POSITIVE BASES FOR LINEAR SPACES(!?)

BY
RICHARD L. McKINNEY

INTRODUCTION

Motivated by developments in the theories of games and linear program-
ming, Davis [2] introduced the concepts of positively spanning sets and posi-
tive bases in Euclidean spaces. These are analogous to the ordinary notions of
linear spanning sets and linear bases. We here continue the investigation
initiated by Davis, our attention being directed especially to the infinite-
dimensional theory and its contacts with the theory of convex sets in linear
spaces.

We begin by considering various characterizations of positively spanning
sets. Some of these will be of a geometric nature, and lead to consideration
of the semi-spaces first defined by Hammer [3]. §2 is concerned with positive
bases and their dependence on certain minimal subspaces. Generalizing a
method of Davis, we are able in §3 to characterize positive bases as linearly
spanning sets which admit a certain type of real function. Finally, in §4, we
show that even though an arbitrary positive basis may lack certain desirable
properties possessed by linear bases, there are special classes of positive bases
which do have some of these properties.

Throughout, we use the symbols \U, M, and ~ for set union, intersection,
and difference respectively. If 4 and B are subsets of a linear space then
A+B={a+bla€A,bEB} and —A={—a|aE4}. The cardinality of a set
A is denoted by card 4. L will denote an arbitrary real linear space. Elements
of L will be represented by lower case letters, excluding 7, s and ¢, which will
usually represent real numbers, and ¢, j, %k, I, m and », which will denote
integers. The neutral element of L will be denoted by &, the empty set by
A, and real-valued functions by Greek letters.

1. POSITIVELY SPANNING SETS AND SEMISPACES

1.1. Introduction. For a subset A of L, let 4 be the set of all real valued
functions on 4 which vanish (i.e., have value 0) at all but a finite number of
points of 4. Denote by BA the set of all non-negative members of 24, i.e.,
those members of 24 which are non-negative at each point of 4. For A\€24,
let \, be the value of A at a. For N\ER4, we shall say that a appears in \ if
and only if A ;0. If a appears in X we shall also say that \ involves a. A linear
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combination of A is a point of the form Y qca Asa for NERA. A positive com-
bination of A is a point of the form Y _qc4 N.a for A\EBA. We define lin 4 and
pos A to be (respectively) the set of all linear combinations of 4 and the set
of all positive combinations of A. A linear relation over A is a member \ of
24 such that D .c4 Naa= . Similarly, a positive relation over A is a member
X of BA such that Y ecs Naa= . A set A CL linearly spans L if and only if
lin A =L, and positively spans L if and only if pos 4 =L.

1.2. Elementary properties of positively spanning sets. The following
properties of positively spanning sets follow immediately from the definitions
involved.

1. If B is a subset of L which linearly spans L then the set B\U(—B)
positively spans L.

2. If a set A positively spans L then 4 linearly spans L.

3. If a set B contains a subset 4 which positively spans L then B posi-
tively spans L.

4. If A is a subset of L then lin 4 is a linear subspace of L and pos 4 is a
convex cone with vertex & in L. (See §1.3 for the definitions involved.)

Since the converse of 2 above is clearly false, it follows that the hypothesis
of positive spanning is in general stronger than that of linear spanning. A
useful characterization of this strengthening is given by Theorem 1.1 and
Corollary 1.2 which are essentially Theorems 3.6 and 3.7 of Davis [2]. We
include the proofs here for the sake of completeness.

THEOREM 1.1. Suppose A CLN{ o) } linearly spans L. Then the following
are equivalent:

(1) A positively spans L.

(2) For each a€A, —aEpos (A~{a}).

(3) Every a& A appears in some positive relation over A.

Proof. To prove (1) implies (2) let a&A. Then we have (assuming A4 posi-
tively spans L): —a= Y sea b where \EBA. If we define 'ye‘B(AN{a})
by the equations

A

14

Yo = forcE(AN{a})

then

Ae 1
o€ = c=

cG(AEa—(al) v ce(AZ~(a)) 1 + A 14 A,

If (2) holds we have —a= D sc(a~(a)) Nsb for some NEP(A~{a}). But

then a appears in the relation & PBA defined by .=\, for c*a and B,=1.
Thus (2) implies (3).

Now to show (3) implies (1), let d be an arbitrary element of L. Then

since A linearly spans L we have d= D .c4 Aoa for some AERA4. Now let

(—a —Na) = —a.
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B= {%aEA and )\.,<0}. By (3), for each b& B there exists an a®*&€PBA4 such
that D ses ada= @ and o§>0; we may clearly pick o? so that aj> |\s|. Now
let 6=(D_sep a®) +\. Then §&€P4 and

d= Y ba.

a€Ad
Hence, A positively spans L.

CoOROLLARY 1.2, If A positively spans a linear space L then A~ [ a} linearly
spans L where a is an arbitrary member of A.

Proof. This is an immediate consequence of (2) in Theorem 1.1.

Following the usual definitions, we will say that a subset B of a linear
space L is linearly dependent if and only if there exists a linear relation \ over
B in which some member of B appears. A subset of a linear space which is
not linearly dependent is linearly independent. An equivalent definition is, of
course, to call a set B linearly independent if and only if no member b&EB
is a linear combination of B~{b}. In §2 we shall see that it is the latter defini-
tion which provides the analogy for defining positive independence.

Corollary 1.2 is the best possible result in the sense that it is not always
possible to remove two elements from a set which positively spans L and still
have L linearly spanned by those remaining. In fact, if L is an arbitrary linear
space let B be a linear basis for L. Then 4 = B\U(— B) positively spans L but
if @ is an arbitrary element of 4 the set A~{a, —a} does not linearly span L.

If A positively spans a finite-dimensional L then it may not be possible to
find any two elements a; and a, of 4 such that 4A~{a;, az} linearly spans L.
This will follow from the fact (see 2.3) that in each finite-dimensional linear
space L there is a set 4 which positively spans L and such that A~{a} is a
linear basis, a fortiori is linearly independent, for an arbitrary a&A. The
corollaries of the following theorem show that the situation is different for an
infinite-dimensional L.

THEOREM 1.3. Let X and Y be subsets of a linear space L. If X is infinite and
linearly independent, and card Y <card X, then — X (Lpos (X\VY), (and hence
pos (X\UY) is not a subspace).

Proof. We may assume XM Y =A, since the theorem is equivalent to that
with Y replaced by ¥'=Y~(XMNY). Suppose the conclusion of the theorem
is false, i.e., for each x€X there exists a A* € P(X U Y) such that —=x
= Y .cxur Nz. Now define F,= {y|y€ Y and N20} for each xEX. Since for
each xEX, F, is a finite subset of ¥ we have card {F.|*€X} Scard Y if
card Y is infinite. Since X is infinite and card ¥ <card X it follows that
card { F,|x€X} <card X whether card Y is infinite or not. Hence there must
exist a finite GC Y and an infinite H C X such that F,=G for all x€H. Let n
be the number of elements of G. For each x& H consider the positive relation



134 R. L. McKINNEY [April

v* over X\UY defined by the condition 47 =X\ for z#x and y7=N;+1 for
z=x. From {y*|xE€H} we can pick an ordered set

Co = {7“) Yy ey, 7m}

of 2» positive relations such that for each ¢, 1 £7<2", there exists in X an x/
appearing in % but not in y#* for k <i. Consider each pair (y, ¥**) for ¢
odd. Eliminating an element g;&G we obtain a linear relation 6% such that
x{,, appears in §%. Eliminating g, from each such pair we obtain a set

C, = {5:1’ 6%, - -, 5::7'—1}

of 27! linear relations in which g, does not appear and such that for each odd
1, 1 £1<2n, there exists an x{' €X with x!’ appearing in 6% but not in §%*
for £ <4. Continuing in this manner to eliminate one element of G at a time we
obtain C, which consists of one nontrivial linear relation in which only ele-
ments of X appear. This contradicts the linear independence of X and com-
pletes the proof.

COROLLARY 1.4. If A positively spans an infinite-dimensional L, BC A, and
card B <card A4, then A~B is linearly dependent.

Proof. If A~B is linearly independent then since card (4~B)=card 4
the theorem states that pos [(4~B)\UB](=L) is not a subspace.

CoroLLARY 1.5. If L is inﬁnite-dimensional and A positively spans L then
there exists a BC A such that card B=dim L and A~B linearly spans L (in
fact, is a linear basis for L).

Proof. Let CCA be a linear basis for L. Then if card (4~C) <card C it
follows by the theorem that pos (4 ~C)\JC(=L) is not a subspace. The con-
tradiction implies card (4 ~C) =dim L, so we may take B=A~C.

Even if B consists of a single element, Corollary 1.4 cannot be strengthened
to state that there exists a nontrivial positive relation over A~B. The col-
umns of the following array positively span a countably infinite-dimensional
linear space. However, the first column must clearly appear in every non-
trivial positive relation over 4:

1 -1 0-1 0-1 0-1
0o 1-1t 0 0 O O O
O 0 0 1—-1 0 O O
0o 0 0 0 0 1-1 0O
o 0o 0 0 0 0 O0 1-—

- O O O o
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1.3. Relations among positively spanning sets, semispaces and open half-
spaces. We will need the following definitions:

A variety Vin L is any translate of a linear subspace of L. A hyperplane H
in V is a set which is maximal among the varieties properly contained in V.
For points x and yof L we will use the notation [x, y]= {#x+(1 —t)yl 0<t=<1}.
Then a subset C of L is convex if and only if for arbitrary x&C and y&EC,
[x, ¥]CC. A subset K of L is a cone at a point pEL if and only if A(k—p)
e {k—pl kEK} forall\>0, kEK. If His a hyperplane in V then a maximal
convex subset T of V~H is an open halfspace bounded by H. If pE H then
the open half-space T is actually a convex cone at p and we shall say that T
is an open halfspace at p. If pE L, a semispace at p is a maximal convex subset
of L~{p}. The concept of semispace was introduced by Hammer [3] and
investigated further by Klee [4]. We shall use some of the more elementary
properties of semispaces found in these papers.

For a subset 4 of L consider the following assertions:

(1) A positively spans L.

(2) A intersects every open halfspace at .

(3) A intersects every semispace at .

The following theorem collects the implications that exist among these
properties.

THEOREM 1.6. If L is finite-dimensional, (1) is equivalent to (2), and (2)
implies (3) but not conversely. If L is infinite-dimensional then the only valid
assertions, in general, are that (1) implies (2) and (3). Even (2) and (3) together
do not imply (1).

Proof. (1) implies (2) in general, for if T is an open halfspace at & then
L~Tisaconvex cone at &. Hence, if A CL~T then every positive combina-
tion of 4 is contained in L~T and A cannot span L.

That (2) implies (3) follows in the finite-dimensional case since a semi-
space at J is then necessarily of the form T°UQ for some open halfspace T
at & in L and Q some semispace at & in the corresponding hyperplane.

(3) does not imply (2) since if x€L~{ &} then the set {x, —x} inter-
sects every semispace at .

To see that (2) implies (1) for finite-dimensional L, note that pos 4 is a
convex cone at . Hence, if pos 4 # L there exists a hyperplane of support at
&, contrary to (2).

The following example shows that, in general, (2) does not imply either
(1) or (3):

Let L be an infinite-dimensional linear space. Let B be a linear basis for
L which is well-ordered and has no last element. Let C be the set of all xEL
for which the last nonzero coefficient in the linear representation of x in
terms of B is positive. Now we will show that C intersects every open half-
space T at . Pick a point x& T and let H be the hyperplane determined by
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T. Suppose x= 9 _sep A2 is the linear representation of x and let b, be the last
element of B such that N\j 0. Since H is infinite-dimensional there exists
yEH such that if y= Y sep AP is the linear representation: of y and b, is the
last element of B such that A3 0 then bo>b;. We may assume Ay >0 since
otherwise we pick —y&E H. Then the point x4y is in both T and C.

Since pos C=CU, C does not positively span L.

Since — C is a semispace at & and CN\—C=A, C does not intersect every
semispace at &.

If we let C'=CU{ —c,} where c;&€C then C’ intersects every semispace
at &. Hence, (2) and (3) together do not imply (1).

Finally, to see that (1) implies (3) in general, let X be a positive relation
over A and consider an arbitrary semispace S at . Then if no a€EA4 which
appears in the relation N is in S, all such @ are in —S. But then ZaeA =
is in —§ contradicting the assumption that S is a semispace.

1.4. Geometric characterizations of positively spanning sets. In this sec-
tion we show that there are geometric conditions (of a nature similar to those
investigated in Theorem 1.6) which are actually equivalent to the positively
spanning property. One of these conditions will be described in terms of
complementary cones, where we define a complementary cone C to be a non-
empty convex cone at & whose complement L~C is also a (possibly empty)
convex cone at &. Another condition makes use of cones over semispaces,
where we define a cone over a semispace to be a convex cone at & consisting
of the elements {ts[ t>0,s€S }, where S is a semispace at an arbitrary point
of L.

THEOREM 1.7. Let A be a subset of the linear space L. Then the following are
equivalent:

(1) A positively spans L.

(2) A intersects every complementary cone C.

(3) A intersects every cone over a semispace.

Proof. (1) implies (2), for if 4 did not intersect the complementary cone
C,then 4, and consequently pos 4, are contained in L~C. This contradicts
the hypothesis that A4 positively spans L.

For (2) implies (3), let C be a cone over a semispace S. Then we need only
show that C is a complementary cone. Let C= {ts| SES, t>0} . Then clearly
L~Cisaconeat &. To see that L~C is convex, let x; and x; be in L~C and
suppose there exists an >0, an s€S and ¢, 0<¢<1, such that tx;4 (1 —#)x,

=rs. But then
X1 Xo
s = l(—)+ ¢! —t)(-——) EL~S
r r

since L~S is a convex set containing all positive multiples of x; and x,. Hence,
we have a contradiction.
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Finally, assuming (3) we wish to show that pos 4 =L. If pos 4 #L then
there exists x € L~{ & } such that xpos 4. Let D= {t(c—x) | t>0,cEpos 4 } .
Then D is a convex cone at & which does not meet the cone E = {tx|¢t>0}
and neither cone contains &. Now by Corollary 1 of Hammer [3] there exist
disjoint semispaces S; and S: at & such that S; D D and S; D E. Let
F={t(ss+x)|t>0, 5:€S,}. Then F is a cone over the semispace S;+x and
FNA =A. For otherwise there exists a point aE A4 such that a=¢(s;+x) for
some $;E&.S; and ¢>0. But then s;=a/t—xEpos A —x CD CSi. This contra-
dicts the disjointness of S; and S,.

Observe that condition (3) above may not be replaced with “4 intersects
every cone at & over an open halfspace” since a cone at & over an open
halfspace is either another open halfspace or else is all of L.

2. PosiTivE BASES

2.1. Introduction. We define a set A C L to be positively dependent if and
only if a€pos(d~{a}) for some aE 4. Then a set A CL is positively inde-
pendent if and only if it is not positively dependent. A set BCL is a positive
basis for L if and only if B positively spans L and B is positively independent.

Every linear space L admits a positive basis, for if B is a linear basis for
L then 4=BU{—B} is a positive basis for L. We shall call such a basis
maximal. We shall be primarily concerned with positive bases which are not
maximal.

The definition of positive dependence above is not equivalent to the state-
ment that there exists a nontrivial positive relation \ over 4.

Clearly, any subset of a positively independent set of vectors is positively
independent. However, a subset of a positive basis need not be a positive
basis for any linear subspace since the subset need not positively span the
subspace which it linearly spans.

In this section we consider some of the elementary properties of positive
bases. Proofs of most of the theorems are omitted since they are easy exten-
sions of those for the finite-dimensional case which appear in [2].

2.2. Obtaining positive bases as subsets of positively spanning sets. Ex-
amples show that there exists a set which positively spans an infinite-dimen-
sional L but which does not contain a positive basis for L. However, if L is
finite-dimensional we have:

THEOREM 2.1. Suppose L is a finite-dimensional linear space and A posi-
twely spans L. Then A contains a subset B which is a positive basts for L.

Proof. Use Theorem 1.1 and familiar methods.

For an example of the type mentioned above, let L be the space consisting
of all sequences of real numbers which have only a finite number of terms
different from zero. If a is an element of L denote by a; the ith term of the
sequence a. Now let 4 consist of each element a €L for which there exists an
integer ¢ such that ¢;=1 for j=<7 and a;=0 for j>1. Let B consist of every
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element a €L for which there exists an integer 7 such that a;= —é,; for all j.
Then A\UB positively spans L but contains no subset which is a positive basis
for L.

2.3. Spanned subspaces and minimal subspaces. We now define the ob-
ject which plays a fundamental role in the structure of an arbitrary positive
basis.

A is a minimal positive basis for L if and only if there exists an a €A such
that AN{a} is a linear basis for L. It follows from Corollary 1.4 that if L
has a minimal positive basis then L is finite-dimensional. Hence, in light of
Corollary 1.2 the choice of a in the above definition is immaterial.

Every finite-dimensional L has a minimal positive basis because if B is a
linear basis for L then BU{ D ses (—b) } is a minimal positive basis for L.

As we observed earlier, a subset of a positive basis is not, in general, a
positive basis for a linear subspace. Hence, we make the definition: If 4 is a
positive basis for L then a linear subspace SCL is a spanned subspace with
respect to A if and only if ANS is a positive basis for S. If, moreover, ANS
is a minimal positive basis for S then S is a minimal subspace with respect to A.

Since if S is a minimal subspace then a proper subset of AN\S is linearly
independent, it follows that one minimal subspace cannot contain another.
The following theorems show that the minimal positive bases are involved in
the structure of an arbitrary positive basis.

THEOREM 2.2. If A is a positive basis for a linear space L and aE A, then
there exists a subset M of A which contains a and is ¢ minimal positive basis
for a linear subspace of L, i.e., pos M is a minimal subspace containing a.

Proof. See Theorems 3.8 and 4.1 of [2].

COROLLARY 2.3. For a positive basis A of a linear space L, any spanned sub-
space is a linear sum of minimal subspaces, and conversely.

THEOREM 2.4. Let A be a positive basis for the linear space L. Then if Sisa
spanned subspace spanned by a finite set BC A the following are equivalent:

(1) S is a minimal subspace.

(2) The positive relation which involves the elements of B and no others is
unique (up to multiplication by a positive constant).

Proof. See Theorem 4.3 of [2].

As a consequence of the above theorem we may refer to the positive relation
associated with @ minimal subspace. We shall also call such a relation a mini-
‘mal relation over A.

The following theorem gives another interesting characterization of the
minimal positive bases.

THEOREM 2.5. If A is a positive basis for a linear space L then the following
are equivalent:
(1) A is a minimal positive basis.
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(2) For each a €A, there exists an order on L making L an ordered vector
space and such that the elements A~{a} are all positive.

Proof. Assuming (1), A~{a} is linearly independent and so pos(AN{ a })
does not contain &. Hence, by Proposition 13, §1, Chapter II of Bourbaki
[1], (2) holds.

Conversely, if 4 is not a minimal positive basis there exists by Corollary
2.3 a positive relation X over 4 which does not involve some a 4. But then
pos(AN{a}) contains & and there cannot exist an order on L such that L
is an ordered vector space and all elements of A~{a} are positive.

The linear relations over a positive basis 4 are determined by the positive
relations associated with the minimal subspaces of 4 in the following manner.

THEOREM 2.6. Let A be a positive bastis for the linear space L. Then every
positive (linear) relation over A 1is a positive (linear) combination of the positive
relations associated with the minimal subspaces of L with respect to A.

Proof. See Theorem 4.4 of [2]. A direct proof based on the preceding re-
sults of this section is also possible.

3. A METHOD OF CHARACTERIZING POSITIVE BASES

3.1. Introduction. We will prove a theorem which characterizes, among
the subsets 4 of a linear space L which linearly span L, those subsets which
are positive bases for L. This theorem and the related results should be com-
pared with Theorem 5.3 et seq. of [2].

It will be convenient to make use of the following rather trivial lemmas.

LEMMA 3.1. Let A be a positive basis for a linear space L. If M is a linearly
independent set of minimal relations over A and M(A) = {al a appears in m for
some mEM}, then card M <card M(4).

LeEMMA 3.2. Let (,) denote the inner product in Euclidean space E™, Let
{al, a, -+ - - ,a,,} be a set of nonzero vectors in E™. Then alepos{az, as - - - ,a,,.}
if and only if for each bE E™ such that (b, a)> 0 there exists an 1, 2 <1< n, such
that (b, a;)>0.

3.2. The characterization theorem. We are now ready for the main theo-
rem of this section.

THEOREM 3.3. Let A be a set of vectors which linearly span a linear space L.
Then A is a positive basis for L if and only if there exists an index set S and
a non-negative real valued function F defined on A XS with the following prop-
erties:

(1) For each s€S, F(a, s) =0 for all but finitely many aE A and there exists
a bEA such that F(b, s) #O0.

(2) For each a© A, there exists an s&S such that F(a, s) #0.

(3) Dsca F(a, s)a= & for each s€S, and if \ is a linear relation over A
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then there exist {sl, Sg, c c o, s,.} CS and real numbers ry, ry, -+ -+, v such that
Na=n1F(a, s1)+rF(a, s2)+ - - - +r.F(a, su) for all aEA.

(4) Let {51,585, * - -, Sn} bea finite subset of S and define the set B= {a|a € A
and F(a, s;) #0 for some 1, léién}.

By (1) B must be a finite set, say with m elements. Then B may be ordered,
B= {b, by, - - -, b,,.} , in such a manner that there exists a positive integer k <m/2
satisfying the following conditions:

(i) For each i<k there exists a t;>0 such that F(b;, s;) =t;F(biyx, s;) for
allj,15j<n.

(1) For each i, 2k <1 <m, there exist non-negative real numbers ry, 12, - * -,
7. such that F(b, s;) = 2 a1 7.F(b,, s;) for all j, 1Sj<n.

Proof. Suppose A4 is a positive basis for L. Let M be a maximal linearly
independent set of minimal relations over 4. Then clearly, M(4) =A where
M(A) is the set defined in Lemma 3.1. Now using Lemma 3.1 we may define
amap T of 4 onto M. We will denote T(a) by \°. Now let S=A4 and define the
function F on 4 XS by F(a, s) =N\, for each (g, s)EA4 XS.

Then (1) follows since for each sE€S, F(a, s) =\;, and the positive relation
A+ has the necessary properties by definition. Since T° maps 4 onto M and
M(A)=A4, (2) is obvious. For (3) we need only apply Theorem 2.6.

To establish (4) let {sl, Sz, vt v, sn} be a finite subset of S and consider
the set {vs, ¥s,, - - -, 05, } of m vectors in E» defined by

9% = A3y Ap, -+ -, Ap) for each b € B.

If the set D= {v,,IbEB} is not positively independent we may choose v,
such that v, , & DMpos (DN{vbm}). If DN{vb,,,} is not positively independent
we may choose v, , such that vs, &€ DNpos(D~{vs,, vs,_,}). Continuing
in this way we obtain a positively independent subset of D, say {vu,v;,,, .- ',vb,‘}
such that D Cpos(vs,, sy, * * * , 7). Now (4) follows if we show that for each
1, 1 1<k, there exists a ¢£;>0 and a bE B, b#b;, such that v,,=1,2s.

If this last assertion is false, then there exists a j, 1<j<k such that
v, # 1ty for any ¢>0 and b7%b;. Suppose vb,Epos{vb|b7éb,~}. Then we have
vy, = > k. ras, where each 7,20 and 7,>0 for some i>j. If ;21 we have

k
D= > rag,+ (r;— Dos;
t=1; 475

which is impossible. If ;<1 we have a contradiction of the positive inde-
pendence of {vu, Vbg * * *, Un ). Hence vbjGEpos{vblb#b,-}. Now by Lemma
3.2 there exists a vector w=(t, &, - - -, t,) in E® such that (w, 9,;)>0 and
(w, 1) <0 for b=b;, i.e., 2o, ;>0 and >r L EANE <O for all b5#b;. Hence,
D=2 (t: D ben Neb) = X pen (2r-1 tA¥)b and in this last expression only
the coefficient of b; is positive so that b,~€pos{b| bEB, b>b;}. This contra-
dicts the hypothesis that A4 is a positive basis for L.
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Conversely, assuming the existence of the function F with the stated
properties we must show that 4 is a positive basis for L. Using (1), (2), (3)
and Theorem 1.1 we see that 4 positively spans L.

If A is not positively independent then there exists an a4 and
BEP(A~{ao}) such that ag= D _aca Bua. Define a linear relation \ over 4 by
letting A = — Ba for a # ao and A,y = 1. Now by (3) there exist a set
{sl, Sg, 0 v v, s,.} CA and real numbers 74, 73, - - -, 7, such that

Aa = E "’F(a3 S.‘) = (('17 T2, ° 'ﬂ)) (F(a’ 51), Tty F(a, sn))) for allea € A.
fm=]

Thus, since A;y>0 while A; 0 for all a#a, we may apply Lemma 3.2 to con-

clude that

(F(do, 81), R} F(ao, S,.)) & pos {(F(a’ 31), Tty F(a; sn))l a# ao}-

This contradicts (4) and completes the proof.

If 4 is a positive basis for L and F satisfies the conditions of the above
theorem with respect to 4 with index set S=A4 then we shall say that F s
associated with A.

If F is associated with 4 and ¢ is any map of 4 onto A4 then it is clear
that G is also associated with A where

G(a, b) = F(a, gb) for each (a,0) € 4 X A.

If F is associated with 4 then the example at the end of §1.2 shows that
it need not be true that for each a € A4, F(a, b) =0 for some bEA.

3.3. Projections onto hyperplanes. Let 4 be a positive basis and 4’'C4
a linear basis for a linear space L. Let a, be an arbitrary element of A’. Then
we define II to be the natural projection of L onto the hyperplane H spanned
by A’~{a,}, i.e., for x= D scar Na@d EL where NERA’, TIx = D aca-~(ao) NaC.

If @ and b are distinct elements of A~{ao} then IL,5II, since otherwise
a—b=ra, for some nonzero r and we have a contradiction of the positive
independence of A. This remark will make it clear that G in the theorem below
is well defined.

Since II is a linear map it follows from Theorem 1.1 that II(4~{a,})
= {HaIaGAN{ao} } positively spans H. Even if —ao@4, (4~ {a,}) need
not be positively independent. In fact, let L=E? A= {a, b, ¢, d, e} and
A'={a, b, ¢} where a=(1, 0, 0), 5=(0, 1, 0), ¢=(0, 0, 1), d=(—1, —1, 0)
and e=(0, —1, —1). Then with ap=a we have Ild=Ile+IIc. Whenever
H(A~{ao}) is positively independent we have the following theorem.

THEOREM 3.4. Let A be a positive basis and A’ CA a linear basis for a linear
space L. Let aqE A’ and 11 be the natural projection of L on the hyperplane H
spanned by A'~{ao}. If I(A~{ac}) is positively independent (and hence a
positive basis for H) then there exists an F associated with A such that if G s
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defined by G(lle, I1b) = F(a, b) for all (a, b) G(AN{ao} ) X(AN{ao}) then G s
associated with TI(A~{a.})

Proof. Let F’ be any function associated with A. Since Y .ca F'(a, b)a
= & for each bEA, we have II( D scs F'(a, b)a) = D sca~tay F'(a, b)la= &
for each bEA. Thus for each bE A4, N defined by A4, = F'(a, b) is a positive
relation over II(A~{a,}). If 4 is finite (and n=card 4) the set {)\"IbEA}
may be considered as a set of n vectors in E*~!, Hence, there exists a b€ 4
such that AvClin {\| bEA~{bo}}. Define a map q of 4 onto 4 by gao=b,,
gbo=a, and ga=a for aQE{ao, bo}. If F is defined by F(a, b) =F’(a, ¢gb) for
all (@, b)) €4 X A then as we observed in the last section F is also associated
with 4. If 4 is infinite then there exists a map p of A~{a,} onto 4. Define
p* mapping 4 onto 4 by p*a=pa for a€A~{a,} and p*ap=a,. Then if Fis
defined by F(a, b) = F'(a, p*b) for all (a, b)) EA XA, F is associated with 4 as
above.

Now with G(Ilae, IIb) = F(a, b) for all (a, b)G(AN{ao})X(AN{ao}),
(1) of Theorem 3.3 follows from the observation that if there is a b€ A ~{a,}
such that G(Ila, IId) =0 for all aEAN{ao} then F(ao, b)bo= & with F(a,, b)
#0, a contradiction.

Property (2) is taken care of by our choice of F.

For (3) let A be any linear relation over II(4~{ao}). Then Y aca~(ap) Amclla
=& or (Y aca~tag Mmatt) = & which implies D aca~(ay) Mot =70, for some
real number 7. If we define 8 by Ba=Am. for a€A~{a,} and Ba,= —7 then
B is a linear relation over 4 so that applying (3) of Theorem 3.3 to F and 8

we know there exist {bl, by, - - - }CA and real numbers 7y, 75, - - -, 7,
such that B,, E,-l r:F(a, b;) for all a& A. By our choice of F we may assume
{by, by, - - -, ba} CA~{ao}. Then, Am= > oy 7.G(Ia, IIb,) for all a€EA
~1Qo¢.

(4) follows easily from the fact that F satisfies this property with respect
to A.

Hence, G satisfies all the properties required to be associated with
N(4A~{a.}).

3.4. Direct sums. Let 4; be a positive basis for L;, i€ {1, 2}, and suppose
that L is the direct sum of L; and L,. Then it is easy to see that 4,\J4;is a
positive basis for L. The following theorem relates this situation to the asso-
ciated functions.

THEOREM 3.5. Let A be a positive basis for the linear space L. Then L is the
direct sum of spanned subspaces Ly and L, if and only if there exist disjoint sub-
sets Ay and A, of A and a function F associated with A such that A;\JA,=A
and F(a, b)=0 if aCA; and b 4,, i€ {1, 2}. Interchanging a pair of sub-
scripts if necessary, it then follows that A is a positive basts for L; and that F re-
stricted to A;X A; s associated with A;.

Proof. For the “if” part, using Theorem 2.6 and (3) of Theorem 3.3 we
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see that a minimal relation of L with respect to 4 involves only elements of
one A4;, iE{l, 2}. Hence, A4; is a positive basis for the space it linearly
spans. Let L;=pos 4;. It remains to show LyN\L,=A. If not, there exists an
x#  such that xEpos 4, and xEpos 4,. But then —xEpos A, Thus
x= ZaeAl Nsa for some AEPA4,, —x= EGEAz Bsa for some BEPA, Then
= 2.,64 a,a where o=\, for aE A4, and as=p, for aE A4, so that aEPA4.
Hence, by (3) of Theorem 3.3 there exist {al, as, + -, a,,,} C 4,,
{am+1, ce e, a,,} C A; and real numbers 7y, 75, - - -+, r, such that a,
=Y ", 7.F(a, a;) for all a€EA. Then

= D Al = 2 0 = Eair.F(a,a;) = ir;EF(a,a;)a=,®'

a€d, a€Ay a€A; =1 fa=] a€d

which is a contradiction.

Conversely, if L is the direct sum of spanned subspaces L; and L; then
Ay=ANL, and 4;=ANL, are positive bases for L, and L, respectively.
Hence, by Theorem 3.3 there exists F; associated with 4, and F, associated
with 4,. Now define F by F(a, b) = Fi(a, ) if (a, b)) EA;X4;for i€ {1,2} and
F(a, b)=0 if (a, })EA XA but (a, b)EA:X 4, for i€ {1, 2}. It is easy to
check that F is associated with 4.

4, SPECIALIZED PoSITIVE BASES

4.1. Introduction. If Bis a linear basis for a linear space L, then for each
xEL there exists a unique element A&{B such that x= Zbeg Nob. This im-
portant property does not carry over to positive bases, since the members of
a positive bases always admit a positive relation.

If A is a positive basis for L and xEL~{ &} then we define a minimal
representation of x with respect to 4 to be an element N*&PA4 such that
x= EaeA Na and if also x= ZaeA Bsa for some BEPA then the number of
elements of A appearing in 8 is at least as large as the nuinber appearing in 2.
We define the length of an element x& L to be the number of elements of 4
appearing in a minimal representation of x.

In general, even a minimal representation of an element need not be
unique, as is seen by considering the example at the end of §1.2. However,
we do have this type of uniqueness for certain positive bases. These are
studied in the next section.

4;2. Unique minimal representations. The following lemmas about mini-
mal representations are easily proved.

LEMMA 4.1. Let A be a positive basis for a linear space L and N\* a minimal
representation of x with respect to A. Then for each positive relation 8 over A,
there exists an element a of A such that a appears in B but not in \°.

LEMMA 4.2. Let A be a positive basis for a linear space L and xEL~{ & }.
If \* and B° are distinct minimal representations of x with respect to A then the
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set of elements of A appearing in \* is different from the set of elements of A ap-
pearing in (3%

The following theorem gives a sufficient condition for the minimal repre-
sentation to be unique.

THEOREM 4.3. Let A be a positive basis for a linear space L and suppose that
any two distinct minimal subspaces of L with respect to A have only & in com-
mon. Then the minimal representation of each xCL~{ &} is unique.

Proof. Suppose the minimal representation of some element x in L~{ & }
is not unique. Then there exist distinct minimal representations A* and B*
satisfying @ =x= D uea Nla= D _sc4 fZa. If some members of A appear in
both A\* and B= we may transpose terms to obtain (*) D 3., a;= D mu; 8:b;
where a;>0 and §;>0 for all 7, j <n and m <7 where % is the length of x, and

also {ai, as, - - -, a;}N{by, bs, - - -, bn} =A. Also, by Lemma 4.2, j=1 and
m=1. Consider the minimal subspace containing @; and let a,, a3, - - -, ax,
1 <k <j,be (afterre-indexingif necessary) the other elementsof {a;,a,, - - - ,a;}

contained in this subspace. Let v be the minimal relation associated with this
minimal subspace. Then we have

k k

E ("a; — a)a; + Z 7.0 + E ;=

i=1 a€A;aélay, - - - a0z} i=1
for all real numbers 7. If we choose r=r,>0 properly then there exists an
10, 1 249 =k, such that 70Yas,— Qi =0 and r¢y.;—a;=0 for all 7, 1 £:<k. Now
if we add the expression

k
** 2 (rove, — ada; + > 70Yaa

=1 a€A;adlay, - - -,ak}

to both sides of (*) we obtain

7 m k
* X =2 8bi+ X (reve, — adai + > 70Yal
1=k+1 =1 t=1; i g a€Ad;aélay, - +,ax}

in which a;, does not appear. Notice that (**)> f since otherwise Y i, a.a;
=@ and {ay, a3, - - -, ak} span a minimal subspace. Then since also each
a;, 1 S1 =<k, appears in \* we have a contradiction of Lemma 4.1.

Transposing the left side of (***) we obtain (****) &= D™, §;b;+ (**)
- Z{-,.H aa;. We may use (****) to define a linear relation A* over 4 in
which a;, does not appear. Since (**)# &, \* involves an element a* of 4
from the same minimal subspace to which a;, belongs. But by Theorem 2.6,
A* is a linear combination of minimal relations. Now, by hypothesis, the
minimal subspaces are disjoint so this implies that since a* appears in \*
so must a;,. This contradiction completes the proof.

The above theorem has a number of interesting consequences which we
now state.



1962] POSITIVE BASES FOR LINEAR SPACES 145

COROLLARY 4.4. If A is a minimal positive basis for a linear space L then
the minimal representation of each xEL~{ J} is unique.

COROLLARY 4.5. If A is a maximal positive basis for a linear space L then
the minimal representation of each xEL~{ z } is unique. Hence, for every
linear space L there exists a positive basts providing unique minimal representa-
tions.

COROLLARY 4.6. Let A be a positive basis for a linear space L and let F be
associated with A as in §3. Consider the vector (F(a, b)) ERA for a fixed bEA
and let E be the set of all such vectors. Let G be a maximal positively independent
subset of E. If for each agE A there exists a unique byE A such that (F(a, bo)) EG
and F(ao, bo) %0 then the minimal representation of each xC L~ { & } s unique.

COROLLARY 4.7. If A is a positive basis for a linear space L obtained by
applying the method of Theorem 4.14 to a positive basis B for which the minimal
subspaces have only & in common then the minimal representation of each
xEL~{J} is unique.

4.3. Strong positive bases. If A is a subset of a linear space L we shall
say that A is strongly positively independent if and only if for each AEPBA
and BEPA, where N and B are not positive relations over 4, Y ac4 Ao
= D sc4 Bsa implies there exists an a4 which appears in both A and B.
Notice that strong positive independence implies ordinary positive inde-
pendence but not conversely as the theorem below shows. We define a strong
positive basis A for L as a positive basis 4 for L such that 4 is strongly posi-
tively independent. We now show that this new concept is actually equivalent
to the property involving pairwise disjoint minimal subspaces which was
discussed in the last section. The following lemma will be useful.

LEMMA 4.8. Let A be a positive basis for a linear space L. If each pair of
minimal subspaces of L with respect to A have only & in common then each
pair of spanned subspaces with no basis element in common have only & in
common.

Proof. Let S; and S, be spanned subspaces with no basis element in com-
mon. Define 4,=S:N4, i€ {1, 2}. Then 4:N\A4;=A. Define F on 4 X4 as
in the proof of Theorem 3.3. Now apply Theorem 3.5.

COROLLARY 4.9. Let A be a positive basis for a linear space L. Then L is
the direct sum of its minimal subspaces if and only if each pair of minimal sub-
spaces have only & in common.

THEOREM 4.10. Let A be a positive basis for a linear space L. Then A is a
strong positive basis if and only if each pair of minimal subspaces of L with re-
spect to A have only & in common.

Proof. Suppose 4 is a strong positive basis. If there exist minimal sub-
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spaces M; and M, which have an element x5 & in common then there exist
A\ and Bin PB4 such that every element of 4 appearing in X is in M, and every
element of 4 appearing in 8 is in M, where A\ and B are not relations and
satisfy (*) = D sea Na@= _aca Baa. We may suppose that \ and 8 satisfy
the property (Z) that each involves an element not appearing in the other;
otherwise, we may add the minimal relation o; associated with M; to A and
the minimal relation «; associated with M, to 8. By Theorem 2.4, o; and «,
satisfy property (Z) and since A and f involve only elements appearing in a;
and a; respectively, we conclude that iy +A\ and ;4 also satisfy property (Z).
Now we may transpose like terms of (*) to obtain an equation (**) Y .c4 NFa
= D 4ca BYa where \* and 8* are in B4 and such that no element of 4 ap-
pears in both A\* and B*. Property (Z) assures us that both A* and 8* involve
some (but not the same) element of 4. If A* or 8* is a relation then both are
relations and since every element of 4 appearing in A*(8*) must also appear
in A(8) we have every element of MiMNA (M, A) appearing in A*(8*). Hence
MNANM;=A and N*=X\(8*=p). This contradicts the choice of X\ and 8
and thus shows that A* and 8* are not relations. Hence, (**) is a contradic-
tion of the strong positive independence of 4.

For the converse, let & #x= D a4 Na@= D _aca Baa. Define 4,= {al a ap-
pears in )\} , A= {a| @ appears in B} and S;=spanned subspace generated by
A 1E { 1,2 } . Then since x&€S51M\.S;, Lemma 4.8 implies the existence of an
a& A such that aESINS,.

COROLLARY 4.11. If A is a strong positive basis for a linear space L then
the minimal representation of each xEL~{ &} is unique.

It would be interesting to know if the converse of Theorem 4.3 and of the
above corollary are true, i.e., if A is a positive basis for which the minimal
representations are unique, must 4 be strong?

4.4. Change of basis. If 4 and B are linear bases for L then, as is well
known, we may find a biunique linear map of L onto L which carries 4 onto
B. There is no hope for such a theorem if 4 and B are merely positive bases.
Indeed, if L is finite-dimensional then card A need not be equal to card B.
However, if 4 and B are strong positive bases whose minimal subspaces cor-
respond in a certain natural way then we may normalize A and B, in a sense
to be defined, to obtain A* and B* for which there exists a biunique map of
L onto itself carrying A* onto B*,

If A is a strong positive basis for L we will denote by M(4) a set of mini-
mal relations of L with respect to 4 which includes exactly one relation in-
volving each element of 4. Clearly, if M’(4) is another such set then each
element of M’(4) is obtained by multiplying an element of M(4) by a posi-
tive real number. Now let 4 and B be strong positive bases for L. We shall
say that A and B have the same pattern of minimal subspaces or the same PM.S
if for some (and thus each) pair M(4), M(B) there exists a biunique map T
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of M(A) onto M(B) such that for each A& M(4), X and T\ involve the same
number of elements of 4 and B respectively. A positive basis A4 is called a
normal positive basis provided there exists a set M(4) such that A& M(4)
impliesA,=1 or \,=0. If 4 is a strong positive basis for L then we may define
a normal positive basis 4* as follows. Choose a set M(A4) and let
A*={\a|a€4, NE M(4) and Ns5#0}. Clearly, 4 and A* have the same
PMS. We shall say that 4* is a normalization of A. We are now ready to
prove the result stated at the beginning of this section.

THEOREM 4.12. If A and B are strong positive bases for a linear space L with
the same PMS and A* and B* are normalizations of A and B respectively then
there exists a biunique linear map ® of L onto L such that $(4*) = B*.

Proof. Since 4 and B have the same PMS so do 4* and B*. Let M(4%*)
and M (B*) have the property used in the definition of normal bases. We can
find a biunique map ®' of 4* onto B* such that if \&€ M(4*) and CCA*is
the set of elements appearing in N then there exists & M(B*) such that
®'C is the set of elements appearing in 8. For each A€ M (4 *) & may be ex-
tended to a linear map of lin C onto lin (’C). Now use Corollary 4.9 to define
® on L.

COROLLARY 4.13. If A and B are normalized minimal positive bases for a
linear space L (i.e., E*) then there exists a biunique linear map of L onto itself
carrying A onto B.

4.5. Reducible bases. If a positive basis 4 for L has the property that
there exist elements @; and a; in 4 such that (a1+a2)U(A~{a1, az}) is also
a positive basis for L then we say that A is reducible. We shall show that a
positive basis is reducible if and only if it is not minimal.

THEOREM 4.14. Let A be a positive basts for a linear space L. Suppose

B={by, - - -, ba} CA has the property that for each i, 1 Si<n, there exists a
minimal subspace M; of L with respect to A such that M;N\B= {b;}. Let
r, -+ ¢+ +, rs be positive real numbers. Then

C= {irgb;}U(ANB)

=1
s a positive basis for L.

Proof. If Cis not positively independent we have Y r, 7:b;= Y aca~5 Bat
for some BEP(A~B). Let \* be the minimal relation associated with M,.
Then

ri i
—f,-b,' = -_u E )\,,a.

b a€EA~B

rbi= D aca~B Baa+ 2mg (ri/Ns) D sea~p Nia. This is a contradiction of the
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positive independence of 4.
To show that C positively spans L let x be an arbitrary element of
L~{&}. Then there is a N\EPA such that x= D sea \sa. Now we have

x =1 Z rbi + X Aaa+ Z (No; — rors)bs
a€EA~B

and we may choose 7¢ so that Ny, — 7,7 <0 for each ¢, 1 £¢ <n. This means we
can represent x by

x—roEr.b + X >\aa+2 £ ne

ymm] a€A~B )\b a€EA~B

Tors —

which is the required form.

COROLLARY 4.15. A positive basis A for a linear space L is reducible if and
only if A is not minimal.

Proof. Clearly a minimal basis may not be reduced. For the converse we
need only note that if 4 is not minimal there exist at least two distinct mini-
mal subspaces M; and M; and so by Theorem 2.4 M, contains an element of
A not in M, and conversely.

It is not true thatif 4 is a positive basis for L and {a;, ag} CA isalinearly
independent subset such that 4~{a,, a,} linearly spans L then C= {a:+a.}
U(AN{al, a:}) must be a positive basis for L. Let L=E? and take the
columns of the following matrix as the elements of 4 and the last two columns
as a; and a, respectively. Then the second column does not appear in any
positive relation over C:

1 1 1 1-=2
0o 1-1 0 O
1 0 0-1 0
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