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1. Introduction. If G is a compact connected group, then H*(G), the Cech

cohomology algebra with coefficients in a field L, is a special kind of algebra:

if the characteristic of L is zero, H*(G) is an exterior algebra; if the character-

istic of L is p>0, H*(G) is the quotient of the tensor product of an exterior

algebra and a polynomial algebra. Moreover, the precise structure for H*(G)

when G is a classical Lie group has been fairly well determined [l; 8].

Now let K~CG be a closed normal subgroup of G, and put U=G/K. Thus

we have the exact sequence

(S):    l^K^G^U^l

of compact groups; here i is the natural injection and/ is the natural quotient

map. (S) leads to a sequence of cohomology algebras,

/* i*
(S*) :    1 -» H*(U) U H*(G) -* H*(K) -* 1,

where 1 denotes the graded algebra which is zero in all positive homogeneous

degrees and is isomorphic to the ground field L in degree zero.

When the characteristic of the ground field L is zero, then (S*) acts as if

(S) were a split sequence. (For the case of Lie groups see [10, §21 ] ; the general

case follows from it easily.) More precisely, (S*) is an exact sequence of graded

algebras, in the sense that the kernel of each homomorphism coincides with

the ideal generated by the elements of positive degree in the image of the

preceding homomorphism.

The purpose of this paper is to give an analysis of the structure of the

sequence (S*) when the ground field is Zv, the prime field of characteristic

p>0. When K is connected, we show that/* is a monomorphism if and only

if i* is an epimorphism, in which case (S*) is an exact sequence of graded

algebras. This is true, for example, when H*(U) is an exterior algebra gener-

ated by elements of odd degree. In general (S*) is not exact; it need not be

exact, for example, when K is totally disconnected. In this case we give the

structure of the kernel and cokernel of/*.

Precise statements of our main results are given in §2. Corollaries and

applications are given in §3. For instance, we obtain a characterization of the

commutativity of G, or the finite-dimensionality of G in terms of H*(G).
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Moreover, the class of those groups of G such that H*(G) is an exterior alge-

bra is shown to be closed under many operations. The proofs of the main

results are given in later sections.

The author takes the opportunity to express his thanks to Professors N. E.

Steenrod and J. C. Moore for their help and encouragement. This work is a

part of the author's doctoral dissertation submitted to Princeton University

in May, 1960.

2. The main results. The cohomology theory we use is the Cech Theory,

whose coefficient domain will always be, unless otherwise specified, Zp, the

prime field of characteristic p.

Let G be a compact connected group, and suppose that K is an invariant

subgroup. Consider the resulting exact sequence

i      f
(S) : 1 -» P -» G U U -» 1

of compact groups and homomorphisms. Here U=G/K, i is the natural im-

bedding, and/is the quotient map. The study of the structure of the induced

cohomology sequence,

(S*): 1 -» H*(U) -+ H*(G) Uh*(K) -> 1,

reduces in a fairly well-known manner to two cases:

(A) K is totally disconnected ;

(B) K is connected.

Furthermore, case (A) reduces to a special case of the problem, (A') say, of

the cohomological study of the locally trivial fibration of G by a finite sub-

group (not necessarily invariant) T, isomorphic to Zpn. In (2.2) we state the

results regarding (A') ; the result of (2.3) is related to (A), while those of (2.4)

are devoted to (B).

(2.1) Let G be a compact connected group, and let T be a commutative

finite subgroup of G. Denote the space of left cosets of G modulo T by U, and

let / be the natural map

f:G-+U.

Observe now that/ is a locally trivial fibration of G by T. Consider next

y:E = PM(r)->P> = BK(T),

the oo-universal bundle of T constructed by Milnor [7]. Thus there exists a

mapping,

X-U-+B,

inducing/: G—*U. (If G is a Lie group, then the usual classification theorem

for fibre bundles implies the existence of x- The general case can be reduced to

this special case by choosing a closed invariant subgroup, Ka, such that
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Kar\T = {1} and G/Ka is a Lie group.)

Definition (2.1.1). The mapping x inducing the fibration /: G—*U is

called the characteristic map of/; and im x*C.H*(U), the characteristic algebra

oí f, which will be denoted by ch(/).
Definition (2.1.2). A sequence

• • • —> An-i —» An —> An+i -> ■ • ■

of commutative graded algebras and homomorphisms over Zp is said to be

exact if the kernel of each homomorphism is equal to the ideal generated by

the elements of positive degree which lie in the image of the preceding homo-

morphism.

The next definition is of a notational nature.

Definition (2.1.3). Let 1 denote the graded commutative algebra over

Zp which is zero in all positive homogeneous degrees and is isomorphic to

Zp in degree zero. If the sequence

l->¿->.B->C->l

of commutative graded algebras over Zp is exact, we shall write B^A for C

in accordance with the notation of [8].

(2.2) Keeping the notation and assumption of (2.1), we assume in addi-

tion that T is isomorphic to Zpn. Recall that

(P(y, 1),       if p = 2 and n = 1,H*(B) = { r

(E(x, 1) ® P(y, 2),   if p > 2, or p = 2 and » > 1,

where E(x, 1) is the exterior algebra on one generator of degree 1, while

P(y, 2) is the polynomial algebra on one generator of degree 2. Similarly for

P(y, 1). Then,

Theorem (2.2.1). With the assumptions of the previous paragraph,

1P(y< Y)/(yk), k being an integer ̂  2, if p — 2 and n = 1 ;
E(x, l)®P(y, 2)/(y"), k being an integer £1, if p>2, or p = 2

and »>1.
If T is invariant in G, then ch(f) is a sub-Hopf-algebra of H*(U) and k is a

power of p.
(ii) H*(G)^f*H*(U) ^E(h, m), the exterior algebra with one generator 5 of

degree m, m being equal to k — 1 if p = 2 and n=l, and to2k — lifp>2,orp = 2

and n>l.

(iii)  The sequence
f*

1 -* ch(/) -+ H*(U) -* H*(G) -+ £(5, m) -> 1

of graded algebras and homomorphisms is exact.

(2.3) Let G and U be compact connected groups, and suppose that

f:G->U
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is an epimorphism with a totally disconnected kernel. Thus both H*(G) and

H*(U) are connected, commutative, and associative Hopf-algebras. (For the

definition of Hopf-algebras and their properties we refer to [8].) Moreover,

f*:H*(U)->H*(G),

the homomorphism induced by /, is a homomorphism of Hopf-algebras.

Therefore, if we denote the space of primitive elements in H*(U) by Vu and

those in H*(G) by VB, we get that

fVu c v.,

where / is /* restricted to Vu. Recall that Vu is a graded vector space; i.e.,

Vu = Y^oo Vl, where Vl is the subspace of homogeneous elements of degree i.

Let us assume that no nonzero elements of even degree exist in Vu. Then the

natural injection tru: VU-^H*(U) induces a mapping

<r„: E(VU) -* H*(U)

of Hopf-algebras if the square of every element in H*(U) is zero. The result

we are after is

Theorem (2.3.1). In addition to the assumptions of the previous paragraph,

assume that

*„: E(VU) ̂  H*(U)

is defined and is an isomorphism. Then Va contains no nonzero element of even

degree, and the injection V0—*H*(G) induces

«r,: E(Vt) - S*(G),

an isomorphism of Hopf-algebras. Further,

(i) ker/CF«1,

(ii) coker / consists of elements of degree 1,

(iii) rank F„ = rank Vu.

An interesting feature of this theorem is that /* is determined by its in-

fluence on the primitive elements of degree 1.

(2.4) Consider the exact sequence of compact connected groups and

homomorphisms,

(S) \^K->GÍ+U->\,

and the induced sequence of cohomology algebras and homomorphisms,

(S*) 1 -* H*(U)J-* H*(G) -» H*(K) -» 1.

It turns out that the problems of describing *• and/* are intimately related.

In fact, we shall prove
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Theorem (2.4.1). Consider the sequence (S*) induced by (S) above. Then i*

is an epimorphism if and only if f* is a monomorphism.

One may suspect that i* is always an epimorphism or, equivalently, that

/* is always a monomorphism. That this is not necessarily the case is shown

by this simple example: Consider the unitary group on two letters U2, and

let i: Sl-*U2 be the imbedding of the circle group S1, which takes <?i9 to the

diagonal matrix whose nontrivial entries are all equal to e*. Then i(Sl) -SU2

= Ui, and ^S^r^SUi — Zi. Thus we obtain the following exact sequence of

compact connected groups and homomorphisms:

1 -* S1 A U2 -* U2/i(Sl) = SUt/Zt -* 1.

The induced sequence of the cohomology algebras mod 2 fails to be exact be-

cause H*(U2; Z2) is an exterior algebra, whereas H*(SU2/Z2; Z2) is a trun-

cated polynomial algebra.

The analysis of (S*) will be taken up in some detail in §§8 and 9. We shall

see that it is possible to construct a split exact sequence (S') covered by (S).

The problem is thereby reduced to examining what happens to the exactness

of the induced cohomology sequence (S'*) on "going up." It will be seen that

whatever makes the example given above fail to be exact is, roughly speaking,

all that can go wrong. In particular, we shall prove

Theorem (2.4.2). Consider the sequence (S*) given above. Suppose that the

space of primitive elements Vu of H*(U) has no nonzero elements of even degree

and that the natural map,

o-v:E(Vu)^H*(U),

is an isomorphism. Then

(i) i* is an epimorphism or, equivalently, /* is a monomorphism, and

(ii) H* (G) /JÏ* (U)=H*(K),as Hopf-algebras.

We shall deduce from these theorems a few interesting relationships be-

tween the cohomology algebra of a compact connected group and its topology.

A precise statement of these results and their proofs will be given in §3. The

proofs of the main theorems will be given in §§6, 7, 8, and 9.

Remarks (2.5). Borel,in [l, §10], proves special cases of Theorem (2.2.1).

Our proof is quite different from his and our result is more general. Also,

W. Browder announced in [3] a weaker result for iT-spaces whose cohomology

is suitably restricted; his method is different from ours.

3. Corollaries. In this section we give some of the applications of our main

theorems. We shall first state and discuss them, deferring the more compli-

cated proofs to the later subsections. The discussion covers three main topics:

the characterization of the commutativity of the group in terms of its co-

homology algebra, finite-dimensional groups and the resemblance of their
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cohomology to that of Lie groups, and the class of those groups whose co-

homology is an exterior algebra (it will be seen that this class is closed under

many useful operations); these topics are taken up in (3.1), (3.2) and (3.3),

respectively.

Note that, although we have restricted ourselves so far to compact con-

nected groups, many of the results of this section are true also for locally

compact connected groups, since a group of this kind is of the same homotopy

type as any of its maximal compact subgroups [9, §4.13].

(3.1) Consider the compact connected group G, and let H*(G; Zp) be its

cohomology algebra with coefficients in Zp, the prime field of characteristic p.

An old result of E. Cartan's states that G is abelian if and only if

H*(G; ZÔ), the rational cohomology algebra of G, has no primitive elements of

degree 3 [5]. When p>0 the situation is more complicated; for instance, if

p = 2, the result is no longer true; for the group SO3 is not commutative al-

though its cohomology mod 2 has no primitive elements of degree 3. Thus

a good criterion for the commutativity of G must exclude more than the

primitive elements of degree 3. So let Vp denote Hl(G; Zp). Our first result is

Theorem (3.1.1). The natural injection of Vp in H*(G; ZP) extends to an

isomorphism of Hopf-algebras ,o:E( Vp) —*H* (G ; ZP), if and only if G is abelian.

It is also possible to obtain a criterion for G to be abelian in terms of

Hl(G; Z). Let V stand for Hl(G; Z); then the natural injection of V into

H*(G; Z) extends to a homomorphism of algebras

<r: E(V) -* H*(G; Z),

since the square of every element of H*(G; Z) oí degree 1 is always zero. The

criterion is

Corollary (3.1.2). With the notation being as in the previous paragraph,

G is abelian if and only if <r is an isomorphism.

Proof. Suppose that G is abelian. Then there is an inverse system of tori

{ P«, <Paß} such that

G = lim Ta.

a

Denote Hl(Ta, Z) by Va. Then the homomorphism cra: E(Va)—>H*(Ta; Z) is

an isomorphism for every a. We also know that

lim
V = ^-Va

a

and, hence,

lim
E00 = <— E(Va).

a
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Therefore, a: E(V)—+H*(G; Z) is an isomorphism.

Conversely, suppose that cr: E(V)—>H*(G; Z) is an isomorphism. Since

V=Hl(G; Z) is free of torsion, it follows that E(V) is too. Hence H*(G; Z)

is free of torsion. Therefore, H*(G; Zp) = H*(G; Z) ® Zp; E(V ® Zp)
= E(V)®ZP; and Hl(G; Zp) = V®ZP. This means that crp: E(VP)-+H*(G; Zp)

is an isomorphism. By Theorem (3.1.1), G is abelian. Q.E.D.

(3.2) It is well known that for an arbitrary compact connected space X,

neither the vanishing of its cohomology groups in arbitrarily high dimensions,

nor the condition that it be finitely generated in every homogeneous dimen-

sion, constitutes sufficient reason for the finite-dimensionality of the space. If,

in addition, A is a group, it turns out that either of these conditions implies

the finite-dimensionality of X, except in very special cases. The following

theorem describes the situation completely.

Theorem (3.2.1). Let G be a compact connected group and p, a prime. If G

is finite-dimensional, then there is an integer N such that

(i) H'(G;ZP) = 0, for all i > N, and
(ii) H*(G; Zp) is finitely generated in every homogeneous degree.

Conversely, if either (i) or (ii) is satisfied and no element of char(G"), the

character group of the connected component of the identity of the center of G, is

infinitely divisible by p, then G is finite-dimensional. (In particular, if p = 0,

then (i) or (ii) will imply the finite-dimensionality of G.)

The restriction on char(Gc) is necessary as shown by the following exam-

ple: let S1 be the group of complex numbers z of absolute value 1, and con-

sider the inverse system,

ííf f■ ■ ■ -^ S1 -^ Sl ^ ■ ■ ■ ±> Sl

where / is the homomorphism taking z into zp for some fixed prime p; the

inverse limit ^p is the so-called £-adic solenoid, and Hk( ¿ZP', Zp) =0 for all

k>0. Put G equal to the cartesian product of ^ZP with itself an infinite

number of times; then Hk(G; ZP) is zero for all k>0, but G is not finite-

dimensional.

An easy corollary of Theorem (3.2.1) is the following.

Corollary (3.2.2). Let G be a compact connected group. Then, if there exist

an integer N such that H{(G; Z) = 0,for all i>N, it follows that G is separable

metric.

There are certain distinctive properties that the integral cohomology

algebras of compact connected Lie groups have : e.g., the existence of a funda-

mental class and the freeness of the first integral cohomology groups. We shall

show that, among compact groups, only Lie groups exhibit these properties.

More precisely,



8 S. Y. HUSSEINI [April

Proposition (3.2.3). Let G be a compact connected group. Then G is a Lie

group if and only if there exists an integer N such that H*(G; Z) = 0, for all i>N,

and HN(G; Z)=Z. Further, N = àim G.

Proposition (3.2.4). Let G be a compact connected group. Then G is a Lie

group if and only if there is an integer N such that H^G; Z) = 0, for i>N, and

Hl(G;Z) is free.

Proofs for these propositions are given in (3.6).

(3.3) Let us consider now the following class of groups.

Definition (3.3.1). If p is a prime, we denote by Qp the class of those

compact connected groups G such that H*(G; Zp) is generated by elements

of odd degree and height 2.

The Samelson-Leray Theorem [8, Theorem (4.10)] allows us to give an

alternative definition.

Definition (3.3.2). Let p be a prime and G, a compact connected group;

denote by VB the spaces of primitive elements of H*(G; Zp). By Qp we denote

the class of compact connected groups G such that V„ has no nontrivial ele-

ments of even degree and the natural injection of V„ in H*(G; ZP) extends to

an isomorphism, cr0: E(V,)—*H*(G; ZP), of Hopf-algebras.

If G is a compact connected Lie group, then a result of Borel's says that

it is in ep if and only if H*(G; Z) is free of p-torsion. The following result

summarizes the main properties of Qp.

Theorem (3.3.3). The class Qp, defined above, has the following properties:

(i) it contains all abelian groups;

(ii) if G £6,,, each closed connected invariant subgroup of G is in Gp;

(iii) if l—*K—*G—*U—*l is exact and K and U are in QP, then G is in Cp;

(iv) if 1—»T—*G —>{/—» 1 is exact, T is totally disconnected, G is compact con-

nected, and U is in Qp, then G is in Qp.

(3.4) Before proceeding to the proofs of the results of the previous theo-

rems, we recall the results of E. Cartan and Van Kampen on the structure of

compact connected groups [l 1 J.

Denote by G" the connected component of the identity of the center of G;

and by G", the closure of the commutator subgroup of G. Both G" and G"

are closed normal and connected subgroups of G; when G is finite-dimensional,

G* is just the commutator subgroup of G. In general G* is larger. G* can be

represented in a unique way, up to an automorphism, in the form G'/D, where

G* is a product, in general infinite, of simple, simply-connected compact Lie

groups and D is a totally-disconnected subgroup of the center. Let us remark

that D is finite when the product is finite. Denote by G the group G'XG". Let

^e: G'-^G'/D = G' be the natural epimorphism. Define d>g: G—*G by putting

<l>s(x< y) =tiiix) ~y< where x, y are arbitrary elements of G" and Gc, respectively.
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Then <pg is an epimorphism which, when restricted to the first factor, reduces

to \p„, while it reduces to the identity when restricted to the second factor.

(3.5) We shall now prove Theorem (3.1.1). The proof that if G is abelian

then a: E(VP)^>H*(G; Zp) is an isomorphism runs along the lines of the argu-

ment in (3.1.2); we therefore shall not reproduce it. So assume that <r: E(VP)

—*H*(G; Zp) is defined and is an isomorphism of Hopf-algebras. Consider the

group G, described in (3.4), and its epimorphism, cpq: G-+G. Since ker<£„ is

totally disconnected, Theorem (2. 3.1) implies that Vp, the space of primitive

elements of H*(G; Zp), consists of one-dimensional elements only. Since, by

definition, G= ( YL* G*) XG°, where each G¿ is a simple, simply-connected and

compact Lie group, to show that G is abelian we need only show that if the

first factor of G were not trivial, then VP would have nontrivial elements of

degree 3. But this follows from the following proposition, which is an easy

consequence of a result of Bott and Samelson's [2].

Proposition (3.5.1). Suppose G is a simple, simply-connected and compact

Lie group. Then HS(G; Z)9*0 and consists entirely of primitive elements.

(3.6) For the proofs of the results of (3.2), we need the following lemmas.

Let G and U be compact connected groups, and let/: G—>U be an epimor-

phism whose kernel is isomorphic to ZP. Since/ is a homomorphism, ch(/) is

a sub-Hopf-algebra of H*(U) and im/* is a sub-Hopf-algebra of H*(G).

Therefore, by part (iii) of Theorem (2.2.1), we get the following two exact

sequences of Hopf-algebras and homomorphisms:

(SO :    1 -> ch(/) -» H*(U) -♦ im/* -♦ 1,

(SO :    1 -» im/* -» H*(G) -* E(b, m) -» 1.

Hence, by [8, Theorem (2.5)],

H*(U) = cf(/) ® im/* as modules over ch(/), and
(*)

H*(G) = im/* ® E(h, m) as modules over im/*.

Notice that ch(/) has no nontrivial elements of degree greater than m. Hence,

Lemma (3.6.1). If W(U; Zp)=0,for all i>some integer N, then H^G; Zp)

= 0,foralli>N.

Suppose now that H*(G; Zp) and H*(U; Zp) are finitely generated in

every homogeneous degree. Write PP(G; t), PP(U; t), Pp(f; t), and PP(x\ t)

for the Poincaré series of H*(G;ZP), H*(U; Zp), im/*, and ch(/), respectively;

i.e., PP(G; t) is the formal sum J^üo <!«<', where a< = rank H'(G; ZP). Similarly

for PP(U; t), im/*, and ch(/). By the decomposition (*) given above we get

Pp(U;t) = PP(x;t)-Ppif;t),

and
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Pp(G;t) = Pp(f;t)-(l + f»).

But

pr   .A-   (il + t + t*+ ■■■+tk-1), ÍÍP=2,

p{X' }~    1(1 + t)(t + t* + ■ ■ ■ + <«-»),       if p > 2,

and m = k — 1 when p = 2 and 2A —1 when £>2. Hence

Lemma (3.6.2). PP(G; t)úPp(U; t).

Now we can proceed to give the proofs for (3.2).

Proof of Theorem (3.2.1). Suppose that G is a finite-dimensional compact

connected group. Then there is an epimorphism/: G—*U where ¿/is a compact

connected Lie group and ker/is totally disconnected. Factor/into an inverse

limit of epimorphisms with finite kernels and apply (3.6.1). This proves the

necessity of the assertion.

Next assume that H*(G; Zp) is finitely generated in every homogeneous

dimension. Observe that the following commutative diagram has exact rows:

1 -» G' -» G> X Gc -> Gc -> 1

II            I 1
l-*&-> G ->G'f-*í,

where G' and Gc have the same meaning given them in (3.4) and G"' is a con-

nected abelian group. By Theorem (2.4.2), we know that H*(G'; Zp) is a

quotient of H*(G; Zp) and, hence, is finitely generated in every homogeneous

dimension. Applying (3.6.2) to the epimorphism ipa: (?*—»G* (see (3.4)), we

get that H*(G'; Zp) is also finitely generated in every homogeneous dimen-

sion. Hence, by (3.5.1), G* is finite-dimensional. Similarly, H*(G°; ZP) is

finitely generated in every homogeneous dimension. If no element of Hl(G°; Z)

(which is, by a classical result, equal to char(Gc)) is infinitely divisible by p,

it follows that char(Gc) is of finite rank and, hence, that G" is finite-dimen-

sional. Since both G* and G" are finite-dimensional, it follows that G itself is

finite-dimensional.

The proof of the fact that the vanishing of the cohomology groups mod p

of G in arbitrarily high dimensions, together with the condition on char(Gc),

imply the finite-dimensionality of G is similar. Q.E.D.

Proof of Corollary (3.2.2). Let G be a compact connected group, and sup-

pose that there exists an integer N such that Hl(G; Z) = 0 for i>N. Then the

universal coefficient theorem implies that H^G; ZB)=0 for i>N, where Z0

is the field of rational numbers. Thus, by Theorem (3.2.1), G is finite-dimen-

sional. First notice that, since G is compact, its metrisability follows as soon

as we establish its separability. So consider now the group G, associated with

G, and the epimorphism <bg:G^>G (see (3.4)). Since <p„ is an open map, to prove

that G is separable it is enough to prove that G itself is separable. By défini-
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tion, G = G'XGC, where G* is a compact connected Lie group and Gc is the

connected component of the center of G. Thus it is enough to show that Gc

is separable or, equivalently, that char(Gc) is countable. First, we know that

char(Gc) is of finite rank, since Gc is finite-dimensional. Hence char(Gc) ®z Z0

is a finite-dimensional vector space over Z0 and is, therefore, countable. Fur-

ther, since G° is connected, we know that char(G") is free of torsion. Thus

the natural monomorphism Z-^Zo induces a monomorphism char(Gc)

—>char(Gc)<g>z Z0. Therefore char(G") is countable. Q.E.D.

Proof of Proposition (3.2.3). Let G be a compact connected group, and sup-

pose that there exists an integer N such that H^G; Z) =0, for all i>N, and

HN(G; Z) =Z. First of all, Theorem (3.2.1) tells us that G is finite-dimensional.

Next, by the Peter-Weyl Theorem, G is the inverse limit of compact con-

nected Lie groups. Hence, there exists a compact connected Lie group G' and

an epimorphism /: G^G' with a totally disconnected kernel such that

f*:HN(G'; Z)—+HN(G; Z) is an isomorphism. We can also find an inverse

system of compact connected Lie groups Ga, and, for each a, an epimorphism

fa'. Ga-*G' with a finite kernel such that

lim lim
G = <-Ga   and   <-/« =/.

a a

Therefore/„* : HN(G' ; Z)-*HN(Ga ; Z) is an isomorphism for all a, since/ factors

through each Ga. Hence, for all a and every prime p, /„*: HN(G'; Zp)

-*HN(Ga\ Zp) is an isomorphism. This implies that ker/a= 1, for, otherwise, if

p divided the order of ker/a, Theorem (2.2.1) would imply that the funda-

mental class of Ga does not lie in im/a*. Q.E.D.

Proof of Proposition (3.2.4). Let G be a compact connected group, and

assume that there exists an integer N such that Hl(G; Z) = {o}, for i>N.

Suppose, moreover, that Hl(G; Z) is free. Observe, first of all, that, by virtue

of Theorem (3.2.1), G is finite-dimensional. Hence Hl(G; Z) is finitely gener-

ated. Consider now the canonical group G associated with G, and let cpg: G^>G

be its natural epimorphism (see (3.4)). Then ker cpQ is finite, of order M, say.

We claim

Lemma. A =HX(G; Z)/<p0*Hi(G; Z) is a finite group.

Proof. Using the transfer homomorphism r: H1^; Z)—*H1(G; Z) [4], we

see that cp¿*: H1 (G; Z)—*Hl(ô\ Z) is a monomorphism and that the order of

every element of Hl(G; Z)/cp*H1(G; Z) divides M. Suppose now that pm is

the highest power of p dividing M, where p is a prime. By tensoring the exact

sequence

<t>*0 -> W(G; Z) —U Hl(G; Z) -> A -> 0

by Zpm, we get the exact sequence
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<b0* ® 1
0 -* Tor(A ; Z„») -> H\G; Z) ® Zp~-► Hl(G; Z) <g> Zp*> -> A <g> Z^ ->0.

Since Hl(G; Z) is finitely generated and free, Hl(G; Z)®Zpm is isomorphic

to a finite direct sum of copies of Zp» and, hence, is finite. Hence Tor(^4 ; Zpm)

(which is the subgroup of A consisting of those elements whose orders divide

pm) is also finite. But p is an arbitrary prime dividing M. Hence A is finite.

Q.E.D.
Thus.fP(G; Z) is a finitely generated free group. But Hl(G; Z) =H1(GC; Z),

where G" is the connected component of the center of G. Hence, Hl(Gc; Z)

and, thus, char(G°), is finitely generated and free. Hence G' is a torus. There-

fore, G is a Lie group, and, hence, G is a Lie group [11 ]. Q.E.D.

(3.7) We shall give here the proof of Theorem (3.3.3). Parts (i) and (iv)

of the theorem are portions of the statements of Theorems (3.1.1) and (2.3.1),

respectively; thus we need prove only (ii) and (iii). The latter is a consequence

of an essentially algebraic result regarding extensions of Hopf-algebras. If A is

a Hopf-algebra, we shall denote by p(A) and q(A) the spaces of primitive

elements and indecomposable elements of A, respectively [8, §3].

Proposition (3.7.1). Consider the exact sequence

(S) : 1 -» A X B U C -» 1

of commutative, associative and connected Hopf-algebras over the field Zp. If

p(A)=q(A) and p(C)=q(C) and each has no nonzero elements of even degree,

then p(B) is isomorphic to q(B) and has no nonzero elements of even degree.

Moreover, the sequence

0 -* p(A) - p(B) -> p(C) - 0

is exact.

Proof. The sequence (S) induces the following commutative ladder of

vector spaces with exact rows [8, Theorem (3.6)]:

0->p(A)-+p(B)^p(C)

L: • 8 | i        il i

q(.A)-+q(B)-+q(C)-*0.

To prove the proposition it is enough, by [8, Theorem (4.10)], to show

that B is generated by elements of odd degree and height 2. So choose a

homomorphism a: C—+B such that joa=l. Denote by L the subspace

ip(A) +ap(C). It is easy to see that the natural map B—>B/B2 = q(B) maps

L on q(B) ; i.e., L generates B. Moreover, L contains no non trivial elements of

even degree. We want to show that every element of L has height 2. Since the

case£>2 gives no trouble, assume p — 2. In fact, it is just as easy to show that

every element of B has height 2. So suppose x£Pi. Then x is primitive and,
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hence, x2 is also primitive. Thus x2 = 0, because p(B) has no nontrivial ele-

ments of even degree. Assume now that it has been shown that if x<EiBm and

m<n, then *2 = 0. Take xÇE.Bn. Then, by the induction hypothesis, x2 is

primitive. But deg x2 is even. Hence x2 = 0. Q.E.D.

It is clear that Proposition (3.7.1) implies part (iii) of Theorem (3.3.3).

So let us now turn to the proof of part (ii). As a first step, we assert

Proposition (3.7.2). Let G be a compact connected group. Then G is in Qp

if and only if G* is in Qp (see (3.4)).

Proof. Consider the commutative diagram

1 -» G' -» G« X G" -♦ G° -» 1

ill         i I
1-»G«-► G ->GC'->1

and apply Theorem (2.4.2).

Now suppose G is a compact connected group in Qp, and let K be an in-

variant subgroup of G. By (3.7.2), KÇ.QP if and only if K'<E.&P- So consider

the following commutative diagram of compact connected groups and homo-

morphisms (see (3.4)):

D:

K. _> G. _» G./K. _» i

I      lío    i

->K'-*G'-*G'/K'-*i.

Dividing the upper row by the subgroup Tk = ker\¡/tr\K', we get

1 — Ê'- G» — G'/K' — 1

I i II
Í — K' — G'/Tk — Ô'/K' — 1

II 4 I
l — K'-— G«-G'/K' — 1.

The middle row splits, and G'/TfcEC,,, by Theorem (2.3.1) and Proposi-

tion (3.7.2). Hence X'GCp. Q.E.D.
4. The category of principal fibre spaces. The main purpose of this and

the succeeding sections is to set the stage for the proofs of §2. The category of

principal fibre spaces is described briefly, and a few simple propositions about

this category will be formulated. They will be used in §5.

(4.1) We shall limit ourselves to Hausdorff spaces and compact groups

throughout. So let £ be a Hausdorff space and G, a compact group. Recall

that G is said to act on E if and only if there exists a continuous map,

cp:EXG-+E, such that for all x£E, <p(x, 1) =* where 1£G is the identity and



14 S. Y. HUSSEINI [April

4>(x, gg')=<P(<t>ix, g), g') for ail g, g'GG. If, in addition, <¡>(x, g)¿¿x whenever

g5¿l£G, the action is said to be free. In this case E is called a principal fibre

space for G. Denote the decomposition space E/G by B, and the natural map

E—>B by /. B is a Hausdorff space, and it is called the base, while/is called

the fibre map. Of course / need not satisfy the covering homotopy theorem.

This is all right because we shall be using the Leray spectral sequence.

The objects of the category <5"5 are the triples (E, <p, G), where £ is a prin-

cipal fibre space for G. A map oí (E, cp, G) into (E', <f>'', G') is a pair of maps

(p., X), where u:E—>E' and X: G—*G' is a homomorphism such that ¿u o <j>

= <p' o (¿i XX). Instead of (E,<f>, G) it is sometimes convenient to write/: E—*B,

where B is the base space and /, the fibre map.

Examples (4.1.1). (i) The principal fibre bundles belong to (P5.

(ii) The total space is a topological group G; the group is a compact sub-

group K; and the action is by translation on the right. Write (G, d>, K) for

this fibre space. B is G/K. Such fibrations need not be locally trivial. For

example, suppose G' is a compact connected Lie group and K', a closed sub-

group of G' such that the fibre bundle G'—*G'/K' is not trivial. Denote by G

the cartesian product of G' with itself infinitely many times; and by K, the

cartesian product of K' with itself as many times. Then the fibration for which

the total space is G and for which the group is K acting on G coordinatewise

is not locally trivial.

(iii) Let G be a compact group, and assume that T is a finite abelian sub-

group of G. Denote by E the infinite join of T with itself. With the weak topol-

ogy, E is a regular CW-complex which serves as a locally trivial fibre bundle

for T. Put E/T = B. Consider now the space EXr G, i.e., the decomposition

space EXG/T where T is made to act on PXG via the diagonal map. Then

the multiplication on G, <p:GXG-^>G, induces a mapping lX<p: EXGXG

->PXG which passes to a mapping lXr<¿>: (PXr G) XG-*£Xr G. In this

fashion EXr G becomes a principal fibre space for G. Moreover, EXrG/G

= B, and the fibre map EXrG—>P> is just the map /S:EXrG—>B induced

by the composition of the projection £XG->£ and the locally trivial fibring

E—+B. We shall write (EXr G, lXr<£, G) for this fibre space.

Let {(E#, 4>a, Ga) | a£ J\ be a set of principal fibre spaces. Then E = JJa Ea

is a principal fibre space for G = H« G«> the action being defined by tp = TJa <pa.

Thus

(4.1.2) The category (Pi is closed under infinite products.

It is just as easy to prove that:

(4.1.3) The category (Pff is closed under inverse limits, and the functor

which assigns B = E/G to (E, <p, G) is continuous when restricted to the sub-

category of fibrations for which the total spaces are compact.

(4.2) The examples of (4.1.1) are the fibrations which occur in our work.

Those which are locally trivial and fibred by compact Lie groups are the best

behaved. We shall see that the other examples are just as nice.
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Proposition (4.2.1). Consider the fibration (G, cp, K) where G is a compact

group; K, a closed subgroup of G; and K acts on G by translations on the right

(see (ii) of (4.1.1)). Then (G, cp, K) is the inverse limit of fibrations of compact

Lie groups by closed subgroups.

The proof is a fairly simple application of the Peter-Weyl Theorem.

5. Spectral sequences and Leray's operators. Let /: E—>B be a principal

fibre space for the compact connected group G, and let ZP be the prime field

of characteristic p. It will be tacitly assumed, unless otherwise mentioned,

that the cohomology groups have their coefficients in Zp. Consider the co-

homology spectral sequence {Er(f), r è 2} of the map /. For its definition

and functorial properties see [6, §4.17]. Recall that

E2(f) = H*(B; 3C*(G)),

where the cohomology theory used is the sheaf-theoretic one with closed sup-

ports, and the sheaf of coefficients 3C*(G) is the sheaf generated by the pre-

sheaf which assigns to an open set V(ZB the group H*(f~xV). This spectral

sequence is, however, of little use unless we know that (i) the Cech cohomol-

ogy groups of E and B agree with their sheaf-theoretic cohomology with

closed supports and (ii) the sheaf 3C*(G) has the cohomology groups of the

fibres for stalks and is simple and E2(f)=H*(B)®H*(G). The propositions

of (5.1) and (5.2) below will prove (i) and (ii) for the fibre spaces needed for

the proof of our main results.

The latter part of this section is devoted to the description of the oper-

ators of Leray. Our exposition, like that of [l], depends on the solution of a

problem of the Künneth type: namely, the relating of Er(f) and Er(f) with

Er(fXf'), wherefXf : EXE'-^B XB' is the product of the fibrations/: E-kB
and/': E'-*B'. This is done in (5.3).

(5.1) Let G be a compact connected group and T, a finite abelian subgroup

of G ; and write U for the coset space G/T and / for the natural map G—» U.

Suppose also that y:E—+B is Milnor's «-universal fibre bundle for V [7].

Recall that E and B are countable regular CW-complexes. Thus EXG is

regular and, hence, paracompact, since it is the countable union of countable

compact subsets, namely £XG = U„ EnXG, where En is the join of T with it-

self (w + 1) times. Make Y act on the product EXG via the diagonal map; as

in (4.1.1), denote by EXvG the decomposition space (EXG)/r. Consider

next the commutative diagram,

a ß
G*-E X G-»£

fl   _        i |7

U^-EXvG^B ,

where ä and ß axe induced by the projections a and ß.
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Proposition (5.1.1). The induced cohomology map

ä*:H*(U)->H*(EXrG)

is an isomorphism of algebras.

The proof makes use of the spectral sequence {Er(á), r è 2} of the locally-

trivial fibration 5: EXr G->U=G/T. As is well known E2 = H*(B; 3C*(£))

[6, §4.17]. By the local triviality of a, the paracompactness of EXr G, and

the contractibility of E, it follows that Xq(E)x = 0 if g>0 and =ZP if ç = 0

where K.*(E)X is the stalk of 3C*(£) at any ïG U. Hence ££'c = 0 if q^O, and

= H*(B, 3C°(£)), for g = 0. Thus we need only show

Lemma. 3C°(E) is a simple sheaf over U.

Proof. Since T is finite, it is easy to find a compact connected Lie group

Gj and an epimorphism cps'.G—^Gs such that <ps|r is an isomorphism. Put

0s(T) =TjCGí. 4>i induces the commutative diagram,

E X r G —* £j X r4 Gj

i i

G/Y —U Gi/r,

where Ej is the «> -universal bundle for Tj. We know that 3C°(£j) is a simple

sheaf over Gj/Tj. But $s induces an isomorphism between the induced sheaf

$tX°(Eb) and 3C°(£). Hence the lemma. Q.E.D.

Proposition (5.1.2). PAe spectral sequence {ET(8), r^2} of the fibration

ß: EXr G—>B has the following properties:

(i) the sheaf 3C*(G) is isomorphic to the simple sheaf whose stalk is H*(G);

and

(ii) E2($)=H*(B)®H*(G).

(i) is a consequence of the local triviality of ß and the connectedness of

G, whereas (ii) follows from the fact that H*(B) is finitely generated.

(5.2) Let G be a compact connected group, and let K be a connected,

normal, and closed subgroup of G. Put G/K= U, and let/ be the canonical

map/: G—*U.

Proposition (5.2.1). In the spectral sequence {Er(f), r^2} of the epimor-

phism f: G^>U, the sheaf of fibres 3C*(P) is simple and E2(f)=H*(U)®H*(K).

To prove the proposition, we represent 3C*(P) as a direct limit of simple

sheaves. The essential fact is that/: G—>U is an inverse limit of fibrations of

Lie groups by Lie groups (see (4.2.1)). So let {(£a, d>a, Ga), a(E.J} be an in-

verse system of principal fibre spaces. Denote Ea/Ga by Ba and the natural

maps Ea—*Ba by/«. Assume that, for every a, Ea is compact, Ba is a complex,

and fa : Ea-+Ba is locally trivial. Let
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(E, cp, G) = lim (Ea, <t>a, Ga),
<-

a

and write B and E/G for fla for the natural map B—>Ba induced by ßa: E—>Ea.

Recall that
B =  lim Ba,

<-
a

and that the sheaf 3C*(Ga), defined by the cohomology of the fibres of /„

over Ba, is simple; it is naturally isomorphic to the simple sheaf L¿, whose

stalk is H*(Ga). Denote the sheaf 3C*(Ga) by £á, and the sheaf ß*£a, in-

duced by ßa, by £«. Then the mappings Ltaß'- Ea-+Eß induce in a natural way

a mapping of sheaves ßaß:£a—*£ß. Thus,

Proposition (5.2.2). The system { £a, ßaß, a, /3£/} is a direct system of

sheaves over B.

Observe that each £a is isomorphic to the simple sheaf ß*La = La.

Proposition (5.2.3). The direct limit

£ = lim £a

a

is naturally isomorphic to the sheaf 3C*(G). In particular, 3C*(G) is simple, with

stalk H*(G).

It is not hard to construct a continuous mapping £—>3C*(G) which is an

isomorphism on the stalks. Just as easily it can be shown that the direct

limit of simple sheaves over a connected space is simple.

(5.3) Suppose now that f:X—+Y and /': X'—*Y' axe fibre maps. Then

fXf: XXX''—>FX Y' is also a fibre map. Assume that the underlying ring of

coefficients is R. Consider Er(f)®Er(f), the tensor product of the spectral

sequence of/ with the spectral sequence of/', and give it the usual product

differential and gradation. We wish to define a map y¡/r:Er(f)®ET(f')

—*Er(/X/'), r^2, of differential graded i?-modules. We follow the notation

of [6].
(5.3.1) First we give a natural map of sheaves

a: £* ® £'* -► (/ X/')*(e*(A; R) ® C*(A'; R)) = (P*,

where £* and £'* are /*C*(A; R) and/*'e*(X'; R), respectively. Recall

£*® £'* is generated by the presheaf which assigns to an open set Z7X F of

YXY' the R-module £*(U)®b £'*(V) = e*(X;R)(f-lU)®e*(X';R)(f'-lV).
The latter module is included in

(e*(X; R) ® e*(A'; i?))(/X/,)"1(^ X F)

= (fXf%(C*(X; R) <g> e*(A'; R))(U X V).
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Then, by definition, a is the map induced by this inclusion.

(5.3.2) Put 9Tl* = (/X/')*(e*(XXX'; R)), and consider the cartesian

product map [6, §6],

Ö: e*(X; R) ® Q*(X'; R) -> e*(X X X'; R).

Then/X/' induces the map (JXf')*(8): (P*->3TC*.

(5.3.3) LetM=C*(a) o 5: Q*(Y; £*)®Q*(Y'; £'*)-»C*(FX F'; (P*) be the
composition of the cartesian product map S [6, §6] and the map G*(a) in-

duced by a. Then

X = Q*((f X f')*(&)) om: C*(F; £*) ® Q*(Y'; £'*) -^ Q*(Y X F';3TC*).

X, on the other hand, induces a map

4>: C*(Y; £*) ® C*(Y'; £'*) ^C*(YX Y'; 311*)

of the global sections. Notice that ^ is a map of filtered graded modules. Thus,

Proposition (5.3.4). With the notation as above, \¡/ induces, for every r such

that 2=>g »,

Uf X /') : £,(/) <8> £,(/') - Er(f X f),

a homomorphism of differential graded modules. Furthermore, ^v+i(/X/')  is

induced by ipr(fXf').

Proposition (5.3.5). Suppose that the sheaves 3C*(G; P) and 3C*(G'; R)

are simple and R is afield. Assume further that either Y and Y' are compact, or

H*(Y; R), H*(Y'; R) and H*(YX Y'; R) are finitely generated in every homo-

geneous dimension. Then ^r(fXf) : Er(f) ®Er(/')—>Er(/X/') is an isomorphism

of algebras, for all r ^ 2.

First we need

Lemma (5.3.6). PAe sheaf of coefficients X*(GXG') over YXY' is simple
whenever 3C*(G) over Y and 3C*(G') over Y' are both simple.

The proof of the lemma is not difficult and will be left to the reader. Then

the usual universal coefficient theorem implies that faijXf) : E2(f) ®E2(f)

—>E2(fXf) is an isomorphism of graded vector spaces. Hence i/v(/X/') is also

an isomorphism for all r^2. To prove that they are isomorphisms of algebras

it is enough to examine the diagram (Dr) following

Er(f) ® Er(f) ® Er(f) ® Er(f)   "k ® *'* ° T> ET(fXf) ® ET(f Xf)

Er(f Xf)® Er(f X /') -—-»  Er(f Xf'XfXf)

d(f)®d(f')[ d(fXf')i

Er(f) ® Er(f) —- -> Er(fXf)
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where T is the usual "twisting" and d(f) is the map induced by the diagonal

map/->/X/.
In (D2) the upper diagram is commutative because of the commutavity

and associativity of the cartesian product. The lower diagram, on the other

hand, is commutative because of the naturality of the cartesian product.

Since (Dr) is the derived diagram of (Dr_0, the result follows immediately.

Q.E.D.
(5.4) Let /: E—*B be a principal fibre space for the compact connected

group. Assume further that either B is compact or H*(B; Zp) is finitely gener-

ated in every homogeneous dimension. We also assume that 3C*(G) is simple

over B. Thus £*■*(/) =H*(B; ZP)®H*(G; Zv). Since G acts freely on E, we

get the commutative diagram

EXG -» E

fxfi 4/
B X {b}-*B ,

where /' is the constant map. This induces a homomorphism of algebras,

<pr:Er(f)-+E(f)®H*(G) by (5.3.5). Observe that cp2 restricted to the fibre

H*(G) is merely the diagonal map in the Hopf-algebra H*(G).

Definition (5.4.1). Let u<EH*(G;R) = llom(H*(G;R);R). Put 0„
= (1 ®u) ocbr: Er(f)—*ET(f). &u is called the Leray operator corresponding to u.

The following two propositions sum up the main properties of these oper-

ators.

Proposition (5.4.2). For all r^2 and uGH*(G):

(i) t?u is a homomorphism of vector spaces;

(ii) t?„: E/^-^E,"'«-', where u£Hi(G);

(iii) t?„ o d, = dr o #„ ;

(iv) t?tt o h^+i = kI+i oâu, where k'+1 is the map taking the cocycles of ET in

Er+i;

(v) let b®gEEt*(f) = H*(B)®H*(G); then if uEH*(G), it follows that
Mi®g)=b®du(g).

The proofs are very simple.

Next we shall prove the following fundamental proposition.

Proposition (5.4.3). Consider the spectral sequence {Er(f), r^2} of the

principal fibration f:E-*B. Assume that E2(f)= • • • =£,(/). Then if
d,: Ej'*_1—>Ei'° is trivial, it follows that the differential operator d, is trivial and,

hence, E,(f)=E,+i(f).

Proof. Since E.(f)=E2(f) = H*(G)®H*(G) and d. is a derivation, it is
enough to prove that d, restricted to H*(G) is trivial. So take z£;Hn(G). Then

(*) d.(z) = ¿Zo,® g¡,
i
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with bjÇz\H'(B) and gj<E.Hn~'+l(G) ; we can assume that the g/s are linearly

independent over Zp. Complete the set {gj} to a basis 5 of H*(G). Choose

some Ui<zzHn^,+y(G) such that u((gi) = 1 and u((x) =0 for all x^g.GS. Then

by (5.4.2) we get

*«,(<*.(*)) = £ */ ® #«.(&).
i

But ¿u<(&) = 0 if &*«<• To see this, let cp,(g,) =gj®l + l®gj+ £* &««£,

where deg gjt, deg g'jk<deg gj. HencedUi(g}) = 1 iij = i, and =0 iijp*i. Thus

<*.((*«,)(*)) = t?Ui(¿.Z) = b,.

But #Ui(z)£i7*_1(í;); therefore d,(âUi(z)) =&, = 0. We can repeat this pro-

cedure for every element bi appearing in the sum (*). Thus d,(z) =0. Q.E.D.

6. Proof of Theorem (2.2.1). We shall assume here that the domain of

coefficients for cohomology is ZP, the prime field of characteristic p. Let G

be a compact connected group and T a subgroup isomorphic to Z„n, where «

is some integer greater than, or equal to, 1. Consider the natural map/: G—>•£/

= G/r and the space EXr G which it defines (see (5.1)). There are two natu-

rally defined locally trivial fibrations: ä:EXrG—►£/ and ß:EXrG—*B.

Proposition (5.1.1) implies that 5*: H*(U)—*H*(EXt G) is an isomorphism

of the Cech cohomology algebras. Moreover, by Proposition (5.1.2), we know

that in the spectral sequence {Er(ß), r ^ 2},

£2(/3) = H*(B) ® H*(G).

It is understood, of course, that an arbitrary imbedding i: G—»EXr G oí G

as a fibre has been chosen and that the sheaf 3C*(G) is identified with H*(G)

by means of this imbedding. As is well known, f* = i* o ä* and ä*~l o ß* = x*,

where x is that mapping of U in B inducing the fibration/: G—>U. Thus, the

proof of Theorem (2.2.1) is reduced to the analysis of the sequence

{£r(/3), r ^ 2}. We shall do that for the case p > 2, the other case being similar.

The proof is a consequence of the following lemmas.

Lemma (6.1). ch(f) ^E(x, 1) ®P(y, 2)/(yh), where k is some positive integer.

Proof. Put x = x*ix) and y = x*iy) and observe first of all that the element

y of H*(G/T) is nilpotent because G/T is compact. Thus there exists a Lie

group G' and an epimorphism <p: G-^G' such that (i) <p restricted to T is an

isomorphism and (ii) <p* maps the characteristic ring of the fibrations

G'-+G'/<b(T) isomorphically onto the characteristic ring of the fibration

G—>G/T. Thus, we need prove Lemma (6.1) only for the case when G is a Lie

group. So we assume that G is a Lie group and choose a circle subgroup 5 of G

containing T. Consider a universal bundle X: Eq-^Bq for G. Since V is a sub-

group of G, we obtain in a well-known manner the following commutative

diagram :
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where Br = EG/Y, u and v are fibrations, and i is the inclusion map of the

fibre G/r. Observe that i can be taken as the classifying map for the fibration

f:G—*G/Y. Hence im i* = ch(f). Similarly, the inclusion SC.G induces the

commutative diagram

Again/ can be taken as the classifying map for h: G-+G/S, and thus im/* is

equal to the characteristic algebra of h; that is, im j* = ch(h). Now since Y

is a subgroup of S, u factors through Bs, and we get the commutative dia-

gram:

G/r -» BT

G/S- -*B

*  Bg

s

Consider the fibration w: Br—>Bs, whose fibre is S/Y. Observe that S/Y is

totally nonhomologous to zero mod p in Br. By naturality, S/Y is also totally

nonhomologous to zero mod p in G/Y. Hence the spectral sequence

{Er(g), r~^2}, of the fibration g is trivial; i.e.,

H*(G/S) ® H*(S/T) = E2(g) = £„(*).

To finish the proof, observe that ch(h)~P(y', 2)/(y'k), where y'=j*(y).

Thus, in H*(G/Y), y* = 0 but yk~l9*0. Also xf-^9*0 in H*(G/Y), since it is

so in E2(g), and E2(g)=E„(g)=EBiH*(G/Y)). Q.E.D.

Lemma (6.2). Suppose Y is invariant in G. Then ch(f) is a sub-Hopf-

algebra of H*(U), primitively generated by x*ix) and X*(j)- Moreover, x*iy)

has height p' for some integer s^O, and ker x* M the ideal of H*(B) generated

by yp'.
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Proof. Since T is abelian, the mapping cp: TXT—^T defining the multipli-

cation on T is a homomorphism. Hence <p induces if-structures on £ and B

with respect to which 7 is a homomorphism of iT-spaces. Observe that T is

central in G, since it is invariant and discrete. Hence the iY-structure on £,

together with the multiplication on G, induces an iT-structure on EXrG,

and the mappings a and ß are homomorphisms of Pi-spaces. Thus H*(E X r G)

and H*(B) are Hopf-algebras, and a* and ß* are homomorphisms of Hopf-

algebras. Recall that x and y are primitive elements of H*(B). Hence x*(x)

and x*iy) are primitive elements of H*(U), since a* and ß* are homomor-

phisms of Hopf-algebras. The rest follows from standard facts on Hopf-

algebras. Q.E.D.
(6.1) and (6.2) imply the first part of the theorem.

Lemma (6.3). Suppose k is the integer defined in Lemma (6.1). PAe« d2k

is the first nontrivial differential operator of {Er(ß), r^2} and is an epimor-

phism ofHik-1(G)=E°2f~1 onto H2k(B)=Elï°. Hence there exists an element b

in H2k~l(G) such that d2k(b)=yk.

Proof. If A = 1, then x*(y) — 0, and the lemma is true. So assume k> 1. By

(6.1), ¿2: E2'1—»OéEEI0. Proposition (5.4.3) implies d2 = 0. A simple induction

argument completes the proof of the first part. The second part is clear.

Q.E.D.

Lemma (6.4). H*(G) =L® {b}, where {b} is the module generated by b, and

L is the part of the kernel of dw that lies in H*(G).

Proof. Take an element xÇz\H*(G). Then d2k(x) =yk®x', where x'(zlH*(G).

Now, since 0 = d\t(x) = ykd2k(x'), and since multiplication by yk is a mono-

morphism of £2*, it follows that d2k(x') =0. Therefore x — bx'ÇzL, and, hence,

H*(G) is generated by L and b. To prove H*(G) =L®\b\, take x£P. Then

d2k(xb) =yk®x, and, therefore, xb = 0 if and only if x = 0. Q.E.D.

Notice that b has odd degree when p>2. Hence b2 = 0. If p = 2, degree b

need neither be odd nor ¿>2 = 0. We can say only that è2GP, for d2k(b2)

= 2bd2k(b)=0.

Lemma (6.5). E»+i(|S) = (E(x, 1) ®P(y, 2)/(yk)) ®L, where L is as in (6.4).

Proof. By (6.4), the group of coboundaries of £2* is the ideal generated

by b. Therefore it is enough to show that the cocycles are the elements of

(£(x, 1) ®P(y, 2)) ®L*. The elements of the latter group are clearly cocycles.

To prove that they are all the cocycles there are, take zG.E2k. Then z^y^z',

or xy'®z', where z'£-fY*(G). Assume z is a cocycle. If z = xy'®z', then 0 = d2k(z)

= xd2k(yi®z'); but ¿»(y'Œz') GE2;*4"21'* and multiplication by at is a mono-

morphism of Eft+2ij* in £^+2i+1'*. Hence d2k(yi®z')=0; thus we may just as

well assume that z — yi®z'. In this case a similar argument shows that z is a

cocycle if and only if z'GP. Hence d^(z) =0 implies that zG£(x, 1) ®P(y, 2)

®L. Q.E.D.
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Let us observe that im i* QL. We shall show

Lemma (6.6). im i* = L.

Proof. It is enough to prove that

(*) for all xGL,       dr(x) = 0,       for r => 2.

Since the first nontrivial differential operator is du, (*) holds when 2^r

^2fe — 1. By definition, ¿24 = 0 on L. Finally, Lemma (6.5) shows that no non-

trivial elements exist when the base degree is greater than or equal to 2k.

Thus (*) holds also when r£2,1+1. Q.E.D.

Hence E„(ß) = (E(x,l)®P(y,2)/(yk))*®im i*. This implies that

ii*(L/)/ch(/)=im/*. Finally, by (6.4), H*(G)^im f* = E(h, 2*-l), where
E(b, 2k — 1) is the exterior algebra on the element «5 whose degree is 2& —1.

Notice that 52 = 0. This finishes the proof of Theorem (2.2.1).

7. Proof of Theorem (2.3.1). Let the notation be as in (2.3), and suppose

(7.1) Case l.Y = Zp.
Since T is invariant in G, ch(/) is a sub-Hopf-algebra of H*(U), as follows

from (6.2). By Theorem (2.2.1) we get the following exact sequence of Hopf-

algebras :

f*
(SO :    1 -* ch(/) -> H*(U) ¿* H*(G) -* E(b, 2k - 1) -»• 1.

Now im /* is a sub-Hopf-algebra of H*(G); hence (SO is equivalent to the

following two exact sequences of Hopf-algebras and homomorphisms:

(SO:    1 -» ch(f)^H*(U)L im/*->l,

(Si"):   1 -> im/*->H*(G) -*E(l, 2k - 1)-*1.

Let us write V¡ and L¡ for the spaces of primitive elements and indecom-

posable elements, respectively, of im /*. Similarly, let Fx and Lx stand for

the corresponding spaces of ch(/). Now we shall proceed to examine (S{) and

Lemma (7.1.1). ch(f)=P(y, l)/(y2),whenp = 2,and =E(x, l),whenp>2.

Proof. (S/) induces the following sequence of primitive elements [8]:

0 -» Vx -> Fu -* Vf.

By assumption, Fu contains no nontrivial elements of even degree; therefore,

the same is true of Vx. This is enough to imply the lemma; for, if p = 2, V~

is generated by the 2-powers of y, y, y2, ■ ■ ■ , which are all, except for y, of

even degree and, hence, y2 = 0. Similarly for p>2. Q.E.D.

By assumption, H*(U) is generated by elements of odd degree and height

2. Hence the same is true of im /*. So the Samelson-Leray Theorem [8,

Theorem (4.10)] implies that
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Lemma (7.1.2). The natural mapping of Vj^>L¡ is an isomorphism.

Thus, by (7.1.2), (Si") states that H*(G) is an extension of an exterior

algebra by an exterior algebra. This is a situation we examined in (3.7.1).

Therefore we conclude the first part of (2.3.1):

(7.1.3) The natural mapping Vg—*H*(G) extends to an isomorphism

cr„: E(V„)—*H*(G) of Hopf-algebras. Moreover, the sequence of primitive

spaces,

0-*V,-+V.— {t\-+0,

is exact.

Similarly, by (7.1.1) and (7.1.2), we conclude that

(7.1.4) The sequence of primitive spaces,

f
0->{z} ->Fu^F/-+0,

induced by (Si ), is exact.

Now, to finish the proof of (2.3.1) in the case when r = Zp, notice that

(7.1.4) implies that ker/C F¿, the subspace consisting of elements of degree 1,

while (7.1.3) implies that coker /= Va/V¡ consists of elements of degree 1.

Both imply that rank F„ = rank Vu.

(7.2) Case 2. Y is a finite abelian group.

In this case the epimorphism/: G-+U can be factored into "cyclic" epi-

morphisms; i.e., there is a finite chain of compact connected groups,

G = Go —► Gi —> G2 —► ■ • • —► Gn = U,

such that r, = kerfi, for all i, is cyclic of prime order, and/=/„ o • • • 0/10/0.

If the order of Yi is a prime, q9*p, then/* is an isomorphism. If it is p, apply

Case 1.

(7.3) Case 3. Y is totally disconnected.

The argument is similar to that of Case 2 : factor / into an inverse system

of "finite" epimorphisms. Q.E.D.

8. Proof of Theorem (2.4.1). Let

(S) :    1 -» K -> G í+ U -* 1

be an exact sequence of compact connected groups and homomorphisms. By

the results of §4,/is a principal fibre map. By Proposition (5.2.1), the sheaf

K.*(K) is simple and

E2(f) = E*(U) ® H*(K).

(i) Suppose that i*: H*(G)-+H*(K) is an epimorphism. Then the differ-

ential operators d2, d3, • • ■  of {Er(f), r=g2} are all trivial. Hence,
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£M = £2 = H*(U) ® H*(K).

Thus/* is a monomorphism, and H*(K)=H*(G)/f*H*(U).

(ii) Conversely, assume/*: H*(U)-*H*(G) is a monomorphism. Then

*      1 0.1 2 2.0

d2:H (K) = E2   ->H (U) = £2

is the zero homomorphism. Thus, by Proposition (5.4.3), ¿2 = 0 on all of £2,

and £2 = E3.

Now, by an obvious induction, EX = E2 = H*(U)®H*(K). Hence, i* is an

epimorphism, and H*(K)=H*(G)ff*H*(U). Q.E.D.
9. Proof of Theorem (2.4.2). Let

i'      /'
l-^K'-^G'Uu'^l

C : i <pk     i <Pg     1 <Pu

i f

be a commutative diagram of compact connected groups and homomor-

phisms; the rows are exact, while the vertical maps are epimorphisms with

totally disconnected kernels. Let us consider the cohomology diagram C*

induced by C:

f*                 i'*
1-► H*(U') —-> H*(G')-► H*(K')-> 1

C*: Uu* U?     .,     Î4>**

1-> H*(U) -£-* H*(G) — -> H*(K)-» 1.

In order to prove (2.4.2) we shall assume the lower (upper) row of C* is

exact and then investigate when the upper (lower) row is also exact. First we

prove

Proposition (9.1). Suppose that ker <par\K' = {1} ;iff* is a monomorphism,

then f* is also a monomorphism.

The proof is a simple application of Theorem (2.4.1).

Assume now that

i' : ker <pk ~ ker <f>g = Zp.

Thus ker <pu= 1, or, equivalently, 0U = identity. It is easy to see that the left

part of diagram C leads to the following commutative diagram:

i*
H*(G) -* H*(K)

X»* Î T X**

H*(B)s-lH*(B)
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where B is the base space of the classifying bundle of Zp (see (4.1.1)) and

X* andXa* are the characteristic maps of cpk and cpg, respectively. Thusi* maps

ch(cp„) onto ch(cpk). For notational convenience, let xa = x*(x), ya = X*iy), and

let xk and yk have similar meanings. Then, by Theorem (2.2.1),

ch(<bs) = P(yg, l)/(yl«),       if p = 2, and

= £(*„ 1) (8> P(y„ 2)/(y«),        if f > 2,

while

chfo») = P(^, l)/(y'*),       if # = 2, and

= E(xk, 1) g P(yt, 2)/(y*),        if # > 2.

Moreover, lg and lk are ^-powers. For notational convenience, put s = lk if

p = 2, and 5 = 24 if p> 2 : and put t = l„ if p = 2, and í = 2/„ if /> >2. Observe that

j^i, since i* maps ch(<£„) onto ch(#iO. The result we seek is

Proposition (9.2). Let the notation be as in the previous paragraph. Sup-

pose that i* is an epimorphism and ker cpk «ker <pa = Zp:

(i) ker f'* = (z)ÇLH*(U')—H*(U), where (z) is the ideal generated by the

element z which satisfies the relation f*(z) = y'gŒ.H*(G);

(ii) ker i'* is the ideal generated by an element hÇzH'~l(G') and the elements

of positive degree inimf'*;

(iii)  im í'* = im cbk*.

Corollary (9.2.1). Consider the diagram C, and suppose i* is an epimor-

phism or, equivalently, /* is a monomorphism. Then if H*(U) is generated by

elements of odd degree and height 2 and i: ker cpk—+ker cpg is an isomorphism, it

follows that /'* is also a monomorphism. In particular, H*(G')/f'*H*(U')

= H*(K') as an algebra.

Proof. (Case 1) ker «^«ker cp„ = Zp.

Since 4 is a power of p, the fact that ya is a primitive element in H*(G)

implies that yl¡ is also primitive. As/* is a monomorphism, (9.2) implies that

f*-^y^ = zGH*(U) is also primitive. Observe that deg z is even. But the

Samelson-Leray Theorem implies that H*(U) has no nonzero primitive ele-

ments of even degree. Hence z = 0, and thus ker/'* = (z) =0; i.e.,/'* isa mono-

morphism. The rest follows by Theorem (2.4.1).

(Cases 2 and 3) These are when ker <j>k = ker <pa = a finite group and a

totally disconnected group, respectively; they can be reduced to Case 1 (see

§7). Q.E.D.
Let us assume Proposition (9.2) for the moment and use it for the

Proof of Theorem (2.4.2). Let

l-*K^G^U-*l

be an exact sequence of compact connected groups and homomorphisms. Con-
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sider the following diagram of compact connected groups and homomor-

phisms:

î        Î
I-* Ê-* G^G/K-^1

(A): i<pk   14>„    14>J

i        f
l^P^ G-^ U—»1,

where K and G are the canonical groups associated with K and G, respec-

tively, while cpk and cf>g are the homomorphisms that go with them (see (3.4)) ;

<pú, on the other hand, is induced by 4>g. Recall that G = JT_f GiXGc, where

each Gi is a simply connected and compact Lie group and Gc is the connected

component of the identity of the center of G. Put Di = the projection of

ker <p„ on G< and Dc = the projection of ker cpg on Gc. Finally, form YLi DiXDc,

and denote it by D. Consider now a new diagram, (A*) say, induced by (A):

i       f
1-+K-* G-^ u —> 1

(A*): {pk   i Pa     i Pu

where G = G/D, pg is the map induced by the natural projection G-+G/D,

P = im(p„ o i), and pu is the map induced by pg. (A*), in its turn, induces

* i f
1->P—-» G^U P—»1

-l P*     I 1 II
(A**):   1 -» 1 -»G/A*—► P —» 1

I  II I 1 P«
1-»P—* G—*G/K->i,

where Ai = ker p*. The third row induces the following exact sequence of

Hopf-algebras and homomorphisms:

(S.) : 1 <- H*(K) <- P*(G) *- H*(G/K) <- 1.

Proposition (9.1) implies that the sequence

(S2) : 1 *- P*(P) «- H*(G/Kk) <- F*(P) *- 1

is exact; and, finally, Corollary (9.2.1) implies that the desired sequence

1 «- P*(P) ^ P*(G) ¿- P*(P) «- 1

is exact. Q.E.D.

(9.3) We shall give now the proof of Proposition (9.2) in the form of

lemmas.
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Lemma (9.3.1). There is an element z in H*(U) such thatf*(z)=y'g.

Proof. Since i* maps ch(cpg) onto ch(<pk) taking xg to xk and yg to yk, it

follows that i*(y'g) =0 in H*(K). But lg is a power of p, and yg is primitive.

Thus, by the exactness of the sequence of primitive elements [8, Theorem

(3.6)],   '

f*       i*
o^vuUvg^vk,

we get a primitive element z in H*(U) such that/*(z) =ylg. Q.E.D.

The first part of the following lemma follows from [8, Theorem (2.5)];

the second part, from Theorem (2.2.1) and the observation that /* takes

ker/'* into ker 0*.

Lemma (9.3.2). Let z£.H*(U) = H*(U') be as in (9.3.1). Then z generates a

sub-Hopf-algebra (z) of H*(U'), and H*(U') = (z)®H*(U')/(z), as modules

over (z). Moreover, the Hopf-algebras H*(U')^(z) and im/'* are isomorphic.

Let us consider now the spectral sequence of the fibre map/': G'—*U'. By

Proposition (5.2.1), the sheaf of coefficients X*(K) over U' is simple, and

E2(f')=H*(U')®H*(K'), as algebras. We claim

Lemma (9.3.3). E2(/') = ■ ■ • =Ei(f')=H*(U')®H*(K'), where s = lk, if
p = 2, and 24, if p>2.

Proof. Observe first of all that the commutativity of the right portion of

C* yields the fact that

(*) im i'* D im <pk*.

Now, by part (ii) of Theorem (2.2.1), H*(K') =im cpk*® {b}, where deg h

= 5—1. Hence every element of H*(K') whose degree is less than (5— 1) lies

in im cp*. By (*) above, every such element of H*(K') lies in im i'*. But the

elements of im i'* are precisely those elements of H*(K') which are killed

by all the differential operators dr for r 2:2. In particular, d2: Hl(K') =E2)'1(/')

->£2,0(/') is zero. By Proposition (5.4.3), d2 = 0. Hence E3(f')=E2(f). The

rest of the proof follows by an easy induction. Q.E.D.

Lemma (9.3.4). Consider Es(f')=H*(U')®H*(K'). Then there is an element

b<GH'-\K') = E°,'-i(f) such that dí(b)=zEH'(U')-=E!¡-0(f'), z being the ele-
ment defined in (9.3.1).

To prove it, just observe that </>* o/*(z) =f'*(z) =0 because /*(z)=y'*

Gch(cpg)Ckevcp*, by Theorem (2.2.1).

Lemma (9.3.5). Es+i(/') =im f'*®E(h, t — l)®im cpk*, as an algebra. Here

E(h, t — 1) is an exterior algebra generated by an element 5£££+*''_1(/').
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Proof. By Lemma (9.3.2), we know that H*(U')=z®H*(U')^(z)

= (z) ®imf'*, as modules over (z). Again by (9.3.4), b is not in im i'* (because

d,(b)—z9^0), and, hence, b is not in im <pk*. Thus, by Theorem (2.2.1), H*(K')

= im <j>*® {b}, as modules over im <¡>k*. Therefore,

E.(/0 = (W ® im/'*) ® iim<t>k* ® (b)),

and, hence

E.+i(f) = (im/'*) ® ( im fc*) ® £(5, < - 1),

where 5 is represented by 5'=z(</")_1®èG£'_*'*~l(/')- A simple computation

shows that 52 = 0. Q.E.D.

Observe that d,+y kills im/'*®im <pk* since it kills each factor individually.

Moreover, ¿s+i(5)G£Í+i'-1 = 0. Hence dt+i = 0 and, similarly, ¿r = 0, for all

r = s + l. Therefore,

Lemma (9.3.6). £„(/') = £.+1(/').

Proposition (9.2) is a consequence of these lemmas.
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