DERIVATIONS ON p-ADIC FIELDS(1)

BY NICKOLAS HEEREMA

1. Introduction. Let K be a p-adic field as defined in Schilling [2, p. 226, Definition 2] with exponential valuation V and associated place H. Let k be the residue field of K and R_K the ring of integers of K. In this paper we investigate the following connection between derivations on K into K and derivations on K into K and derivations on K into K and derivation on K, i.e., one which maps integers onto integers. The mapping K on K given by K by K is a derivation on K and we say that K is induced by K.

An integral derivation on K is an analytic derivation, that is, it is a continuous map in the valuation topology. The following is an almost immediate consequence of the definition:

PROPOSITION 1. A derivation D on K is analytic if and only if for some positive integer n and every $a \in R_K$, $V[D(a)] \ge -n$.

If D is a derivation on K then so is p^rD where r is an integer. Thus K possesses a derivation D which maps R_K into R_K but not into (p), the maximal ideal in R_K , if and only if K possesses a nontrivial analytic derivation. Such a derivation induces a nontrivial derivation on k. However k possesses a nontrivial derivation (into k) if and only if k is not perfect, so we have

PROPOSITION 2. If k is perfect K has no nontrivial analytic derivations.

In this paper we show that, not only is the converse of Proposition 2 true, but every derivation on k is induced by a derivation on K (Theorem 1). Thus if k is not perfect K possesses a nontrivial analytic derivation which fact is used to prove Theorem 2. This theorem asserts the converse of a theorem of Teichmüller [3, p. 144] which states that if K' is a p-adic field [2, p. 227, Definition 3] with the same residue field k then K is uniquely embedded in K' if k is perfect.

2. Construction of analytic derivations. Let $S = \{s_{\alpha}\}_{\alpha \in I}$ be a set of integers in K with the property that $\overline{S} = \{\bar{s}_{\alpha}\}_{\alpha \in I}$, where $\bar{s}_{\alpha} = H(s_{\alpha})$, is a p-basis for k. It is well known that, given any set of elements $\{\bar{u}_{\alpha}\}_{\alpha \in I}$ in k, there is one and only one derivation d on k such that $d(\bar{s}_{\alpha}) = \bar{u}_{\alpha}$ for all $\alpha \in I$, the indexing set of S. \overline{S} is a purely transcendental set over k_0 the maximal perfect subfield of k. Every derivation on $k_0(\overline{S})$ into k has one and only one extension to k.

Let K_0 be the p-adic subfield of K having residue field k_0 . Again, S is a purely transcendental set over K_0 . Let d be an arbitrary derivation on $k_0(\overline{S})$

Presented to the Society, December 12, 1960; received by the editors March 14, 1961.

⁽¹⁾ This research was supported by NSF G-11292.

into k and let S_1 be a proper subset of S. Now if D is an integral K_0 derivation (trivial on K_0) on $K_1 = K_0(S_1)$ into K which induces d restricted to $k_1 = k_0(\overline{S_1})$ and $s_{\alpha} \in S - S_1$, then we can extend D to an integral derivation D' on $K_1(s_{\alpha})$ which induces d on $k_1(s_{\alpha})$ by choosing $D'(s_{\alpha})$ so that $H(D'(s_{\alpha})) = d(\overline{s}_{\alpha})$. By a straightforward argument based on Zorn's Lemma we conclude that every derivation d on $k_0(\overline{S})$ into k is induced by a K_0 derivation on $K_0(S)$ into K.

Thus the problem of finding a derivation on K which induces a given derivation on k is reduced to the problem of extending an integral K_0 derivation on $K_0(S)$ into K to an integral derivation on K. This is done in a way suggested by the usual proof [4, p. 128] of the fact that if L and F are fields such that L is a separable extension of F then any derivation on F can be extended to a derivation on L.

The fields $k_0(\overline{S})$ and k^p are linearly disjoint over $[k_0(\overline{S})]^p = k_0(\overline{S}^p)$ by virtue of the fact that \overline{S} is a p-basis for k. Thus if the set $\{\bar{u}_{\beta}\}_{\beta \in J}$ is a basis for k^p as a vector space over $k_0(\overline{S}^p)$ then $\{\bar{u}_{\beta}\}_{\beta \in J}$ is also a basis for $k_0(\overline{S})[k^p]$ over $k_0(\overline{S})$. But $k_0(\overline{S})[k^p] = k$. Thus $\{\bar{u}_{\beta}\}_{\beta \in J}$ is a basis for k over $k_0(\overline{S})$. Hence $\{\bar{u}_{\beta}^p\}_{\beta \in J}$ is a basis for k^p over $k_0(\overline{S}^p)$. Repeating the argument n times we conclude that the set $\{\bar{u}_{\beta}^{pn}\}_{\beta \in J}$ is a basis for k over $k_0(\overline{S})$.

For each $\beta \in J$ we choose $u_{\beta} \in K$ so that $H(u_{\beta}) = \bar{u}_{\beta}$. The set $U_n = \{u_{\beta}^{p^n}\}_{\beta \in J}$ is clearly linearly independent over $K_0(S)$. Moreover, each coset of the ideal (p^n) in R_K contains an element of the form $\sum a_{\alpha}u_{\alpha}^{p^n}$ where the a_{α} are integers in $K_0(S)$ (unless otherwise indicated \sum will indicate a finite sum in the elements of U_n with coefficients which are integers in $K_0(S)$). This follows from the fact that H maps the linear space spanned by the set U_n over $K_0(S)$ onto k.

Let D denote an arbitrary integral derivation on $K_0(S)$ into K. We define a mapping D_n on $R_K/(p^n)$ as follows. Let $x+(p^n)$ be an arbitrary element of $R_K/(p^n)$. There is then an element $\sum a_\alpha u_\alpha^{p^n}$ in the set $x+(p^n)$. We let $D_n(x+(p^n))=\sum D(a_\alpha)u_\alpha^{p^n}+(p^n)$. D_n is a well-defined mapping since if the element $\sum b_\alpha u_\alpha^{p^n}$ is in the coset $x+(p^n)$ then for all α , $b_\alpha\equiv a_\alpha$, mod p^n , and $D(a_\alpha)\equiv D(b_\alpha)$, mod p^n , since D is integral.

In order to verify that D_n is a derivation we must show that the coset $u_{\alpha}^{p^n}u_{\beta}^{p^n}+(p^n)$ contains an element of a certain form. To this end we use the following:

LEMMA 1. For all positive integers r and m

$$\left[\sum c_{\alpha}u_{\alpha}^{p^{r}}\right]^{p^{m}} \equiv \sum_{i=0}^{m-1} p^{i} \sum s_{i,\alpha}c_{i,\alpha}^{p^{m-i}}u_{\alpha}^{p^{r+m}}, \quad \mod p^{m},$$

where $s_{i,\alpha}$ is a rational integer and $c_{i,\alpha}$ is an integer in $K_0(S)$ for all i and α .

Proof. Let $[p^m, q]$ denote an ordered partition of the integer p^m into q nonnegative summands and let $\mathfrak{C}[p^m, q]$ represent the corresponding multinomial coefficient. If p^s is the highest power of p to divide the integers in

 $[p^m, q]$ then p^{m-s} divides $\mathbb{C}[p^m, q]$ i.e. $\mathbb{C}[p^m, q] = p^{m-s}\mathbb{C}'[p^m, q]$. Thus, in a multinomial expansion to the power p^m each term having $\mathbb{C}[p^m, q] = p^{m-s}\mathbb{C}'[p^m, q]$ as a coefficient is a p^s power.

With these preliminaries we proceed to the proof of (1) by induction on m. Clearly (1) holds for m = 1. We assume then that (1) holds for m < n. Now

(2)
$$\left[\sum c_{\alpha} u_{\alpha}^{p^{r}}\right]^{p^{n}} \equiv \sum c_{\alpha}^{p^{n}} u_{\alpha}^{p^{r+n}} + \sum_{i=1}^{n-1} p^{i} \sum C'[p^{n}, q] A_{[p^{n}, q]}^{p^{n-i}}, \quad \text{mod } p^{n}$$

by the above remarks on a multinomial expansion to the power p^n . Now,

$$A_{[p^n,q]} \equiv \sum_{\alpha} c_{[p^n,q],\alpha} u_{\alpha}^{p^{r+i}}, \quad \text{mod } p,$$

and hence

$$A_{[p^{n-i}]}^{p^{n-i}} \equiv \left[\sum_{c_{[p^{n},q],\alpha}} u^{p^{r+i}} \right]^{p^{n-i}}, \mod p^{n-i}.$$

However, by the induction hypothesis

(3)
$$\left[\sum c_{[p^n,q],\alpha}u_{\alpha}^{p^{r+i}}\right]^{p^{n-i}} \equiv \sum_{i=0}^{n-i-1} p^i \sum s_{[p^n,q],j,\alpha}c_{[p^n,q],j,\alpha}^{p^{n-i-j}}u_{\alpha}^{p^{r+n}}, \mod p^{n-i}.$$

Substituting (3) for $A_{[p^n,q]}^{p^{n-i}}$ in (2) yields an expression of the form (1) and the lemma is proved.

LEMMA 2. The mapping D_n is a derivation on $R_K/(p^n)$.

Proof. D_n is clearly an additive mapping. In order to verify that $D_n(xy) = xD_n(y) + yD_n(x)$ we proceed as follows. Let $x = \sum a_\alpha u_\alpha^{p^n} + (p^n)$ and $y = \sum b_\beta u_\beta^{p^n} + (p^n)$. Then, $xy = \sum a_\alpha b_\beta u_\alpha^{p^n} u_\beta^{p^n} + (p^n)$. But $u_\alpha u_\beta \equiv \sum c_\gamma u_\gamma$, mod p, and hence, $u_\alpha^{p^n} u_\beta^{p^n} \equiv [\sum c_\gamma u_\gamma]^{p^n}$, mod p^n . Using Lemma 1 with r = 0 we have

$$u_{\alpha}^{p^{r}}u_{\beta}^{p^{n}} \equiv \sum_{i=0}^{n-1} p^{i} \sum s_{\alpha,\beta,i,\gamma}c_{\alpha,\beta,i,\gamma}u_{\gamma}^{p^{n-i}}, \mod p^{n},$$

or,

$$xy = \sum a_{\alpha}b_{\beta} \sum_{i=0}^{n-1} p^{i} \sum s_{\alpha,\beta,i,\gamma} c_{\alpha,\beta,i,\gamma}^{p^{n-i}} u_{\gamma}^{p^{n}} + (p^{n}).$$

Thus,

$$D_{n}(xy) = \sum D(a_{\alpha}b_{\beta}p^{i}s_{\alpha,\beta,i,\gamma}c_{\alpha,\beta,i,\gamma}^{p^{n-i}}u_{\gamma}^{p^{n}} + (p^{n}),$$

$$= \sum [a_{\alpha}D(b_{\beta}) + b_{\beta}D(a_{\alpha})]p^{i}s_{\alpha,\beta,i,\gamma}c_{\alpha,\beta,i,\gamma}^{p^{n-i}}u_{\gamma}^{p^{n}} + (p^{n}),$$

$$= \sum [a_{\alpha}D(b_{\beta}) + b_{\beta}D(a_{\alpha})]u_{\alpha}^{p^{n}}u_{\beta}^{p^{n}} + (p^{n}),$$

$$= xD_{n}(y) + yD_{n}(x).$$

We define a mapping \overline{D} on R_K as follows. $\overline{D}(x) = \bigcap_{n=1}^{\infty} D_n(x + (p^n))$ and we assume that \overline{u}_1 and u_1 are the unity elements of k and K.

LEMMA 3. The mapping \overline{D} on R_K is a derivation and its restriction to $R_K \cap K_0(S)$ is D.

Proof. We first show that for all n, $D_n[x+(p^n)] \supset D_{n+1}[x+(p^{n+1})]$. Let $u^p \equiv \sum c_\alpha u_\alpha$, mod p. Thus $u^{p^{n+1}} \equiv [\sum c_\alpha u_\alpha]^{p^n}$, mod p^n . Or, using Lemma 1,

$$u_{\alpha}^{p^{n+1}} \equiv \sum_{i=0}^{n-1} p^{i} \sum_{\alpha,i,\beta} c_{\alpha,i,\beta} u_{\alpha,i,\beta}^{p^{n-i}} u_{\beta}^{p^{n}}, \quad \text{mod } p^{n}.$$

We have
$$x + (p^{n+1}) = \sum b_{\alpha} u_{\alpha}^{p^{n+1}} + (p^{n+1})$$
 and, by (4),
$$x + (p^n) = \sum b_{\alpha} p^i s_{\alpha,i,\beta} c_{\alpha,i,\beta}^{p^{n-i}} u_{\beta}^{p^n} + (p^n).$$

Now

$$D_{n}[x + (p^{n})] = \sum D(b_{\alpha}p^{i}s_{\alpha,i,\beta}c_{\alpha,i,\beta}^{p^{n-i}}u_{\beta}^{p^{n}} + (p^{n}),$$

$$= \sum D(b_{\alpha})p^{i}s_{\alpha,i,\beta}c_{\alpha,i,\beta}^{p^{n-i}}u_{\beta}^{p^{n}} + (p^{n}),$$

$$= \sum D(b_{\alpha})u_{\alpha}^{p^{n+1}} + (p^{n}).$$

Also, we have

$$D_{n+1}[x+(p^{n+1})] = \sum D(b_{\alpha})u^{p^{n+1}} + (p^{n+1}),$$

and it follows that $D_{n+1}[x+(p^{n+1})]$ is a subset of $D_n[x+(p^n)]$. The cosets $\{D_n[x+(p^n)]\}$ form a nested sequence. Thus the mapping \overline{D} is a derivation mod p^n for all positive integers n. It follows that \overline{D} is a derivation, and it is obviously integral.

It remains to show that \overline{D} agrees with D on $K_0(S) \cap R_K$. Let $a \in K_0(S) \cap R_K$. Then $D_n[a + (p^n)] = D_n[au_1^{p^n} + (p^n)] = D(a) + (p^n)$. Hence $\overline{D}(a) = \bigcap_{n=1}^{\infty} D_n[a + (p^n)] = D(a)$.

Now we started this construction with an arbitrary integral derivation on $K_0(S)$. Extending \overline{D} to K the quotient field of R_K we conclude that every integral derivation on $K_0(S)$ has an integral extension to K.

THEOREM 1. Every derivation on k is induced by a derivation on K.

Proof. Each derivation d on k is the unique extension of a derivation d' on $k_0(\overline{S})$ into k. There exists a derivation D on $K_0(S)$ into K which induces d'. But we have shown that D can be extended to an integral derivation on K which induces a derivation on k which is in turn an extension of d'.

COROLLARY. K possesses no nontrivial analytic derivations if and only if k is perfect.

- **Proof.** If K possesses a nontrivial analytic derivation, it then has an integral derivation which induces a nontrivial derivation on k, hence k is not perfect. If k is not perfect there is a nontrivial derivation d on k, and the result follows from the theorem.
- 3. An application. A well-known theorem of Teichmüller [3, p. 144] states that if K' is a **p**-adic field with residue field k, then K is uniquely embedded in K' if k is perfect.

We will show that if K possesses a nontrivial integral derivation then K is not uniquely embedded in K'.

Let $R_K[[x]]$ represent the power series ring in x over R_K . Then $R_{K'}$ is a homomorphic image of $R_K[[x]]$ with kernel $I = (p - x^n u)$ where u is a unit and n is the ramification index of K' [1, Theorem 1].

Let D represent a nontrivial derivation on R_K such that for $a \in R_K$, $V(D(a)) \ge 2$ and equality is obtained for some element in R_K . The mapping τ given by $\tau(a) = \sum_{i=0}^{\infty} (D^i(a)/i!)x^i$ (D^0 being the identity map) is an isomorphism of R_K into $R_K[[x]]$ and, moreover, $V(D^i(a)/i!) > i$ for all integers i > 0. Let ξ denote the natural map of $R_K[[x]]$ onto $R_K[[x]]/I$. Then $\xi \tau$ is an isomorphism and we wish to show that $\xi \tau(R_K)$ contains cosets not of the form b+I for $b \in R_K$. Equivalently, we wish to show that for some $a \in R_K$ there is no $b \in R_K$ such that $\sum_{i=0}^{\infty} (D^i(a)/i!)x^i$ is congruent to b, mod I. We consider then the equation

(5)
$$\sum_{i=0}^{\infty} \frac{D^{i}(a)}{i!} x^{i} = b + \left(p - x^{n} \sum_{i=0}^{\infty} u_{i} x^{i} \right) \sum_{i=0}^{\infty} c_{i} x^{i}$$

where $u = \sum_{i=0}^{\infty} u_i x^i$ and u_0 is a unit in R_K .

In order for this equation to have a solution $c = \sum_{i=0}^{\infty} c_i x^i$ for some b we must have

(6)
$$a = b + pc_0,$$

$$\frac{D^i(a)}{i!} = pc_i, i = 1, \dots, n-1,$$

$$\frac{D^{n+j}(a)}{(n+j)!} = pc_{n+j} - \sum_{k=0}^{j} (u_k c_{j-k}), j = 0, 1, \dots.$$

We choose a so that V(D(a))=2 and, hence $V(c_1)=1$. Assume first that $V(c_0) \le 1$. Since $V(D^n(a)/n!) > n$ it follows that $V(pc_n) = V(c_0)$. Thus $V(c_n) = 0$ and $V(c_0) = 1$. Necessarily $V(c_i) > 1$ for 1 < i < n. It follows by letting j = n in (6) that $V(pc_{2n}) = V(c_n)$ which is a contradiction since $c_{2n} \in R_K$. Assume next that $V(c_0) > 1$. Again, letting j = 1 in (6) we conclude that $V(pc_{n+1}) = V(c_1)$ or $V(c_{n+1}) = 0$. As before, it follows that $V(pc_{2n+1}) = V(c_{n+1})$ which is a contradiction. Thus equation (5) has no solution $\sum_{i=0}^{\infty} c_i x^i$ for any $b \in R_K$ and it follows that the embedding $\xi_T(R_K)$ in $R_K[[x]]/I$ is distinct from the canonical embedding. It follows that the quotient field of $\xi_T(R_K)$ is distinct

from the canonical embedding of K in the quotient field of $R_K[[x]]/I$. Appealing to Theorem 1 for the existence of the derivation D if k is not perfect we have

THEOREM 2. K is uniquely embedded in K' if and only if k is perfect.

We note in conclusion that the unique embedding of K in K' in case k is perfect can be proved by an argument which depends directly on the fact that k possesses no nontrivial derivations [1, p. 493].

REFERENCES

- 1. N. Heerema, On ramified complete discrete valuation rings, Proc. Amer. Math. Soc. 10 (1959), 490-496.
- 2. O. F. G. Schilling, *The theory of valuations*, Math. Surveys, No. 4, Amer. Math. Soc., New York, 1950.
- 3. O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. für Math. 176 (1937), 141-152.
- 4. O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nostrand, Princeton, N. J., 1958.

FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA