»0 = t-p"-ttn-l-fq0.

Cancelling e on the left, and applying Lemma 18 (iii), we see that an-1-ÉGOT.

This leads to the conclusion (iii).

Case 3. k(j3) <n(a). By Theorem 13, we also divide this case into four sub-

cases.

Case 3a. ß = a-e for some type e. Since k(o)^2, we have k(é)<k(/3).

Equation (2) implies,

an-a-e = a •«•<*".

Cancelling a on the left, we obtain an-e = e-an. Since ic(an-e) <K(ctn-ß), by

inductive hypothesis one of the conditions (i)-(iv) holds for a and €. This

of course implies that one of the conditions (i)-(iv) holds for a and ß.

Case 3b. For some appropriate ß', «, p and q,

(6) ß = ßf-(qc +c/>"•«)    and    a = ß'-p'.

By essentially the same argument we used in Case 2b, we see that letting

y=an~l-ß', we obtain from (2) and (6),

f'-T-fr+'p1-«) = (qc+cpc-e)-ypc.
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Applying Lemma 21 (i), we see that e must be 0. Hence,

pt.y.qc = qc-y-pc.

By Lemma 18 (i), y=an~l ■ ß'ECT. This leads to the conclusion (i) that

a, ßECT.
Case 3c. For some appropriate ß', e, p and q,

ß = ß'-(q' +sps-e)    and    a = ß'-p'.

The argument is exactly the same as in Case 3b, except for using Lemmas 18

(ii) and 21 (ii). This will lead to the conclusion (ii).

Case 3d. For some appropriate e, p and q,

(7) ß = t-qo    and    a = t-p°.

Since (5) and (7) are exactly the same, using the same argument for Case 2d

will lead us to the conclusion (iii).

Next follow some corollaries of Theorem 22.

Corollary 23. Let a and ß be finite types different from 0 and 1. Then

aß = ßa if and only if one of the following four conditions holds:

(i) aECT and ßECT.
(ii) a E ST and ß G ST.
(iii) aEOTandßEOT.
(iv) a = yp and ß = yq for some type y and integers p and q.

Corollary 24. Let a and ß be finite types different from 0 and 1, and let

n and m be positive integers.  Then an-ßm = ßm-aH if and only if aß = ß-a.

Proof. It is clear that a-ß=ß-a implies an-ßm=ßm-an. On the other hand,

if an-ßm=ßn-an, then a and ßm will satisfy conditions (i)-(iv) of Theorem 22.

From this, we deduce that a-ßm = ßm-a. Applying Theorem 22 once more, we

have a-ß = ß-a.

Corollary 25. Let a, ß, y be finite types and let a be different from 0 and

1. If a-ß = ßa and ay = y-a, then /3-7 = 7-/?.

Proof. Clearly, if either ß or y is equal to 0 or 1, then the conclusion holds.

Therefore, assume ß and y are different from 0 and 1. Applying Corollary 23

to the equations a-ß = ß-a and «-7 = 7.«, we see that one of the following

possibilities holds:

(i) a, ß, yECT.
(ii) a, ß, 7GST.
(iii) a, ß, 7GOT.
(iv) There exist types e and 8, and integers p, q, m and n such that

a = t"    and    ß = e",

a = 5m    and    7 = 5".
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Conditions (i)-(iii) lead trivially to the conclusion ft7=7-ft In case (iv)

holds, we see that

ep.$m = Sm-tp.

Therefore, by Corollary 24, e-5 = S-e. This implies 18-7=7"ft
Corollary 25 has an interesting consequence. Let the binary relation E

be defined on the set X of finite types different from 0 and 1 as follows:

E(a, ß) if and only if ct-ß = ft a.

Then, it is clearly seen that £ is a reflexive and symmetric relation. By

Corollary 2&, E is also a transitive relation. Therefore E is an equivalence

relation on the set X of finite types different from 0 and 1. The following are

clearly amolng the equivalence classes of X/E :

Xx = CT (~\ X.

i2 = st n x.

x» = OT n x.

Let us now consider the set Y of all indecomposable finite types which are

not in CTWSTWOT, i.e., Y= [(X-CTUSTWOT)niT]. By Corollary 23,
it follows that no two distinct elements of Y can be in the same equivalence

class. In fact, for a(^Y,

a/E = {an; n a positive integer},

and if a, ft£ Y, a Aß, then a/EC\ß/E = 0. It turns out that, in general, all the

E equivalence classes of the set Z = X—(CTUSTWOT) can be described as

follows. Let W denote the set of finite types ß different from 0 and 1, and

such that ß admits no nontrivial roots; i.e.,

W = [ß;ß finite, ß A 0, ß A 1, for no 7 and n > 1 does ß = y"}.

We assert that for each a £ Z, a/E = {ß" ; n a positive integer} for some ß £ IF.

The proof is easy.

Our next lemma is a generalization of Euclid's Theorem to exponentiation

of finite types.

Lemma 26. Let a and ß be finite types different from 0 and 1, and let p, q be

positive integers such that (p, q) = i. Assume that a" = ß'>. Then there exists a

type y such that

a = y5    and   ß = yp.

Proof. From the hypothesis and Corollaries 23 and 24, it follows that

either

(1) a, ß £ CT U ST W OT, or
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(2) there exist 5, m, n, such that a — 8m and ß = 8n.

In case (1), the conclusion follows from the corresponding lemma on the

multiplication of natural numbers. In case (2), we obtain

and, since 8 is finite, m-p = n-q. Since (p, q) = i, there exists an r such that

m = r-q and n = r-p. Letting y = 5r, we see immediately that a = y" and ß = y".

Before we embark on our discussion of the factorization problem, we need

one more crucial lemma.

Lemma 27. Let e be a finite type and let p, q be positive integers such that

p~^2 and (p, q) = i. Then the following hold:

(i) If lGCIT(e), then qc+cpc-eElT if and only if q'+'e-p'ElT.
(ii) // IGSIT(í), then q'+'p'-eElT if and only if q'+'e-p'ElT.

Proof. To prove (i), we first assume that qc+epc-e E IT. If € = 0, then

clearly g is a prime. Therefore, assume e^O. Suppose that

(1) for some a and ß, qc +" t-pc = ct-ß.

Multiplying the equation in (1) by pc on the left and rearranging we have

(2) (qc+c pc-e)-pc = p'-a-ß.

Since all types are finite, we have either

(3) p'-a<(q'+'p"-e)

or else

(4) (qc +c pc-e) < pc-a.

We assume (3) first. Applying Lemma 14 (i) to (2), we obtain the following

two cases:

(5) For some «', pc-a = (qc +c pe-t)-e' and t'-ß = pc.

(6) For some appropriate a' and w¿2, (qc +c pc-¿) = a'-m'.

Condition (5) gives e'GCT and pc-a = (qc-t' +c pc-e-e'). Since

1 GCIT(/>c-e-e'), by Lemma 5 pc isa left divisor of qc-e'. Since (p, q) = 1, p'is

a divisor of e'. On the other hand, (5) also implies that e' is a divisor of pc.

Therefore pc = e' and ß=l. Condition (6) leads to the contradiction that

qc-r-cpc-e = me. Let us now consider (4). Since (p, q) = 1, pc-a. cannot be a left

divisor of (qc+cpc-e). Thus only one case remains and that is for some ap-

propriate a', e', y', m and «,

(qc-\-c pc■ () = a'-(mc +c nc-t'),

pc-a — a'-p'c,

/>'= p'°-y'.



284 C. C. CHANG [November

Since K(mc+cnc-t') ^2,a' = 1. Thus p\p' and p'\p. Therefore p = p' and a = 1.

We see that the assumption (1) leads to a = l or (8=1. Hence c/Z+'e-/»'

GIT. The proofs of the other direction of (i) as well as the equivalence of (ii)

are entirely analogous to the proof already given.

Let us begin the discussion of the factorization problem by first giving

an example of a finite type a which does not have the WUF property. Let

a = (l+c2c-2°)-2c. We readily see that

a = (1 + °2e-Ti)-2<1 = 2«-(l +«2°'2*).

Since 2 is a prime and zc(l+c2c-2°) = k(1+c2'>-2c) = 5, each type occurring in

the factorization of a is indecomposable. It is also clear that 1 +-c2e-2°

=í 1 +c2°-2e. Thus, a does not have the WUF property. In an entirely similar

manner, we see that (8= (l+*2'-2°) -2« = 2'• (l+*20-2*) is another example of

a finite type which does not have the WUF property. It turns out that essen-

tially these two examples illustrate the general situation concerning finite

types which do not possess the WUF property. Examples of types which

have the WUF property but not the SUF property are, for instance, nc, n*

and w° where n is not a prime. Again, essentially, these examples illustrate

the general situation of finite types which have the WUF property but not

the SUF property.

It is interesting to notice here that of the two finite examples we gave in

the preceding paragraph, one is a partially ordering type and the other is a

connected type. Referring the reader to the survey presented in [2], it is

known that there are also finite p.o.r. which do not satisfy the unique decom-

position theorem for cardinal multiplication. It is not known, however,

whether there are finite connected relations not satisfying the unique de-

composition theorem for cardinal multiplication.

As these examples illustrate, the types of the form qc-\-cp°-t and q'+'p'-e

together with their associated types of the form qc+ce-pc and q'+'e-p' will

play an important role in our subsequent discussion. For this purpose, we

introduce some special notation to single out types of the above form. For

each positive integer p, we let

£cp = {qc -\-c p'-t; q an integer, e finite, e ^ 0 and 1 G CIT(e)).

£°p = [5« +' p'-e; q an integer, e finite, e í¿ 0 and 1 G SIT(e)}.

In a similar manner, we let the associated types be singled out by:

Sicp = {qc +c e-pc; q an integer, e finite, t j¿ 0 and 1 G CIT(c-)).

(R'p = {q° +' e-p"; q an integer, e finite, t ^ 0 and 1 G SIT(e)}.

Some very simple properties of these sets of finite types can be given. For

instance, by the unique decomposition of a type into cardinal or square sums

of types of CIT or SIT, we see that if a type a belongs to, say, £cp, then the
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q and the e are uniquely determined. That is to say if a = qc-\-cpc• t and

a = rc-\-epe-t', then q = r and e — t'. A type a may belong to more than one set

of the form £cp. However, from Lemma 4 (i), we see that olE£"pr\£cq if and

only if ctE£cr, where r is the l.c.m. of p and q. A similar remark can be made

with respect to the sets (Rcp and <Rcq (here we should cite [3, Lemma 5]). Of

course, as in many previous results, these remarks apply equally well to

sets with the superscript small s.

For p, q both greater than or equal to two, there exists no type a which

belongs to £cp and £sq. This can be seen as follows: Suppose a = mc-j-'p"• e

and a = n,+,q'-e' where lGCIT(e) and lGSIT(e'). If both w^O and «^0,

then ccGCIT and «GSIT, which is impossible by Lemma 1. Therefore, as-

sume either m = 0 or « = 0. Suppose m = 0. Then pc-e = n'+'q'-e'. If wj^O,

then lGSIT(a) but clearly 1 GSIT(/>c-e). Hence, both m and « are 0. Thus,

/>"•€ = g'• «'. Suppose that púq, then by Lemma 17, pcEST which is impos-

sible. So we have shown that if p,qú2, £cpr\£'q = 0. Similarly, (ñcpí\(R'q = 0.

In general, £cpi\Wq^0, £cpr\(R'q9¿0, £êpr^(R'q^0, and £'pr\(ñcq^0.

Finally, we note that under the condition (p, q) = l, aE£cp(~\(Rcq if and

only if for some rand type e^O, lGCIT(e), a = re+cp't-e-qe. In one direction

this is trivial, so let us assume a = rc-\-cpc-ti, where 1 GCIT(ei) and a = rc+cei

■qc where 1GCIT(«2). It now follows that pc■ ei = é2• qc. If either p = \ or q = l,

then clearly the conclusion holds. So let us assume p, g!;2. By Lemma 17,

n(ei)>q and k(é2)>/>. Applying Lemma 14 (i), we have either

«a = pc-e   and    «i = t-qc for some e,

or

e2 = a'-(mc +cnc-t), p° = a'-ne,

ei = (mc -\-c t-nc)-y', qc = nc-y',      for some appropriate a', y', «, m, ».

The first possibility of course leads to the desired conclusion. In the second

possibility, we note that since (p, q) = l, « = 1, pc=a', qc = y'. Thus,

e2 = pc-(mc + ce) and ei-(»"+*«)-g°. Since lGCIT(ei) and lGCIT(e2), we

must have m = 0, which again leads to a = rc-r-cpc-e-qc. By exactly the same

type of argument we may establish a similar remark for £'pr}(Raq. As for

the sets £cpr\(ñ'q and £'pi\(Rcq, we simply state that if (p, q) = l, then

aE£cpr\(Raq if and only if ct = pc-e-q' for some e^O such that 1 GCIT(e)

and lGSIT(e). A similar remark holds for £'pr\(Rcq.

In order to be specific when we pass from a type qe-\-'pe-e to the type

qc-\-ce-pc, we introduce, for each positive integer p, the following functions:

ForaG£c£,

Fcp(ct) =qc-T-ce-pc when qc and e are the unique integer and type such that

ot = qc+cpc-e.

For ctE£'P,
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F'p(a)—q'Jr't-p' where q' and e are the unique integer and type such

that a = q'-\-'p'-t.

We see without difficulty that the domain of Fcp is £cp, the domain of F'p

is £'p, the range of F'p is 6icp, and the range of F'p is Gi'p. We can also show

that Fcp and F'p are one-to-one functions.

Let ff be the set of all finite sequences of finite types different from 0 and 1.

For our purposes, we represent a finite sequence of types a,- and of length n

as follows:

(a0, bti, a2, ■ • • , a„_i).

In order to discuss the canonical factorization of a finite type, we introduce

a function Cï whose domain is SF and whose range is included in 'S. The in-

tuitive meaning of Ci is as follows. Suppose we are given an element of $, say

(eta, olí, • ■ • , a„_i).

We shall first move (in a definite manner) each factor a, belonging to

CTUSTUOT as far to the left as possible. Next, we shall permute any group

of adjacent factors which all belong to CT or ST or OT in their natural

increasing order from left to right. Of course, by the examples we have al-

ready mentioned, the resulting sequence (ft, ft, • • • , ft>-i) may not have

exactly the same elements as the sequence («o, «i, • • • , aB-i); however, we

shall do this without changing the product Liten a,-. That is, at the end of the

process ü-e« «,= II»en ft-

We define the function Ci by induction on the length « of a sequence.

It turns out that Ci will map sequences of length n into sequences of the

same length.

If a = (ao) is a one-termed sequence, we let C5(ct) =a. Assume that Q5(a)

is defined for each a£iF of length n. Let ct = (cto, «i, • • • , ctn), and let

ei((a0, «i, • • • , ctn-i)) = (ft, ft, • • • , ft,_i). We divide the definition of

Q3(a) into four parts.

Case 1. a„£CTWSTWOT. In this case,

eff(a) = (ft, ft, • • • , ft-i, a»>.

Case 2. a„£CT. Let an = pc where £ = 2. Let h be the least integer m

satisfying the following three conditions:

(2i) m g n - 1.

(2ii) If m < n - 1,    then   ßm+l £ £cp.

(2iii)   For each r such that m+l<r^n-l, either ft £ CT or ft £ £cp.

Let k be the least integer m satisfying:

(2iv) m = h.
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(2v)       For each r such that m < r ^ h,      ß, = (pr)e for some p, > p.

We let Cff (a) = (70, 71, ■ • • , Yn) where

yr = ßr       for 0 S r g k,

7*+i = Pc,

(ßr if k < r g, n - 1 and ßT E CT,

Tr+1 ~    \Fcp(ßr)     if k < r g « - 1 and ßr E £cp.

Case 3. «„GST. Let ct„ = p' where p^2. Let h be the least integer m

satisfying the following three conditions:

(3i) m S n — \.

(3ii) If m < n - 1,    then   ßm+x E £sp.

(3iii)    For each r such that »+l<rá»-l, either ft G ST or ft. G £'p.

Let £ be the least integer m satisfying:

(3iv) m ^ h.

(3v)       for each r such that m < r g h, ßr = (pT)' for some pr > p.

We let eiF(a:) = (70, 7i, • • • , Yn) where

yr = ßr        for 0 g r g k,

T*+i = P',

(ßr if £ < r g » - 1 and ßr E ST,

7r+l      \F'p(ßr)     If i á » - 1 and ft G £Sp.

Case 4. «„GOT. Let an = p° when ¿>2ï2. Let ife be the least integer »»

satisfying:

(4i) m g n — 1.

(4ii)   For each r such that w<r^« — l,ft= (pr)° for some pr > p.

We let eï(a) = (70, 71, • • • , yn) where

yr - ft        for 0 g f g ¿,

T*fi = ¿°,

7r+! = ft        for fc < r ^ » — 1.

Perhaps at this point it is best to give an illustration of how the Cï

function operates. Suppose we are given the sequence,

(2% 1 +« 12«-2», 4C, 3% 2«, 6C, 7°, 2°, 5» +'6'-2°, 3', 3«, 2').
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Let us write down successively the values of Ci of the initial segments. In

some cases where the outcome is evident, we shall skip several steps at once.

in
(2% 1 +-c 12c-2«>,

(2C, 4C, 1 +e3c-2'-4e),

(2*, 3', 4«, 1 +«2»-12«),

(2°, 3", 4", 1 +c2M2i, 2; 6% 2°, 7°, 5« +- 6--20),

(2% 3°, 4C, 1 -+c 2«12c, 2s, 6", 2°, 7°, 3', 5" +« 2«-2°-3', 3»),

< • • • , 7°, 2«, 3«, (5«+'2°-6'), 3').

The last line is the result. Notice that 1 +c2*- 12c and 2* cannot be inter-

changed because l+c2»-12c cannot be written in the form g*+*2*-e. Also 3'

cannot be interchanged with either 5*+,2*-2° or 5*+*2°-2*, because neither

of these types can be written in the form (c7/+'3'.e).

The example may give the erroneous impression that every type can be

written in one of the above forms. This is not the case of course. In addition,

we should also point out that some factors may repeat and they may stand

adjacent to each other.

Some simple properties of the function 65 are stated in the next lemma.

Lemma 28. Let 65 ((a0, au ■ ■ ■ , a„_i)) = (j30, ßi, • • • , (8„-i). The following

hold:
(i) For each iEn, either ßi = ajfor some j En, or ßi=Fck(aA for some A and

jEn, or ßi = F'k(aA for some k and j En.

(ii)  For each iEn, CÍF «j80, ft, • • • , ft» = <ft>, ft, • • • , ßi).
(iii)    IL'en ««- ILe« ft-
(iv) If a,GIT for each iEn, then ßiElT for each iEn.

Proof. Conditions (i), (ii) and (iii) are proved by induction on n. We shall

not present their proofs. We only point out that the given precise definition

of CSF is stiff cient for the proof of each case. While admittedly the details are

sometimes long and messy, we do not see any difficulties. Condition (iv) is

proved by Lemma 27 and (i).

A factorization oí a finite type ß different from 0 and 1 is a sequence

(«o, ■ ■ • , tt„_i) of types «iGIT such that ß= H,6» a¡. A canonical factoriza-

tion of a finite type (3 different from 0 and 1 is a sequence {a0, • ■ ■ , a„_i)

of types a¡EÍT such that (3= Il.-e»«.' and (a0, • • • , cxn_i) is in the range of

the function Ci. It is evident that every finite type j8 different from 0 and 1

has at least one factorization; furthermore, by applying 6$ to this factoriza-
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tion of ft we obtain at least one canonical factorization of ß of the same

length. We prove in the next theorem that the CF is unique.

Theorem 29. Every finite type different from 0 and 1 has a unique canonical

factorization.

Proof. It is clear that corresponding to each finite type ß there exists a

finite upper bound to the lengths of the factorizations of ft We establish the

theorem by proving the following statement by induction on n.

(1) For each finite type ß different from 0 and 1, if n is the largest number

m such that ß has a factorization of length m, then ß has a unique canon-

ical factorization.

The case « = 1 is trivial. Assume that (1) holds for some w = 1. Let

(2) (ft, ft, • • • , ft.) be a canonical factorization of ft such that n is at the

maximum.

Let

(3) (a0, oli, ■ ■ ■ , am) be any canonical factorization of ft

Notice that m = n. Let y = ITie« ft and 5 = IJ,era a, so that

(4) 8-am = 7-ft.

Since the maximum of the lengths of factorizations of y and 5 must both be

less or equal to n, by the inductive hypothesis,

(5) (ß0, ßh ■ ■ ■ , ft,-!) is the unique CF of y,

and

(6) (ato, ot\, ■ ■ ■ , a,»_i) is the unique CF of 5.

We shall now prove

(7) K(y) = k(ô).

Assume that

(8) K(y) < k(S),

and we shall derive a contradiction.

Applying Theorem 13 to (4), we obtain four cases. We shall treat them in

turn.

Case 1. There exists an tAO such that 5 = 7-6 and €-am = ft. Since

n(y) <k(8), we have ic(e)>l. This implies that ft, £IT which is a contradic-

tion.
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Case 2. There exist positive integers p, q with p^2 and (p, q) = 1, and

types aVO, YVOand «such that lGCIT(e), K(qe-\-cpc-f)>p, and

8 = ¿-(q'+'P'-t),

y - a'-p*,

ft = (qc+ccpc)-y',

am = />"-7'.

Since p ^2, we see immediately that 7' = 1. We now distinguish two subcases.

Case 2a. « = 0. In this case, am = pc, ßn = q", q>p, and (p, q) = l. Clearly

the maximum length of factorizations of a' is at most ». Hence, by the induc-

tive hypothesis, let

(9) (70, 71, • • ' , 7r) be the unique CF of a'.

Since 8 — a'-qc and y = a' -pc, we see that the CF of 8 and 7 given in (6) and

(5) are obtained from the CF of a' given in (9) by adding qc and pc, respec-

tively, at the extreme right and manipulate according to the rules of the

function C$.

Let us begin with the sequence

(70, 7i, • • • , y„ qc)

and turn it into the sequence

(oto, ai, • • • , am_i)

by the given rules. If

(10) am_! 9* q°,

then either

(11) 7r = kc for some k > q,

or else

(12) 7r G £%

Suppose (11) holds. Then, since k>q>p, in obtaining the sequence

(ft, ft, • • • , ft-i)
from the sequence

(70, 71,  ■  •   ■ , 7r, PC),

we see that ßn-i = kc. But this means that the sequence

(ft, ft, • • • , ft) = (ft, ft, • • • , k% q<)

cannot be a CF of ß, contradicting (2). Suppose (12) holds. We consider

the following two more subcases. Either
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(13) 7r G £cp,

or else

(14) 7r G £eP-

Suppose (13) holds. Then ft_i = Fcp(yr). Since (p, q) = \, by our previous

discussion of £cpr\£cq, we see that (12) and (13) imply ßn_iE£cq. Thus the

sequence

(ft, ft-, ■ • • , ßn) = (ft, ft, • • • , ft-i, qc)

cannot be a CF of ß, contradicting (2). Suppose (14) holds. Then, since

7rGCT, ßn-i = pc and /3n_2 = 7r. Again the sequence

(ft, ft, • • • , ft) = (ft, • • • , yr, p% q')

cannot be a CF of /8, as by (12) qc can be pushed to the left. This again contra-

dicts (2). Therefore (12) cannot hold. Since neither (11) nor (12) can hold,

(10) cannot hold. Hence

(15) am_! = q°.

(15) implies that the sequence

(a0, «j,    • • , am) = (oto, «i, • • • , qc, p°)

is not a CF of ß, contradicting (3). So, Case 2a leads to a contradiction.

Case 2b. e?*0. Again, let (9) hold. In this case, the sequence

(7o, 7i, • • -,7r, (qc+cpc-e))

is a CF of 8. Therefore, by (6), am-i = (qe+cpc-t). But am = pc, therefore the

sequence

(ao, ••-,«„) = («o, • • ■ ,q°+<p°-e, p°)

cannot be a CF of ß, contradicting (3). Case 2b also leads to a contradiction.

Case 3. This case can be treated in an entirely analogous manner as

Case 2. We only note that everywhere cardinal notions are replaced by square

notions.

Case 4. There exist positive integers p, q with p^2 and (p, q) = l, and

types 7'?^ and e^O such that q>p and

7 = fp°,

ft = q°-y',
am = p°-y'.

It is evident that 7' = 1. Therefore, ßn = q" and am — p°. By the inductive

hypothesis, let
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(16) (yo, 7i, • • • , 7r) be the unique CF of e.

In going from the sequence

<7o, 7i, • • ' , 7r, g°)

to the CF

(do,   •   •   ■  , Otm-l)

of 8, we note that if ctm-.iAq°, then yr = k° for some k>q, and am_i = fe°. This

implies that the sequence

(ao, • • • , am-i, atm) - (at0, • • • , k°, p")

cannot be a CF of ft contradicting (3). If am_i = g°, then the sequence

(ao, ai,---, am-i, ctn) = (a0, • • • , q°, p°)

cannot be a CF of ft contradicting (3). Thus Case 4 leads to a contradiction-

Since each case leads to a contradiction, we see that (8) fails. In an en-

tirely analogous manner, we can show that the inequality ¡c(8)<ic(y) must

also fail. Thus, (7) must hold. Now, from (4) and [3, Corollary 20], we obtain

(17) y = 8   and   ßn = an.

The inductive hypothesis and (17) yield the desired conclusion that the se-

quences in (5) and (6) must be the same, and hence, n = m and a, = ft for

each t£n. The theorem is proved.

A simple consequence of Theorem 29 and Lemma 28 is that every factor-

ization of a finite type ß different from 0 and 1 has a constant length.

Theorem 30. Let ß be a finite type different from 0 and 1. Then ß has the

strict unique factorization property if and only if there exists a factorization

(ft, • • • , ft-i) of ß such that the following are satisfied:

(i) No two distinct (prime) cardinal, square, or order types shall stand

adjacent to each other.

(ii) No cardinal type pc (square type p') shall stand immediately to the right

of a type y where yÇ.£cp(yE:£'p).

(iii) No cardinal type p° (square type p') shall stand immediately to the left

of a type y where y(E<Rcp(y£:lR'p).

Proof. Assume that ß has the SUF property. Let (ft, • • ■ , ft_i) be the

canonical factorization of ft If (ft, ft, • • • , ft-i) does not satisfy either (i),

(ii), or (iii), then by a very simple reshuffling of the factors, we can obtain

another factorization of ß different from (ft, ft, • • • , ft_i).

On the other hand, assume that a factorization (ft, • • • , ft_i) of ß

satisfies (i)-(iii). Then, since it already satisfies (i) and (ii),



1961] ORDINAL FACTORIZATION OF FINITE RELATIONS 293

CSF«(8o, • ■ • , (8»-i>) = (ßo, ■ ■ ■ ft_i>.

Therefore, (ßo, • • • , ßn-i) is the canonical factorization of ß. Let

(70, • • • , 7n-i) be another factorization of ß. Suppose that

(70, 7i, • • ■ , 7—1) ^ (ßo, • ■ ■ , ft-l>-

Since

eï((7o, 7i, • ■ • , 7—1» = (ßo, ■ ■ ■ , ßn-i),

it follows that (70,71, • • ■ , 7n-i) violates either (i) or (ii). Since (ßo, • ■ • ,ßn-\)

satisfies (i), we see that (70, • • • , 7«-i) must violate (ii). Hence, by the defini-

tion of the function Cï, (ft, • • • , fti_i) must violate (iii). This is a contradic-

tion. Thus ß has the SUF property.

Theorem 31. Let ß be a finite type different from 0 and 1. Then ß has the

weak unique factorization propertyifand only'ifeveryfactorization (ßo, ■ ■ ■ ,ßn-i)

of ß satisfies (ii) and (iii) of Theorem 30.

Proof. The proof of Theorem 31 is quite similar to the proof of Theorem

30. We shall not present the proof here.

Notice that while divisors (left or right) of types with the SUF or WUF

property have the corresponding properties, the same cannot be said of their

products.
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