DERIVATIONS ON »-ADIC FIELDS()

BY
NICKOLAS HEEREMA

1. Introduction. Let K be a p-adic field as defined in Schilling [2, p. 226,
Definition 2] with exponential valuation V and associated place H. Let & be
the residue field of K and Rk the ring of integers of K. In this paper we in-
vestigate the following connection between derivations on K into K and
derivations on & into k. Let D be an integral derivation on K, i.e., one which
maps integers onto integers. The mapping d on & given by d[H(a) | = H[D(a)],
for all a€E Rk is a derivation on k and we say that d is induced by D.

An integral derivation on K is an analytic derivation, that is, it is a con-
tinuous map in the valuation topology. The following is an almost immediate
consequence of the definition:

PRrOPOSITION 1. A derivation D on K is analytic if and only if for some posi-
tive integer n and every aERg, V[D(a)] = —n.

If D is a derivation on K then so is p*D where 7 is an integer. Thus K
possesses a derivation D which maps Rk into Rx but not into (p), the max-
imal ideal in Rk, if and only if K possesses a nontrivial analytic derivation.
Such a derivation induces a nontrivial derivation on k. However k possesses
a nontrivial derivation (into k) if and only if & is not perfect, so we have

PROPOSITION 2. If k is perfect K has no nontrivial analytic derivations.

In this paper we show that, not only is the converse of Proposition 2 true,
but every derivation on k is induced by a derivation on K (Theorem 1).
Thus if % is not perfect K possesses a nontrivial analytic derivation which
fact is used to prove Theorem 2. This theorem asserts the converse of a theo-
rem of Teichmiiller [3, p. 144] which states that if K’ is a p-adic field [2,
p. 227, Definition 3] with the same residue field & then K is uniquely em-
bedded in K’ if % is perfect.

2. Construction of analytic derivations. Let S= {s. } et be a set of integers
in K with the property that §= {ia}aez, where 5,=H(s,), is a p-basis for k.
It is well known that, given any set of elements {ﬂa}aez in k, there is one
and only one derivation d on k such that d(3.) =4, for all « &€, the indexing
set of S. S is a purely transcendental set over ko the maximal perfect subfield
of k. Every derivation on ko(S) into k has one and only one extension to k.

Let K, be the p-adic subfield of K having residue field k,. Again, S is a
purely transcendental set over K,. Let d be an arbitrary derivation on k(S)
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into k and let S, be a proper subset of S. Now if D is an integral K, derivation
(trivial on K,) on K;=K,(S,) into K which induces d restricted to k1= ko(S1)
and s,&S5—.S;, then we can extend D to an integral derivation D’ on Ki(sa)
which induces d on ki(s,) by choosing D’(s.) so that H(D'(s.)) =d(5.). By a
straightforward argument based on Zorn’s Lemma we conclude that every
derivation d on ko(S) into k is induced by a K, derivation on K,(S) into K.

Thus the problem of finding a derivation on K which induces a given
derivation on k is reduced to the problem of extending an integral K, deriva-
tion on K,(S) into K to an integral derivation on K. This is done in a way
suggested by the usual proof [4, p. 128] of the fact that if L and F are fields
such that L is a separable extension of F then any derivation on F can be ex-
tended to a derivation on L.

The fields k¢(S) and k? are linearly disjoint over [ko(S)]?=%o(S?) by
virtue of the fact that S is a p-basis for k. Thus if the set {}ses is a basis
for k» as a vector space over ko(S?) then {is}ges is also a basis for ko(S) [k?]
over ko(S). But ko(S) [k?]=k. Thus {4} ses is a basis for k over ko(S). Hence
{#3} ses is a basis for k? over ko(S7). Repeating the argument # times we con-
clude that the set {#5 }ges is a basis for k over ko(S).

For each BE€J we choose us € K so that H(ug) =1is. The set U= {45} ges
is clearly linearly independent over K(S). Moreover, each coset of the ideal
(p™) in Rk contains an element of the form Y a,u?" where the a, are integers
in Ko(S) (unless otherwise indicated ) will indicate a finite sum in the ele-
ments of U, with coefficients which are integers in K(S)). This follows from
the fact that H maps the linear space spanned by the set U, over K,(S) onto k.

Let D denote an arbitrary integral derivation on Ky(S) into K. We define
a mapping D, on Rg/(p") as follows. Let x4 (p") be an arbitrary element of
Rg/(p"). There is then an element D a.u? in the set x+(p"). We let
D.(x+(p") = D_D(a)u? +(p"). D, is a well-defined mapping since if the
element D _beu? is in the coset x+(p") then for all @, ba=a,, mod p*, and
D(a.)=D(b,), mod p, since D is integral.

In order to verify that D, is a derivation we must show that the coset
u% u% +(p") contains an element of a certain form. To this end we use the
following:

LEMMA 1. For all positive integers r and m

m m_1 $ m—i m
¢)) [ el = X p'Y seadin o, mod p™,

=0
where s;,« 15 @ rational integer and c; o 1s an integer in Ko(S) for all 1 and a.

Proof. Let [p™, ¢] denote an ordered partition of the integer p™ into g
nonnegative summands and let €[p™, ¢q] represent the corresponding multi-
nomial coefficient. If p* is the highest power of p to divide the integers in
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[p™, q] then p=— divides €[p™, q] i.e. €[p™, q]=p™ €' [p™, ¢]. Thus, in a
multinomial expansion to the power pm each term having €[pm ¢]
=pm*@'[p™, q] as a coefficient is a p* power.

With these preliminaries we proceed to the proof of (1) by induction on
m. Clearly (1) holds for m =1. We assume then that (1) holds for m <n. Now

n nl $ n —i
@) (Sl =Xl + X" T ep’, qlalmg,  mod pr,
=1

by the above remarks on a multinomial expansion to the power p». Now,
prH

Aprg = 2 Corglatha mod p,
and hence
i prt s .
Atrg =2 cmarad |, mod pi.
However, by the induction hypothesis
o TS i pran ni
3 [2 cumratia | = 2 P 2 StraliaCraliale mod p

=0

Substituting (3) for A‘(",',':,:] in (2) yields an expression of the form (1) and
the lemma is proved.

LEMMA 2. The mapping D, is a derivation on Rx/(p™).

Proof. D, is clearly an additive mapping. In order to verify that D,(xy)
= xD.(y) + yDa(x) we proceed as follows. Let x = D> a.u® + (p*) and
y= 2 bsul +(p*). Then, xy= D a.bsul ub +(p"). But u.ug= Y c,u,, mod p,
and hence, #5u} = [ c,u,]”", mod p». Using Lemma 1 with r=0 we have

R = e n
Ua Ug = Z ? Zsa.ﬂ.s‘.vcu.ﬁ.i.vu*r ’ mod p ,
i=0
or,
n—1 i P P n
xy = E aabg Z b4 Z Sa.ivCab ity T (P).
i=0

Thus,
Da(xy) = 3. D(aabsp Sapinapin)tts + (8,

= 3 [0.D(5s) + 53D(0a) 18 5w inlopintis + (37,

= 3 [e.D(bs) + bsD(ac) ] s + (),
2D.(y) + yDa(x).

Ii
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We define a mapping D on Rk as follows. D(x) =N;>, D.(x+(p)) and we
assume that #; and u; are the unity elements of 2 and K.

LEMMA 3. The mapping D on Rg is a derivation and its restriction to
RKmKo(S) is D,

Proof. We first show that for all #, D,[x+(p") | DDpsi[x+(p™+1)]. Let
ur= anua, mod p. Thus wt= anua] mod p*. Or, using Lemma 1,

n+l n—t P n
<) e —21’ Zsavﬁcf.ﬁuﬁy mod p .

1=0

We have x + (p*) = b2 + (p**)) and, by (4),
x (P") = Lbup'sa,sachepul +(B").
Now
Duls+ ()] = X Dbut’sesstoes)iy + (7,
= 3 DO sassioisns + (87,
= 3 Dbyl + (8.

Also, we have
Dapafz 4 (p79)] = 22 D@)w™ + (p+),

and it follows that Dy [x+(p**?)] is a subset of D,,[x+(p")] The cosets
{D [x+(p")]} form a nested sequence. Thus the mappmg D is a derivation
mod p* for all positive integers #. It follows that D is a derivation, and it is
obviously integral.

It remains to show that D agrees with D on Ko(S)N\Rxk. Let a EKo(S)
N Rg. Then D,[a + (p*)] = D.[au?" + (p*)] = D(a) + (p*). Hence D(a)

=N;_; Du[a+(p") ] =D(a).

Now we started this construction with an arbitrary integral derivation on
K,(S). Extending D to K the quotient field of Rx we conclude that every
integral derivation on K(S) has an integral extension to K.

THEOREM 1. Every derivation on k is induced by a derivation on K.

Proof. Each derivation d on k is the unique extension of a derivation d’
on ko(S) into k. There exists a derivation D on K,(S) into K which induces
d’. But we have shown that D can be extended to an integral derivation on
K which induces a derivation on k& which is in turn an extension of d’.

CoROLLARY. K possesses no nontrivial analytic derivations if and only if k
is perfect.
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Proof. If K possesses a nontrivial analytic derivation, it then has an
integral derivation which induces a nontrivial derivation on &, hence & is
not perfect. If & is not perfect there is a nontrivial derivation d on k, and the
result follows from the theorem.

3. An application. A well-known theorem of Teichmiiller [3, p. 144] states
that if K’ is a p-adic field with residue field %, then K is uniquely embedded
in K’ if k is perfect.

We will show that if K possesses a nontrivial integral derivation then K
is not uniquely embedded in K’.

Let Rx[[x]] represent the power series ring in x over Rg. Then Rg: is a
homomorphic image of Rx[[x]] with kernel I=(p —x"u) where % is a unit
and 7 is the ramification index of K’ [1, Theorem 1].

Let D represent a nontrivial derivation on Rg such that fora € Rg, V(D(a))
=2 and equality is obtained for some element in Rg. The mapping 7 given by
7(a) = )_ivo (Di(a)/1")x? (D° being the identity map) is an isomorphism of
Rk into Rk[|x]] and, moreover, V(Di(a)/i!)>1 for all integers i>0. Let &
denote the natural map of Rx[[x]] onto Rx[[x]]/I. Then ¢r is an isomor-
phism and we wish to show that £7(Rk) contains cosets not of the form b+171
for & Rk. Equivalently, we wish to show that for some ¢ Rk there is no
bE Rk such that Y ;o (Di(a)/i!)xi is congruent to b, mod I. We consider
then the equation

. 0 D:
(5) > (

i J
i—0 1!

2) xt =0+ <p — xn E u,-x‘) i cixt

=0 1=0

where u= D ;2o ux and uo is a unit in Rx.
In order for this equation to have a solution ¢= » ;> cix? for some b we
must have

d=b+PCo,
Di(a
‘()=p6,', i=17"'1n-1)
(6) 1!
Dn+i(a) i
= PCntj — UrCik), =01, -
(n+])| DPln+j Z"B( kCj k) J )

We choose @ so that V(D(a)) =2 and, hence V(c;) =1. Assume first that
V(co) £1. Since V(D"(a)/n!) >n it follows that V(pc,) = V(co). Thus V(c,) =0
and V(co) =1. Necessarily V(c;)>1 for 1<i<n. It follows by letting j=n
in (6) that V(pcan) = V(c,) which is a contradiction since ¢, & Rx. Assume
next that V(co) >1. Again, letting j=1 in (6) we conclude that V(pca.;1)
=V(c1) or V(cu1) =0. As before, it follows that V(pcania) = V(cay1) which is
a contradiction. Thus equation (5) has no solution Y .o, cixi for any bE Rg
and it follows that the embedding £7(Rk) in Rk[[x]]/I is distinct from the
canonical embedding. It follows that the quotient field of £{7(Rk) is distinct
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from the canonical embedding of K in the quotient field of Rx[[x]]/I. Ap-
pealing to Theorem 1 for the existence of the derivation D if k is not perfect
we have

THEOREM 2. K is uniquely embedded in K' if and only if k is perfect.

We note in conclusion that the unique embedding of K in K’ in case k
is perfect can be proved by an argument which depends directly on the fact
that % possesses no nontrivial derivations [1, p. 493].
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