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1. Introduction. Compact two-dimensional manifolds without conjugate

points have been studied extensively in the Riemannian case and also without

the assumption of differentiability hypotheses. The universal covering space

R of the compact surface R may be realized as a remetrization of the eu-

clidean plane or of the hyperbolic plane, accordingly as the genus of R is

one or greater than one. Such a realization is called a Poincaré model of R.

In the Riemannian case, if the genus of the surface is one, the principal

results include that (1) given a euclidean straight line of the model, there is a

geodesic of the universal covering space which remains within a fixed distance

of the given straight line, (2) a unique geodesic segment lies within a constant

distance (fixed for the space) of the euclidean straight line segment joining its

endpoints, (3) the metric is flat if no point has a conjugate point. For flatness,

the Riemannian character of the metric is essential. In the non-Riemannian

case, the parallel axiom holds for the geodesies but the metric need not be

Minkowskian which is the non-Riemannian analog of flatness (see Busemann

[l; 3] and Green [5]).

If the genus is greater than one, still assuming the Riemannian character

of the metric, the principal results include that (1') given a hyperbolic straight

line of the model, there is a geodesic which remains within a fixed distance

of the straight line, (2') a straight geodesic remains within a constant (fixed

for the space) distance of some suitable hyperbolic straight line, (3') the

space possesses transitive geodesies.

In this paper we will be guided by the work of Morse and Hedlund (see

[6; 7; 8], where additional references will be found) and carry over their

principal results (l)-(2), (l')-(3') to non-symmetric Finsler spaces, called E-

spaces. In our treatment, we make systematic use of the notions of axis and

axial motion. The use of these notions, which are in fact implicit in the work

of Morse, permits the simplification of several of the proofs.

We start our discussion (§2) by agreeing on matters of notation and

establishing several general results. In §3, we prove (l)-(2) for £-spaces. A

finite model of the euclidean plane is used here, which has the advantage of

displaying more clearly the effect of genus on the behavior of the extremals.

We next prove (l')-(2') in §4, using the familiar Poincaré model of the uni-

versal covering space.

We do not presuppose straightness of the universal covering space (i.e. ab-

sence of conjugate points) throughout the paper, since it is one of our main
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purposes to prove that the universal covering space of a compact E-surface

which possesses the Divergence Property is straight (§5). This is a result which

is new also for the symmetric G-spaces. In the Riemannian case the converse

also holds and it is known that in a general non-Riemannian space straight-

ness need not imply the Divergence Property, see Green [5]. The interesting

and apparently difficult question of whether the Divergence Property holds

in a straight space which is covering space of a compact P-surface remains

open.

Our last section is devoted to the question of the existence of transitive

extremals on compact surfaces of higher genus. Under suitable hypotheses

on the Poincaré model of the universal covering space, the essential ideas of

the original arguments of Nielsen [9 ] carry over to our case. The main prob-

lem here is therefore to find conditions having intrinsic geometrical signifi-

cance. We discuss conditions equivalent to the Divergence Property in a

space with negative curvature and establish the existence of transitive ex-

tremals on compact P-surfaces of genus 7^2 satisfying these conditions.

Busemann had already carried this out for G-spaces (see [l, §34]); what is

new here is the removal of the hypothesis that the distance be symmetric.

Acknowledgment. The author wishes to express his appreciation to Pro-

fessor Herbert Busemann for kind and generous help during the preparation

of this paper.

2. Generalities on compact /¿-surfaces and their universal covering spaces.

Recall that an P-space is a metric space with not necessarily symmetric

distance which is finitely compact and satisfies additional hypotheses which

guarantee the existence of locally unique extremals. For the precise definition

see [10], the terminology and results of which will be freely used.

Let R be a compact, orientable P-surface (i.e. two-dimensional P-space).

We denote the points of R by x', y', ■ ■ ■ and, following the method of [l,

§30], we remetrize R as a surface of constant curvature R*. The metric of

R* is to be locally euclidean if the genus y oí R is one and locally hyperbolic

if y is greater than one. Denote this new distance by d(x', y').

The universal covering space of R* is then either the euclidean plane E

ox the hyperbolic plane H which, in either case, will be considered to be

realized in the interior D of the unit circle C of a euclidean plane E2 with

distance t(x, y). Call it P* and denote noneuclidean distances in P* by

d(x, y). If the metric of P* is to be hyperbolic, we use the Poincaré model of

H in which the hyperbolic straight lines, which we will call H-lines, axe real-

ized as the intersections with D of the circles orthogonal to C. If the metric of

P* is to be euclidean, we may obtain a model of E by taking as the euclidean

straight lines, which we will call E-lines, the intersections with D oí the circles

(in the sense of t(x, y)) which pass through pairs of points diametrically

opposite on C. That this system of curves yields a model of the euclidean

plane is easily seen by mapping P2 onto D by means of a projection from the
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center of a sphere of radius 1/2 tangent to E2 at the origin followed by a

stereographic projection.

Denote the elements of the fundamental group g* of /?*, realized as the

group of motions of P* lying over the identity motion of R* by lSi = E,

Es, E», • • •   and the corresponding locally isometric map of P* on R* by fl.

We now introduce a lifted metric xy, by means of Q-1, in the interior of C

which, with this distance, becomes the universal covering space P of our

given space R. By [2, (12.18)] the E* are motions of P and, since E*fl is the

identity motion of R, the St also represent the fundamental group % of R

as group of motions of P lying over the identity motion of R. We will refer to

this realization of P as a Poincarê model of P.

Because R is compact a given class of freely homotopic curves, which are

not contractible to a point, contains a shortest curve K which is a closed

extremal. We wish to show that the extremals in P lying over K are straight

lines and, therefore, that the corresponding motion E in g is axial as a motion

of P. Since the motions in % are orientation preserving it suffices to have the

following result:

(2.1) Theorem. Let <P be an orientation preserving motion of an E-plane

(i.e. an E-surface homeomorphic to a plane) S and p be a point for which

0<ppi> = infies xx$. Then, if T= T(p, p$) is any segment from p to p1=p$,

the curve E = U "_ _ m T$" is an extremal and, in fact, a straight line. $ is axial

with axis E.

Proof. Following the proof of Busemann and Pedersen (see [4, (2.4) and

(2.6)]) for the symmetric case, we first observe that E is an extremal.

To show that the segment T is unique requires more care here since two

extremals may very well intersect without crossing and we do not know in

advance that, if 5 and T are two segments from p to p4>, SU T cannot inter-

sect (SUr)$. For an indirect proof, let 5 be a second segment from p to

pl = p$ so that G = U"__„ S$" is also an extremal. We know that 5 and T do

not meet except at p, p$ so that SUT bounds a disc M. Now, Si~\S$ = p1. S

cannot meet 5<ï> in p = p2 since <I>2 has no fixed points and also not in an inte-

rior point x of S. For, if xi> follows x on 5$, then xx$ = pp$ — p$x — xp$<pp$

would deny the definition of p. Ii x follows x4> on S<P, pp$ = xx$ ^xp$

+t&x& = px+xp$ = pp$ implies (xx$x$2) (compare [10, (11.1)]). Then,

2xx& = xx&+x$x&2 = xx&2iZxp$2+p$2x<f>2 = xp$2+px<pp$+pp$ is again a

contradiction. Similarly, 5 cannot meet T$ in an interior point of 5.

An argument based on case distinctions now easily shows that either

MQMQ2 or M$*C.M and, therefore, Brouwer's Theorem yields the contra-

diction that either <£2 or <f>~2 has a fixed point.

We now consider two cases accordingly as the curve S followed by T$

does, or does not, separate points on T, 5$ near p1. In the first case, the argu-

ment of [10, p. 18] shows that E and G must cross at p1 which contradicts
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the hypothesis that $> preserves orientation. In the second case, since $ pre-

serves orientation, we must have MQM& or M$QM and either $> or <E>-1

has a fixed point.

With the uniqueness of the segment T(p, p$) now established, an induc-

tive argument completes the proof as in the symmetric case.

We will need the following form of [l, (34.1)], the proof of which follows

from the same arguments as for the symmetric case using the set D oí [10,

(11.8)]:

(2.2) Let a(x, y)=max(xy, yx). Then there exist positive functions f, g,

F, G such that

o(x, y) 5¡ X   implies that   d(x, y) ;£ F(\),

d(x, y) ^ X    implies that   a(x, y) ^ G(X),

<j(x, y) ^ X   implies that   d(x, y) ^ /(X),

d(x, y) ^ X    implies that   a(x, y) à g(X),

where d(x, y) denotes distance in the sense of P*.

We will also need the following general proposition :

(2.3) Let {Et} be a sequence of straight lines converging to an extremal P+.

Then E+ is a straight line.

Proof. If xt(r) represents Et, then the betweenness relation

(x^(ti)xv+(t2)x»+(t3)) holds for each fixed v and arbitrary ti<t2<T3 and this

relation must hold in the limit.

3. The P-torus. Throughout this section we will assume that R is a com-

pact, orientable P-surface of genus one. We denote the locally euclidean

remetrization of R by Re with distance d(x', y'). The universal covering space

of P, is the euclidean plane P with distance e(x, y) realized as the Poincaré

model described in §2. The universal covering space of R obtained by

remetrization of P is denoted by P with distance xy.

Because an P-line Lf in P is carried by an arc of a circle, a point travers-

ing Lf in the positive [negative] sense tends to a definite point of C which we

will call the positive [negative] endpoint of Lt. We will also see that a point

traversing a straight extremal P+ of P tends to a point of C which will be

called the positive [negative] endpoint of P+.

(3.1) Given an oriented euclidean straight line L+ which is axis ofEk^E,

there exists a straight line P4 in the sense of P which is axis ofEk. If the euclidean

axis L+ has uk~, ut as positive and negative endpoints, then E+ also has uf, ut

as positive and negative endpoints. Such a line E+ can be found passing through

each given fundamental region F.

Proof. Choose a fundamental region F and let p0 be a point for which

popoEk = suppef pp'Ek. Then P+ = U„" _„ T(p¿Eyt, poak+1) is an extremal and, in
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fact, a straight line by (2.1). Since T(p0, pdSk) GSe(L+, p) for some p>0, we

have E+(ZSe(L+, p), where Se(L+, p) = jx|e(L+, x)<p}. Our statement on

the endpoints now follows, since the points x with e(L+, x)=p form two con-

vex (in the euclidean sense of the model) curves with u¡r, ut as endpoints.

The argument of [l, (34.3)] can be adopted to show:

(3.2) // two proper subarcs J~ and J+ of C contain antipodal points p~, p+

respectively in their interiors, then there is a Eat^P such that the positive end-

point ut of an axis of E* lies in J+ and the negative endpoint uk~ lies in J~.

(3.3) Any ray R+ [or R~] in P possesses an endpoint on C.

Proof. Let x(t), t^O represent P+. Then x(t) tends, for t—> °° , to a point

of C in the sense of t(x, y). If sequences t,—»oo , t,'—»oo exist for which x(t,)

—»o£C and x(t,')—»ß'^c, then there are, by (3.2), antipodal points uk, ut

which separate a and a' on C and are endpoints of an axis P+ intersecting

the segment T(x(ry), x(t¡)) if r,' >t, or the segment T(x(t¡), x(t,)) if t,>t¡

for all large v.

(3.4) A straight line E+ in the sense of P possesses exactly two endpoints

and these are antipodal on C.

Proof. It is clear from (3.3) that P+ possesses at least two endpoints. Sup-

pose, for an indirect proof, that u~, u+ are two endpoints of P+ which are not

antipodal on C. Then there is a diameter L oí C which carries a euclidean axis

L+ of some E& with the same orientation as P+ such that both u~, u+ lie

on the same side of L+. Now, let F be a fundamental region in the opposite

side of P+ from the endpoints of L+. Then there is an axis of E* in the sense of

P, intersecting F, having the same endpoints as L+ and, therefore, intersect-

ing P+ twice. It now follows that P+ has at most two endpoints.

(3.5) Let p,-+p(E.P, a,-^>aÇE_C and T(p„ a„) converge to a ray R+. Then K4
has a as positive endpoint.

Proof. Assume, for an indirect proof, that R+ has endpoint b^a. Let U

be a neighborhood t(a, x) <e oí a and choose a pair of axes L+, L~ with the

same endpoints and opposite orientations which separate p, p, with large v,

and U from b. If the endpoints are chosen to separate b from U on C, it is

clear from (3.2), (3.1) that this can be done. Choose To so large that, if x+(t)

represents R+, x+(r0) lies near b separated from U, p, p, by L+, L~.

Next, choose v so large that a, on T(p„ a,) with päy = T0 lies near x+(t0)

separated from p, U and also a„£ U. But then T(p„ a,) must cross both

L,+ L~ at least twice.

(3.6) Given points pC£P and a£C, there is a ray S+ with origin p and end-

point a. A coray R+ to S+ has endpoint a.

(3.7) Theorem. Given two antipodal points u~, u+ on C, there is a line E+

in the sense of P having the given points as endpoints.
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Proof. By (3.2) we may select sequences of endpoints of axes U7-^>W,

uf-*u+. Choose a definite fundamental region F and denote by Et the axis

with endpoints uv, uj whose existence is guaranteed by (3.1). A suitable

subsequence E„+, \p\ C \v\, converges to an extremal E+, compare [2, (6.6) ].

To complete our proof, we can now refer to (2.3).

(3.8) There is a number 77 >0 such that for any point x the set S(x, 77) con-

tains a fundamental region.

Proof. Let S(yy, r¡y) contain a fundamental region F. Choose 773 so that

each S(p, 773) contains a point yk = Ji&k. If 77 = 171 + 772, then S(x, 77) will contain

a fundamental region because of the relations

S(yk, vu C S(yk, v - v(x, yk)) C S(x, r¡).

Let E+ be an axis of E in the sense of P with endpoints a~, a+. Let L+ be

a euclidean straight line with endpoints a~, a+ containing a point p of E+.

L+ is an axis of E as a motion of E. For E has an axis Ly+ in the sense of E and

this axis has endpoints a", a+ by (3.1). But then L+ is parallel to Ly+ since it

has the same endpoints and is therefore an axis by [l, (32.13)]. Now let

u, v be the points of T(p, p"a) on the left and right sides respectively of L+

and at a maximum distance from L+. Euclidean parallels Tl, Tr through u, v

bound a strip containing E+ and are also axes of E. The euclidean lines

Tl, Tr will be called the bounding tangents of the axis E+.

We now state a fundamental result of Hedlund [6, Theorem VII], the

proof of which carries over almost unchanged to our case.

(3.9) Theorem. The euclidean distance between the bounding tangents of an

axis in the sense of P cannot exceed a constant k, fixed for the space.

The u- and ^-coordinate axes, in a suitable cartesian coordinate system in

E, are euclidean axes of motions E«, E„. There are axes of E«, E„ in the sense

of P which intersect at a certain point q. Using the segments T(q, qau),

T(q, qB,v) we may obtain a covering of E by congruent regions bounded by

the translates of these segments under the motions of %. We then apply

Hedlund's arguments using these regions.

(3.10) Theorem. There are fixed constants ß, ß such that whenever T+

= T(p, q) is an extremal segment and St = S(p, q) is the E-line segment joining

its endpoints, then

(a)  T+CSe(S+, ß) and (b) S+CS(T+, ß).

Proof. T+ and 5e+ bound together one or several domains and we start by

showing that none of these domains can contain a disc Se(p, £), £ = ri + k-\-d,

where 77, k are the constants of (3.8), (3.9) and d = supx¡v<=F e(x, y) for a funda-

mental region F. For if it did, Se(p, 77) would contain a fundamental region F

and we could find a euclidean axis Lf of a motion E with endpoints so near

those of the £-line carrying St that the distance from Sf to Lf is not less
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than k-\-d. Now, let E+ be an axis of S in the sense of P and passing through

F. The bounding tangents of E+ are parallel to Lt and lie at a euclidean dis-

tance from Lt less than k-\-d. Consequently, E+ must intersect T+ at least

twice.

Now, let x,+(t) represent the line carrying St with x^(0) =p and denote

by p, the point xt(2v%). Each disc Sc(p2„ 2£), 1 ûv^n, where n>0 is the small-

est integer such that e(p, q) <(2re-|-3)£, contains a point av of T+. For other-

wise, one of the semicircles of the Se(piy, 2£) bounded by St would contain a

disc Se(p, £) contradicting the first part of this proof. Put /3 = F[3G(4£)].

Since T+=T(p, ai)WU"l} T(a„ av+y)\JT(an, q), it suffices to show that

T(a„ ay+i)CSe(St, ß). a„ a^.iG5,(/»2»+i, 4£) so that a„ ay+yES(p2,+y, G(4£))

and, therefore, T(a„ a,+1) CS(p2y+i, 3G(4£)) CSe(St, ß).

Put /3 = G(6£). For a point x of Te(pit, pi,+t), where Te(p, q) denotes the

E-line segment from p to q, we have e(a„ x) <6£ and, therefore, a(a„ x)

<G(6£). Consequently, since 5i = U"_0 Te(pz„ pîy+i)^J Te(p2„, q), we have

T.(pu, pt+t) CS(a„ G(6£)) CS(T+, ß).
4. E-surfaces of genus 7^2. In this section we assume that R is a com-

pact, orientable E-surface of genus greater than one and denote the locally

hyperbolic remetrization of R by Rh with distance d(x', y'). The universal

covering space of Rk is the hyperbolic plane with distance h(x, y) realized as

Poincaré model. The universal covering space of R, obtained by remetrizing

H by means of Ö-1, is denoted by P with distance xy.

It follows from [10, (11.7) ] and (2.2), exactly as before, that the endpoints

of axes in the senses of P and of H coincide and, therefore, depend only upon

the E*. The proof of [l, (34.3)], since it employs only the properties of H,

shows that:

(4.1) The endpoints of the axes of the E* are dense on C in the sense that if

J\ and J% are any two proper subarcs of C then there is a'Ek^E which has an

axis with positive and negative endpoints lying in Jy and J2, respectively.

Recall that a diverging pentagon is a pentagon for which nonadjacent

sides do not intersect in P and no two sides have common points on C (see

[l, p. 229]). We now construct triples of diverging pentagons with the same

endpoints on C: one hyperbolic pentagon ?ta and two extremal pentagons

7T+, 7T_ with opposite orientations.

The argument for (3.8) shows that:

(4.2) There is a number n>0 such that for any x the set D(x)=Sh(x, v)

C\S(x, 7]) contains a triple of diverging pentagons.

(4.3) Let the oriented hyperbolic line Lt and the extremal E+ have the same

endpoints a", a+ with a~9ia+. Then, Lt^JE+ bounds one or several domains in

D. None of these domains can contain a triple of diverging pentagons and, there-

fore, also not a disc S(x, r¡) or Sh(x, r¡).
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We now come to one of the principal results of Morse [7, Theorem 2]:

(4.4) Theorem. There are fixed constants ß and ß such that whenever E+

and Lt are an extremal straight line and a hyperbolic line with the same end-

points a~, a+ then

(a) E+CSh(Lt, B) and (b) Lh+CS(E+, ß).

Proof. Let xt(r) represent Lt in terms of hyperbolic arclength and denote

by q, the point xt(2vr¡). Then the discs Sh(q2„ 2-n), — oo <v< », are all dis-

joint and each contains a point a, of P+. For otherwise, one of the hyperbolic

semicircles of the Sh(q2>, 2r¡) bounded by Lt would lie in a domain bounded

by P+" and Lt and this domain would contain a disc Sh(x, rj) contradicting

(4.3). We use the fact that P+ = U"„_M T(a„ a,+i) but make no claim as to

the order in which the a, lie on P+. Now, put(3 = F[3G(4?j)]. We wish to show

that T(a„ ay+i)(ZSh(Lt, ß). Since av, a»+iG5A(g2,+i, 477) we know that also

a„ a,+i(ES(q2,+i, G(4r;)).  But then

T(a„ ay+1) CS(q2,+i, 3G(4r,)) CSh(q2y+i, P[3G(4ij)]) CSk(Lt, B).

For a proof of the second statement, put ß = G(6rj) and notice that

¿ÂI" = U"=_„ Th(q2„ q2v+z). For a point x of the TJ-line segment Th(qîy, «32^+2) we

have h(a„, x) <6r¡ and, hence, cr(ay, x) <G(6r¡). Consequently Th(q2„, «32K+2)

CS(ar, G(6V))CS(E+, G(6V)).

(4.5) Given e > 0, there is a ô > 0 such that if the endpoints ar, a+ of E*~ lie in

t(p, x) <5, pE:C, then E+ lies in t(p, x) <e.

This is a corollary of (4.4) since the corresponding statement for hyper-

bolic lines is trivial.

(4.6) Any ray x+(t), t^O, or x~(t), t^O, in P possesses an endpoint on C.

Proof. This means that if x+(r), t^O, represents a ray R+ then the point

x+(t) tends for r—» 00 to a point a of C in the euclidean sense. If there are two

sequences t„—»oo, t„'—><*> such that x+(r,)—>a, x+(t„')—»a'^o, then by (4.1)

there is an axis P+ whose endpoints u~, u+ separate a from a' on C. But then

T(x+(tv), x+(t„')) would intersect E+ for all sufficiently large v.

(4.7) The endpoints of a straight line in P are distinct.

Proof. Let P be a straight line whose endpoints coincide at a£ C and

choose a point ££P. By (4.5) we can find an axis Et with endpoints uk~, ut

which separates a from p. But then, after perhaps interchanging the roles of

u¡r, ut and choosing an oppositely oriented axis, P and Et will intersect at

least twice.

(4.8) Let p,—^pCzP, ay-^>a(EC and T(p„ ay) converge to the ray S+. Then

S+ has a as positive endpoint.

Proof. Assume, for an indirect proof, that S+ has endpoint b^a. We take
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two pairs of axes in the sense of P, Ay+, Ay and At, A2 with endpoints Uy, Vy

and u2, v2, respectively. We choose the endpoints so that U\, vy lie in the inte-

rior of one and u2, v2 in the interior of the other of the two subarcs into which

a, b separate C and also so that the intersections /7< of the pairs of half-planes

Ht, H~i bounded by the ^l,*, A~î and not containing a, b also do not contain

p. We can do this because of (4.5). Now let p>max(pHy, pHi) and let U be a

neighborhood t(a, x) <S of a which is disjoint from S'(p, p + 1) and also from

ay, H2.

Since S+ has endpoint b and T(py, a,)—>S+, we can choose To>p + l so large

that, if x+(r) represents S+, x+(r0) lies outside of S'(p, p + 1), Hy, H2, and U

and in fact close to b. We now choose v so large that p,p<l, a,£ U, pyay>Ta

and the point â, of T(p„ a,) with pä, = T0 therefore lies close to x+(r0).

Now, the part of T(p„ a,) following äy lies outside S'(p„ p-\-l)DS'(p, p).

Since it connects a, to dy it must intersect one of the At, At at least twice.

We will need the following corollary to (4.8) :

(4.9) Given points pCP and aÇ.C, there is a ray S+ with origin p and end-

point a. A coray R+ to S+ ends at a.

For a coray R+ to 5+ is by definition a ray R+ obtainable as a limit of seg-

ments T(qy, ay) with q,—*q and a,£5+, pa,—*<x>, i.e. i,-+a£C.

(4.10) Theorem. Given two distinct points a~, a+ of C, there is a line E+

in the sense of P with a~, a+ as endpoints.

5. The Divergence Property and straightness of the universal covering

space. An E-space, not assumed to be straight here, will be said to possess the

Divergence Property if, for any two distinct rays R+, S+ with the same origin,

the distance x+(t)5'1" (where x+(r) represents R+) tends, for t—>+«>, to

infinity.

(5.1) Let the Divergence Property hold in P and assume that /?"•", S+ are two

distinct rays with origin p. Then each of the domains in P bounded by R+KJS+

contains discs S(x, r¡) with arbitrarily large r¡.

Proof. Let D be one of the domains. Let {Cy\ be a sequence of curves in

D from r,£Ä+ to sy(ES+, with pry = psy = v, such that C, tends to a (proper

or improper) subarc of C. Then each Cy contains a point q, such that R+q,

= q,S+. Let f, be a foot on R+ toward qy and select a subsequence {p} (Z{v]

for which either/„ converges to a point/or pfß—*oo. If pf„<M, then pq„^pfß

+/m2c shows that/(,&,—» », since pq?—> «. If p/M—* oo then/„S+—> « by hypoth-

esis.

Now, let g„ denote a foot on S+ from g„. Then /^5+á/MgMá/MgM+g'/1g)1

= 2R+qll = 2<7J1S+ shows that both i?+gM—* <x> and gM5+-* oo. The assertion fol-

lows now since S(qß, p) CD for p = min{a*(qß, s„), cr*(qß, r„)}.

(5.2) // //te Divergence Property holds in P, then the ray from a given point

pE:P to a given point adzC is unique.
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Proof. Case 1. 7 = 1. Let R+, S+ be two distinct rays with origin p and

endpoint a+Ç.C. There is a number 77>0 (compare (4.2)) such that for any

x the sphere S(x, v) contains the union of four fundamental regions with a

common boundary point. By (5.1), the domain bounded by R+\JS+ contains

the union P = U*_ 1 F,, of four such fundamental regions.

Consider a sequence of positive endpoints of axes {at} such that a,t—>a+

and a+, a~ separate at, a*+1 on C for all v. Here, a~ denotes the antipodal point

of a+ on C. Then, for a suitable subsequence {p} of {v}, there is a sequence

{EP+} of axes in the sense of P, meeting the fundamental region Fi and con-

verging to a straight line P1+ in P with positive endpoint a+.

If P1+ intersects R+\JS+ in a point q^p, then P¿+ will intersect R+ or

S+ in a point distinct from p for all sufficiently large p. Therefore, Pj,+ will

intersect R+ or S+ twice for some large p.

If P1+ meets P+U5+ only in p, we choose a second fundamental region

^2 and consider a sequence of axes {E2y+}, in the sense of P, meeting P2 and

having the same sequence {at} of positive endpoints. Again, a suitable sub-

sequence {Pjj+} converges to a straight line P2+. Clearly, we can select P2

so that P2+^P1+. Now, if P2+ intersects R+\JS+ in a point g^p, we are

finished. Otherwise, an easy continuity argument, based on case distinctions,

shows that P£+ must intersect P1+ twice for some large p.

Case 2. 7^2. This is a corollary of (4.3) and (5.1).

(5.3) Theorem. If the Divergence Property holds in the universal covering

space P of a compact orientable E-surface, then P is straight.

Proof. We show that given any two distinct points p, i£P, there exists a

ray with origin p containing q. For otherwise, there would be a point ¿>£C

such that if Xt, Yt are rays with origin p and endpoints ay, cy near b, with

a„ b, c, following in that order on C, then q lies in the interior of a domain

bounded by Xt, Yt and an arc of C. If a,—»ô, c„—>¿> the rays Xt, Yt converge

to distinct rays X+, Y+ with origin p and endpoint b contradicting (5.2).

We state two further consequences of the Divergence Property.

(5.4) If the Divergence Property holds, then the asymptote relation is sym-

metric and transitive.

(5.5) // the Divergence Property holds, then two lines are parallel if, and

only if, they have the same endpoints.

6. Transitive extremals on P-surfaces. The existence of transitive geo-

desies has attracted much attention in part because of the relevance of this

question for dynamics and ergodic theory, but also because of its intrinsic

geometric interest. The question has been treated by many mathematicians

including Artin, G. D. Birkhoff, Busemann, L. W. Green, Hedlund, E. Hopf,

Koebe, Löbell, Morse and Nielsen through whose work the existence of transi-

tive geodesies is now established for a very wide class of surfaces.
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Following Busemann's proof for G-spaces [l, (34.13)], we complete these

results by giving a version of Nielsen's Theorem for the case of nonsymmetric

distance. In terms of the Poincaré model of the universal covering space, it is

not difficult to formulate sufficient conditions for the existence of transitive

extremals in our case. It suffices, in order to use these original arguments in

the form of (6.4), that (1) an axis varies continuously with its endpoints and

(2) the pairs of endpoints of axes be dense on CXC.

We begin by considering conditions equivalent to (1) in the case that R

is a compact, orientable P-surface of genus y> 1.

(6.1) The endpoints of a straight line, in a Poincaré model of P, determine

the line uniquely if, and only if, one of the following conditions is satisfied:

Cl. P has the Divergence Property and there are no pairs of parallel lines.

C2. A domain bounded by two nonintersecting, equally oriented straight lines

contains discs of arbitrarily large radii.

Proof. (5.5) shows that Cl is sufficient. By (4.3), C2 is sufficient.

C2 is necessary. For, if no two distinct equally oriented lines have the

same endpoints, then two nonintersecting equally oriented lines have cor-

responding endpoints a, a' which are distinct. Hence, we can find an axis

A+ between them which bounds a half-plane between the lines and this half-

plane contains discs of arbitrarily large radii.

Cl ¿5 necessary. Assume that rays X+, Y+ with origin p do not satisfy

the Divergence Property. Then there is a sequence {x,}, xy(EX+ and px,-* w

while x,Y+<M<«>. If y, is a foot on Y+ from x„, then px,^py,+y,x, shows

py,—» oo since x„yy is bounded if, and only if, y,xy is bounded. Consequently

X+, Y+ have the same positive endpoint a+£C.

Denote by B the closed domain of P2 bounded by X+ and Y+. Orient G

and take a sequence {ut} of points following a+ on C and such that ut—»o+.

For all sufficiently large v, we construct a line Lt with ut as positive endpoint

and containing p. This can be done by considering the line L with positive

endpoint ut and negative endpoint u~ following a+, ut on C. If u~ is suffi-

ciently close to ut, L does not meet B. Now, let u~ traverse C in the positive

sense. There is a first position of u~, namely U7, for which the line Lt

= L*(u7, ut) meets B. L(~\B obviously contains no point of Y+ other than p.

Since pÇLLt for each v, Lt converges for a suitable subsequence {p}

C{"}i to a straight line L+ with negative endpoint a~. Call the side of L+

on which B lies <r and take an axis A+ in <r with the same orientation as L+

and with endpoints s~, s+. If a7, at are endpoints of an axis Ht such that av

lies between s~, a~ and at lies between s+, a+ and also aj—»a-, at—^a+, then

Ht for a suitable subsequence converges to a line with endpoints a", a+

which must, by hypothesis, be L+. But B lies for large p between Ht and L+.

Finally, it is clear from (5.5) that there are no pairs of parallel lines.

If the conditions of (6.1) are satisfied, an extremal depends continuously



444 E. M. ZAUSTINSKY [March

on its endpoints. This means that iî e>Q, N>0 are given and x(r) represents

an extremal E+ with endpoints u~, u+ then there exist intervals /_, J+ on C

such that any extremal having its negative endpoint in J~ and its positive

endpoint in J+ has a representation y(r) for which

<r(x(r),y(r)) <e    if     |r|   < N.

From (4.1) we see that, under the conditions of (6.1), the axes of the

E* are dense among all extremals in P and, therefore:

(6.2) The closed extremals in R are dense among all extremals in R if P

satisfies the conditions of (6.1).

We need the following fact concerning the mappings of C induced by the

s*.
(6.3) If Ji and J2 are two proper subarcs of C, then there is a Ëkfor which

JJZtk lies in the interior of Jy.

(6.4) Theorem. Let R be a compact E-surface of genus greater than one

whose universal covering space satisfies the conditions of (6.1). Then R possesses

a transitive extremal, i.e. an extremal with a representation y'(r) having the

property :

Let an extremal curve x'(t), O^t^X, and numbers e>0, N>0 be given.

Then there is a number a = a(x', e, N)>N such that o(y'(T), x'(t—ol)) <e for

Proof. In the proof, we may assume that R is orientable. For a nonorienta-

ble compact surface of genus y> 2 has a compact orientable surface of genus

7> 1 as covering space and the theorem for this space yields our theorem for

the given surface.

Denote the axis of E<, *>1, in the sense of P by Gt and represent it by

Xí(t). If 7(E¿) =minz€p xxE,-, denote the segment Xí(t), O^r ^7(E<) of Gt by

Tf. There are disjoint arcs Bt and Bt on C, containing the endpoints ut,

ut of Gt, such that any extremal K+ from a point of B~ to a point of Bt has

a representation z(t) which satisfies <r(x¿(r), z(t))<1/î for 0^r^7(E¿). In

this case we say that K+ approximates T, within 1/i.

We now choose %2 =Es, E3, E4, ■ • ■ in % so that an extremal from a point

of B2 to a point of BfSi approximates 7\E/ within 1/i. If we put Bi+1

= C— Cl[5r]i then we choose E/+i by (6.3) so that it carries Bi+% and, there-

fore, also Bt+i into the interior of Bt- BrEi will then contain B2 in its inte-

rior. The arcs BfE! will shrink to a point e+.

Any extremal H+ from a point e~ in B2 to e+ will satisfy the assertion. Let

the segment T+ over the given extremal curve be represented by x(t),

O^t^X, and let €>0 and N>0 be given. Because of (6.2) there is a Gt with

a   representation   v(t)   such   that   ct(v(t),   x(t)) < e/2   for   0|ra\   or
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ct(v(t—a), x(t — a))<e/2 for aâr=a+X. Denote by S+ the segment v(t),

O^t^X.
The powers E* occur among the E». Put E«j» = E* so that **—»<» and

7(E«i) =è-7(E,)-»oo. Consequently, for sufficiently large k and suitable n

satisfying the relation fe-7(E,)>X-r-w-7(Ey), the segments S+EJ will be con-

tained in P.J. Now, 5+EJEit = 5+Em is approximated within l/ik by H+ be-

cause Ti¿E'(k is. This means that there is a representation z(t) of 5+Em such

that ff(y(T), z(t)) <l/ik for «fc^r^ai+X. As in the proof for the symmetric

case, we may choose k so large that both l/ik<e/2 and ctk>N.

Now, v(r— a)Em = z(r), aáráa+X, since u(7-)Em represents 5+Em. Con-

sequently, we have

<r(y(r), x(t — a)Em) á o-(y(r), d(t — a) Em) + <r(v(r - a) Em, x(t - a) Em)

= ff(jW, »(t — a)Em) + <t(v(t — a), x(r — a)) < t

for N<a£T^a+\.

Because Em lies over the identity motion of R, this implies that the image

H+Q of H+ in R satisfies our assertion.

Because of [10, (7.5), (16.11), (16.13)] and (6.4) we also have:

(6.5) Theorem. On a compact E-surface with negative curvature there is an

extremal y(r) with the property: Given any extremal curve x(r), O^t^X, any

e>0 and any N>0, there exists an a = a(x, e, N)>N such that o-(y(r), x(t—cx))

<efor a^T^a-r-X.
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