
POSITIVE BASES FOR LINEAR SPACES^2)

BY

RICHARD L. McKINNEY

Introduction

Motivated by developments in the theories of games and linear program-

ming, Davis [2] introduced the concepts of positively spanning sets and posi-

tive bases in Euclidean spaces. These are analogous to the ordinary notions of

linear spanning sets and linear bases. We here continue the investigation

initiated by Davis, our attention being directed especially to the infinite-

dimensional theory and its contacts with the theory of convex sets in linear

spaces.

We begin by considering various characterizations of positively spanning

sets. Some of these will be of a geometric nature, and lead to consideration

of the semi-spaces first defined by Hammer [3]. §2 is concerned with positive

bases and their dependence on certain minimal subspaces. Generalizing a

method of Davis, we are able in §3 to characterize positive bases as linearly

spanning sets which admit a certain type of real function. Finally, in §4, we

show that even though an arbitrary positive basis may lack certain desirable

properties possessed by linear bases, there are special classes of positive bases

which do have some of these properties.

Throughout, we use the symbols W, f\ and ~ for set union, intersection,

and difference respectively. If A and B are subsets of a linear space then

A+B= {a+b\a£.A, &GP} and —A= { — a\aEA }. The cardinality of a set
A is denoted by card A. L will denote an arbitrary real linear space. Elements

of L will be represented by lower case letters, excluding r, s and t, which will

usually represent real numbers, and i, j, k, l, m and n, which will denote

integers. The neutral element of L will be denoted by 0, the empty set by

A, and real-valued functions by Greek letters.

1. Positively Spanning Sets and Semispaces

1.1. Introduction. For a subset A oí L, let 8A be the set of all real valued

functions on A which vanish (i.e., have value 0) at all but a finite number of

points of A. Denote by fyA the set of all non-negative members of 2A, i.e.,

those members of %A which are non-negative at each point of A. For XE&4,

let X0 be the value of X at a. For X£&4, we shall say that a appears in X if

and only if X^O. If a appears in X we shall also say that X involves a. A linear
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combination of A is a point of the form E»e¿ <V>a for X G SM. A positive com-

bination of A is a point of the form JZaeA Xaa for XG?M. We define lin A and

pos A to be (respectively) the set of all linear combinations of A and the set

of all positive combinations of A. A linear relation over A is a member X of

2A such that ¿ZaeA Xaa = 0. Similarly, a positive relation over A is a member

X of tyA such that E»ex X„a = 0. A set .4 C¿ linearly spans L if and only if

lin A =L, and positively spans L if and only if pos A =L.

1.2. Elementary properties of positively spanning sets. The following

properties of positively spanning sets follow immediately from the definitions

involved.

1. If B is a subset of L which linearly spans L then the set BVJ(-B)

positively spans L.

2. If a set A positively spans L then A linearly spans L.

3. If a set B contains a subset A which positively spans L then B posi-

tively spans L.

4. If A is a subset of L then lin A is a linear subspace of L and pos A is a

convex cone with vertex 0 in Í-. (See §1.3 for the definitions involved.)

Since the converse of 2 above is clearly false, it follows that the hypothesis

of positive spanning is in general stronger than that of linear spanning. A

useful characterization of this strengthening is given by Theorem 1.1 and

Corollary 1.2 which are essentially Theorems 3.6 and 3.7 of Davis [2]. We

include the proofs here for the sake of completeness.

Theorem 1.1. Suppose A C.L~{0} linearly spans L. Then the following

are equivalent:

(1) A positively spans L.

(2) For each aÇ^A, — aGpos (A~{a}).

(3) Every a(E.A appears in some positive relation over A.

Proof. To prove (1) implies (2) let aÇzA. Then we have (assuming A posi-

tively spans L): —a= JZbeA X¡,& where XG*?M. If we define y£;,;$(A~{a})

by the equations

Jc =       ' for c G (-4 ~ {a})
1  + Aa

then

E     7cC =      JZ     -c =-( — a — \aa) = — a.
cS(A~[a)) cS(A-laj)  1   +  A«. 1  +  X0

If (2) holds we have —a= JZbzu-W) A&& for some \£.'$(A~{a}). But

then a appears in the relation ßCztyA defined by /3e = Xc for C9^a and ßa=l.

Thus (2) implies (3).

Now to show (3) implies (1), let d be an arbitrary element of L. Then

since A linearly spans L we have d= JZaeA^aa for some XGSM. Now let
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B= jolagi and Xo<0}. By (3), for each AGP there exists an oPCzztyA such

that E»e¿ °^a = 0 and a£>0; we may clearly pick ab so that a*> | \b\. Now

let 8 = (^heBah)+\. Then oE^A and

d = ^2 5aa.

Hence, A positively spans L.

Corollary 1.2. If A positively spans a linear space L then A ~ {a} linearly

spans L where a is an arbitrary member of A.

Proof. This is an immediate consequence of (2) in Theorem 1.1.

Following the usual definitions, we will say that a subset B of a linear

space P is linearly dependent if and only if there exists a linear relation X over

B in which some member of B appears. A subset of a linear space which is

not linearly dependent is linearly independent. An equivalent definition is, of

course, to call a set B linearly independent if and only if no member &GP

is a linear combination of B~ {b}. In §2 we shall see that it is the latter defini-

tion which provides the analogy for defining positive independence.

Corollary 1.2 is the best possible result in the sense that it is not always

possible to remove two elements from a set which positively spans L and still

have L linearly spanned by those remaining. In fact, if L is an arbitrary linear

space let B be a linear basis for P. Then A=BKJ( — B) positively spans P but

if a is an arbitrary element of A the set A~{a, —a} does not linearly span P.

If A positively spans a finite-dimensional L then it may not be possible to

find any two elements ay and a2 of A such that A~[ay, a2} linearly spans P.

This will follow from the fact (see 2.3) that in each finite-dimensional linear

space L there is a set A which positively spans L and such that A ~ {a} is a

linear basis, a fortiori is linearly independent, for an arbitrary aÇz\A. The

corollaries of the following theorem show that the situation is different for an

infinite-dimensional P.

Theorem 1.3. Let X and Y be subsets of alinear space L. If X is infinite and

linearly independent, and card F<card X, then — -X"(£pos (X\JY), (and hence

pos (XU F) is not a subspace).

Proof. We may assume XC\ Y = A, since the theorem is equivalent to that

with F replaced by F'= Y~(XC\Y). Suppose the conclusion of the theorem

is false, i.e., for each x(z\X there exists a X1 G ^(X \J Y) such that — x

= E*exurXjZ. Now define Fx= {y\ vG FandXJ^O} for each x G X. Since for

each jcGX, Fx is a finite subset of Y we have card {Pz|*GX} ^card Y if

card Y is infinite. Since X is infinite and card Y < card X it follows that

card {Fx\ x^XJ <card X whether card Fis infinite or not. Hence there must

exist a finite GC F and an infinite H(ZX such that FX = G for all xÇiH. Let n

be the number of elements of G. For each x(zzH consider the positive relation
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yx over AUF defined by the condition yx=\l for z^x and yl = \xx-\-l for

z = x. From {^^xG-ff} we can pick an ordered set

Co = {yxl, yn, -—,?»]

of 2" positive relations such that for each i, 1 ̂ ¿^2", there exists in X an x/

appearing in yXi but not in yxk for A <i. Consider each pair (71*', -y*<+») for i

odd. Eliminating an element giGG we obtain a linear relation 5xi such that

x'i+i appears in 6". Eliminating gi from each such pair we obtain a set

Ci = {&X1, ôx>, • • • , S3*"-1}

of 2n-1 linear relations in which gi does not appear and such that for each odd

i, l^i <2n, there exists an xi' GX with x/' appearing in S1' but not in 51*

for A <i. Continuing in this manner to eliminate one element of G at a time we

obtain Cn which consists of one nontrivial linear relation in which only ele-

ments of X appear. This contradicts the linear independence of X and com-

pletes the proof.

Corollary 1.4. If A positively spans an infinite-dimensional L, BQA, and

card B<card A, then A^B is linearly dependent.

Proof. If A~B is linearly independent then since card (/l~B)=card A

the theorem states that pos [(A~B)\JB\( = L) is not a subspace.

Corollary 1.5. If L is infinite-dimensional and A positively spans L then

there exists a BQA such that card B^dim L and A~B linearly spans L (in

fact, is a linear basis for L).

Proof. Let CQ.A be a linear basis for L. Then if card (A~C) <card C it

follows by the theorem that pos (4~QUC(=L) is not a subspace. The con-

tradiction implies card (A~C) ^dim L, so we may take B = A~C.

Even if B consists of a single element, Corollary 1.4 cannot be strengthened

to state that there exists a nontrivial positive relation over A<-^>B. The col-

umns of the following array positively span a countably infinite-dimensional

linear space. However, the first column must clearly appear in every non-

trivial positive relation over A :

1 -1 0-1 0-1 0-1 0

0 1-1000000

000 1-10000

00000 1-100

0000000  1-1
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1.3. Relations among positively spanning sets, semispaces and open half-

spaces. We will need the following definitions:

A variety V in L is any translate of a linear subspace of P. A hyperplane H

in F is a set which is maximal among the varieties properly contained in V.

For points x and y oí L we will use the notation [x, y]= \tx + (l—t)y\0^t^l}.

Then a subset C oí L is convex if and only if for arbitrary xGC and yGC,

[x, y]C-C. A subset K of P is a cone at a point pÇzL if and only if \(k—p)

G{A — p|AGP} for all X>0, AGP. If H isa hyperplane in F then a maximal

convex subset P of V~H is an open halfspace bounded by H. If p^zzH then

the open half-space P is actually a convex cone at p and we shall say that P

is an open halfspace at p. If pGP, a semispace at pisa maximal convex subset

of L~{p}. The concept of semispace was introduced by Hammer [3] and

investigated further by Klee [4]. We shall use some of the more elementary

properties of semispaces found in these papers.

For a subset A of P consider the following assertions:

(1) A positively spans P.

(2) A intersects every open halfspace at 0.

(3) A intersects every semispace at 0.

The following theorem collects the implications that exist among these

properties.

Theorem 1.6. // L is finite-dimensional, (1) is equivalent to (2), and (2)

implies (3) but not conversely. If L is infinite-dimensional then the only valid

assertions, in general, are that (1) implies (2) and (3). Even (2) and (3) together

do not imply (1).

Proof. (1) implies (2) in general, for if P is an open halfspace at 0 then

P~P is a convex cone at 0. Hence, if A CP'~P then every positive combina-

tion of A is contained in L~T and A cannot span P.

That (2) implies (3) follows in the finite-dimensional case since a semi-

space at 0 is then necessarily of the form PUQ for some open halfspace P

at 0 in P and Q some semispace at 0 in the corresponding hyperplane.

(3) does not imply (2) since if xGP~{0} then the set {x, —x} inter-

sects every semispace at 0.

To see that (2) implies (1) for finite-dimensional P, note that pos A is a

convex cone at 0. Hence, if pos A 9^L there exists a hyperplane of support at

0, contrary to (2).

The following example shows that, in general, (2) does not imply either

(l)or(3):

Let P be an infinite-dimensional linear space. Let B be a linear basis for

P which is well-ordered and has no last element. Let C be the set of all xGP

for which the last nonzero coefficient in the linear representation of x in

terms of B is positive. Now we will show that C intersects every open half-

space P at 0. Pick a point xG T and let H be the hyperplane determined by
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T. Suppose x = JZbeB X? is the linear representation of x and let bi be the last

element of B such that X^f^O. Since H is infinite-dimensional there exists

yGi? such that if y = JZbeB XÍ? is the linear representation of y and b0 is the

last element of B such that X&^O then bo>bi. We may assume X6V0>0 since

otherwise we pick —yÇzH. Then the point x+y is in both T and C.

Since pos C= C<J0, C does not positively span L.

Since — C is a semispace at 0 and CP\ — C—A, C does not intersect every

semispace at 0.

If we let C' = CVJ{ —ca} where Co<ElC then C intersects every semispace

at 0. Hence, (2) and (3) together do not imply (1).

Finally, to see that (1) implies (3) in general, let X be a positive relation

over A and consider an arbitrary semispace 5 at 0. Then if no aÇ£A which

appears in the relation X is in S, all such a axe in —S. But then Eosa X0a = 0

is in —5 contradicting the assumption that 5 is a semispace.

1.4. Geometric characterizations of positively spanning sets. In this sec-

tion we show that there are geometric conditions (of a nature similar to those

investigated in Theorem 1.6) which are actually equivalent to the positively

spanning property. One of these conditions will be described in terms of

complementary cones, where we define a complementary cone C to be a non-

empty convex cone at 0 whose complement L~C is also a (possibly empty)

convex cone at 0. Another condition makes use of cones over semispaces,

where we define a cone over a semispace to be a convex cone at 0 consisting

of the elements }is| i>0, sG-S}, where 5 is a semispace at an arbitrary point

of L.

Theorem 1.7. Let A be a subset of the linear space L. Then the following are

equivalent :

(1) A positively spans L.

(2) A intersects every complementary cone C.

(3) A intersects every cone over a semispace.

Proof. (1) implies (2), for if A did not intersect the complementary cone

C, then A, and consequently pos A, are contained in L~C. This contradicts

the hypothesis that A positively spans L.

For (2) implies (3), let C be a cone over a semispace S. Then we need only

show that C is a complementary cone. Let C= {ts\ s(E.S, t>0}. Then clearly

L~C is a cone at 0. To see that L~C is convex, let xi and x2 be in L~C and

suppose there exists an r>0, an sG-S and t, 0<i< 1, such that ixi + (l— ¿)x2

= rs. But then

5 = /(v) + (1-/}(t)gl~5

since L~S is a convex set containing all positive multiples of xi and x2. Hence,

we have a contradiction.
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Finally, assuming (3) we wish to show that pos A =L. If pos A j^P then

there existsxGP~{0} such that xGpos;4. Let D= {t(c — x)\t>0,cE:posA }.

Then D is a convex cone at 0 which does not meet the cone E = {tx \ t > 0}

and neither cone contains 0. Now by Corollary 1 of Hammer [3] there exist

disjoint semispaces Si and S2 at 0 such that Si D D and S2 D P. Let

F= {t(s2+x)\t>0, s2GS2}. Then P is a cone over the semispace S2+x and

FC\A =A. For otherwise there exists a point aG^4 such that a — t(s2+x) for

some s2GS2 and i>0. But then s2 = a/t — xGpos A— xÇZDQSy. This contra-

dicts the disjointness of Si and S2.

Observe that condition (3) above may not be replaced with "A intersects

every cone at 0 over an open halfspace" since a cone at 0 over an open

halfspace is either another open halfspace or else is all of L.

2. Positive Bases

2.1. Introduction. We define a set .4CP to be positively dependent if and

only if aGpos(;4~{a}) for some aÇ.A. Then a set A CL is positively inde-

pendent if and only if it is not positively dependent. A set PCP is a positive

basis for L if and only if B positively spans P and B is positively independent.

Every linear space P admits a positive basis, for if B is a linear basis for

P then A=B\J{—B} is a positive basis for P. We shall call such a basis

maximal. We shall be primarily concerned with positive bases which are not

maximal.

The definition of positive dependence above is not equivalent to the state-

ment that there exists a nontrivial positive relation X over A.

Clearly, any subset of a positively independent set of vectors is positively

independent. However, a subset of a positive basis need not be a positive

basis for any linear subspace since the subset need not positively span the

subspace which it linearly spans.

In this section we consider some of the elementary properties of positive

bases. Proofs of most of the theorems are omitted since they are easy exten-

sions of those for the finite-dimensional case which appear in [2].

2.2. Obtaining positive bases as subsets of positively spanning sets. Ex-

amples show that there exists a set which positively spans an infinite-dimen-

sional P but which does not contain a positive basis for P. However, if P is

finite-dimensional we have:

Theorem 2.1. Suppose L is a finite-dimensional linear space and A posi-

tively spans L. Then A contains a subset B which is a positive basis for L.

Proof. Use Theorem 1.1 and familiar methods.

For an example of the type mentioned above, let P be the space consisting

of all sequences of real numbers which have only a finite number of terms

different from zero. If a is an element of P denote by a¿ the ith term of the

sequence a. Now let A consist of each element aGP for which there exists an

integer i such that a¡=l for j=¿ and ay = 0 for j>î. Let B consist of every
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element aÇzL for which there exists an integer i such that a,= — S<y for all j.

Then A \JB positively spans L but contains no subset which is a positive basis

forL.
2.3. Spanned subspaces «and minimal subspaces. We now define the ob-

ject which plays a fundamental role in the structure of an arbitrary positive

basis.

A is a minimal positive basis for L if and only if there exists an aG^4 such

that .<4~{a} is a linear basis for L. It follows from Corollary 1.4 that if L

has a minimal positive basis then L is finite-dimensional. Hence, in light of

Corollary 1.2 the choice of a in the above definition is immaterial.

Every finite-dimensional L has a minimal positive basis because if B is a

linear basis for L then B\J { JZbeB ( — b)} is a minimal positive basis for L.

As we observed earlier, a subset of a positive basis is not, in general, a

positive basis for a linear subspace. Hence, we make the definition: If A is a

positive basis for L then a linear subspace SQL is a spanned subspace with

respect to A if and only if Ai~\S is a positive basis for 5. If, moreover, AH\S

is a minimal positive basis for 5 then 5 is a minimal subspace with respect to A.

Since if S is a minimal subspace then a proper subset of Af~\S is linearly

independent, it follows that one minimal subspace cannot contain another.

The following theorems show that the minimal positive bases are involved in

the structure of an arbitrary positive basis.

Theorem 2.2. If A is a positive basis for a linear space L and a(E.A, then

there exists a subset M of A which contains a and is a minimal positive basis

for a linear subspace of L, i.e., pos M is a minimal subspace containing a.

Proof. See Theorems 3.8 and 4.1 of [2].

Corollary 2.3. For a positive basis A of a linear space L, any spanned sub-

space is a linear sum of minimal subspaces, and conversely.

Theorem 2.4. Let A be a positive basis for the linear space L. Then if S is a

spanned subspace spanned by a finite set BC¿A the following are equivalent:

(1) S is a minimal subspace.

(2) The positive relation which involves the elements of B and no others is

unique (up to multiplication by a positive constant).

Proof. See Theorem 4.3 of [2].

As a consequence of the above theorem we may refer to the positive relation

associated with a minimal subspace. We shall also call such a relation a mini-

mal relation over A.

The following theorem gives another interesting characterization of the

minimal positive bases.

Theorem 2.5. // A is a positive basis for a linear space L then the following

are equivalent:

(1) A is a minimal positive basis.
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(2) For each aÇz\A, there exists an order on L making L an ordered vector

space and such that the elements A ~ {a} are all positive.

Proof. Assuming (1), A~{a} is linearly independent and so pos(A~{a})

does not contain 0. Hence, by Proposition 13, §1, Chapter II of Bourbaki

[1], (2) holds.
Conversely, if A is not a minimal positive basis there exists by Corollary

2.3 a positive relation X over A which does not involve some a(z\A. But then

pos(yl~{a}) contains 0 and there cannot exist an order on P such that L

is an ordered vector space and all elements of A ~ {a} are positive.

The linear relations over a positive basis A are determined by the positive

relations associated with the minimal subspaces of A in the following manner.

Theorem 2.6. Let A be a positive basis for the linear space L. Then every

positive (linear) relation over A is a positive (linear) combination of the positive

relations associated with the minimal subspaces of L with respect to A.

Proof. See Theorem 4.4 of [2]. A direct proof based on the preceding re-

sults of this section is also possible.

3. A Method of Characterizing Positive Bases

3.1. Introduction. We will prove a theorem which characterizes, among

the subsets A of a linear space P which linearly span P, those subsets which

are positive bases for P. This theorem and the related results should be com-

pared with Theorem 5.3 et seq. of [2].

It will be convenient to make use of the following rather trivial lemmas.

Lemma 3.1. Let A be a positive basis for a linear space P. If M is a linearly

independent set of minimal relations over A and M (A) = {a\ a appears in m for

some mÇzM}, then card M zí card M (A).

Lemma 3.2. Let (, ) denote the inner product in Euclidean space Em. Let

\ay,a2, • • ■ ,an} be a set of nonzero vectors in Em. Then ayÇzzpos{a2,a3, ■ ■ ■ ,am}

if and only if for each &GPm such that (b, a)>0 there exists ani, 2 =î'^w, such

that (b, Oi)>0.

3.2. The characterization theorem. We are now ready for the main theo-

rem of this section.

Theorem 3.3. Let A be a set of vectors which linearly span a linear space L.

Then A is a positive basis for L if and only if there exists an index set S and

a non-negative real valued function F defined on AXS with the following prop-

erties :

(1) For each sÇzS, F (a, s) =0for all but finitely many aÇzA and there exists

a b£A such that F(b, s) ̂ 0.
(2) For each a(¡z\A, there exists an s£S such that F(a, s) ¿¿0.

(3) E«6A F(a, s)a = 0 for each sGS, and if X is a linear relation over A
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then there exist {si, s2, ■ • • , sH} CS and real numbers ri, r2, • • ■ , rn such that

X0 = riF(a, si)+r2F(a, s2)+ ■ ■ ■ +rnF(a, sn) for all a£-A.

(4) Let {si,s2, • ■ ■ ,sn} be a finite subset of S and define the set B = {a|aG-4

awd F(a, Si)^0for some i, l^i^n}.

By (1) B must be a finite set, say with m elements. Then B may be ordered,

B = {b, b2, ■ ■ • ,bm},in such a manner that there exists a positive integer A ̂  wi/2

satisfying the following conditions :

(i) For each i^k there exists a <,->0 such that F(bi, Sj)=tiF(bi+k, sy) for

all j, 1 új ^ n.

(ii) For each i, 2k<i^m, there exist non-negative real numbers ri, r2, • • • ,

rk such that F(bi, s¡) = Eî-i rfPQ)p, s,) for allj, 1 ̂ j^n.

Proof. Suppose A is a positive basis for L. Let M be a maximal linearly

independent set of minimal relations over A. Then clearly, M(A) =A where

M(A) is the set defined in Lemma 3.1. Now using Lemma 3.1 we may define

a map T of A onto M. We will denote T(a) by Xo. Now let 5 = A and define the

function F on A XS by F(a, s)=\'a for each (a, s)EA XS.

Then (1) follows since for each s(E.S, F(a, s) =XÔ, and the positive relation

X* has the necessary properties by definition. Since T maps A onto M and

M(A) = A, (2) is obvious. For (3) we need only apply Theorem 2.6.

To establish (4) let {si, s2, ■ ■ ■ , sn} be a finite subset of S and consider

the set {vblt »&„ • • • , vbm} of m vectors in En defined by

vb — (A&, Xa, • • • , «\¡>")        for each b G B.

Ii the set D= {vb\b(E.B} is not positively independent we may choose vb„

such thati^G-Df^pos (D~{vbm}). If D~{vt,m} is not positively independent

we may choose vbm_, such that vbm_1ÇzDi~>ipos(D~{vbm, î'6m_1}). Continuing

inthisway we obtain a positively independent subset of P, say {vbi,vbt, • • • ,vbt}

such that D(Zpos(vkl, vbl, • • • , Vbk). Now (4) follows if we show that for each

*, 1 ííiúk, there exists a /»>0 and a bQB, b^bi, such that vbi = tiVb.

If this last assertion is false, then there exists a j, l^j^k such that

Vh^tvi, for any i>0 and b^b¡. Suppose vbj(E.pos{vb\b?ibj}. Then we have

vb¡= E*-i r*vii where each r.-^O and r,>0 for some i^j. If rye 1 we have

k

0 =    E   ftoi + i's - !)"&,-
»-1; » *y

which is impossible. If ry<l we have a contradiction of the positive inde-

pendence of {vbi, vbv • • • , vbk}. Hence vbj^pos{vb\b^bj}. Now by Lemma

3.2 there exists a vector w=(h, h, • • ■ , tn) in En such that (w, vbi)>0 and

(w, i/6)<0for b^bj, i.e., Ei-i^X) and E"-i ¿As¿<0 for all MAy. Hence,

0= JZrt-i(tiJZbeB Xj'Z») = JZbeB (E"-i tik^b and in this last expression only
the coefficient of b¡ is positive so that bj(£pos{b\bQ-B, b^bj}. This contra-

dicts the hypothesis that A is a positive basis for L.
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Conversely, assuming the existence of the function F with the stated

properties we must show that A is a positive basis for P. Using (1), (2), (3)

and Theorem 1.1 we see that A positively spans P.

If A is not positively independent then there exists an aoG-4 and

jSG^i^-^Jöo}) such that a0= E«eA ßaa. Define a linear relation X over A by

letting Xo = — ßa for a j¿ Oo and X„0 = 1. Now by (3) there exist a set

{si, s2, • • ■ , sn} CZA and real numbers n, r2, ■ ■ ■ , rn such that

n

Xa = E riF(a, Si) = ((ra, r2, • • • , r„), (F(a, sy), • - - , F(a, sn)))   for all a G A.
•-i

Thus, since X„0>0 while Xo^0 for all aj^ao we may apply Lemma 3.2 to con-

clude that

(F(a0, ii), • • • , F(a0, sn)) G pos {(F(a, Sy), • • • , F(a, sn)) \ a ^ a0}.

This contradicts (4) and completes the proof.

If A is a positive basis for P and F satisfies the conditions of the above

theorem with respect to A with index set S = A then we shall say that F is

associated with A.

If P is associated with A and q is any map of A onto A then it is clear

that G is also associated with A where

G(a, b) = F(a, qb)        for each (a, b) G A X A.

If P is associated with A then the example at the end of §1.2 shows that

it need not be true that for each aÇ.A, F(a, b) = 0 for some AG-4.

3.3. Projections onto hyperplanes. Let A be a positive basis and A'CA

a linear basis for a linear space P. Let oo be an arbitrary element of A'. Then

we define II to be the natural projection of P onto the hyperplane H spanned

by A'~{a0}, i.e., for x= E°ex< XaaGP where XG&4', IIx= Eae¿•-(«<,) X„a.

If a and b are distinct elements of yl~{a0} then IL^TL, since otherwise

a — b = rao for some nonzero r and we have a contradiction of the positive

independence of A. This remark will make it clear that G in the theorem below

is well defined.
Since TI is a linear map it follows from Theorem 1.1 that TI(.4~{<io})

= {n.a|aG^4~{öo} } positively spans Pi. Even if — a0G^> n(j4~{a0}) need

not be positively independent. In fact, let L = E?, A = {a, b, c, d, e} and

A'={a, b, c} where a = (l, 0,0), b=(0, 1, 0), c = (0, 0, 1), d = (-l, -1, 0)
and e=(0, —1, —1). Then with a0 = a we have TId=IIe+nc. Whenever

II (.4 ~ {«<>}) is positively independent we have the following theorem.

Theorem 3.4. Let A be a positive basis and A ' QA a linear basis for a linear

space L. Let OoG-<4' and TI be the natural projection of L on the hyperplane H

spanned by A'~{ao}. If H(A~{a0}) is positively independent (and hence a

positive basis for H) then there exists an F associated with A such that if G is
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defined by G (lia, lib) = F(a, b) for all (a, b) G (A ~ {a0} ) X (A ~ {a0} ) ¿Aew G is
associated with IT (¿4 ~ {a0} ).

Proof. Let F' be any function associated with A. Since E"SA F'(a, b)a

= 0 for each &G^4, we have II( E»sa F'(a, b)a) = JZasA-M F'(a, b)Ua = 0
for each b(EA. Thus for each &G^4, X6 defined by Xna = .F'(a, b) is a positive

relation over H(A~{a0}). If A is finite (and w = card A) the set {X6| b^A }

may be considered as a set of w vectors in IS"-1. Hence, there exists a £»oG^4

such that X*°Glin{X6| b(E.A~{bo} }. Define a map q of A onto A by qao = b0,

qbo = a0 and ga = a for a(£{a<j, &o}. If F is defined by F(a, b) = F'(a, qb) for

all (a, b)(EA XA then as we observed in the last section F is also associated

with A. If A is infinite then there exists a map p of ^4~{ao} onto .«4. Define

£* mapping A onto ^4 by p*a = pa for aG-4~{a0} and ¿>*ao = a0. Then if Fis

defined by F (a, b) = F'(a, p*b) for all (a, b) E.A XA, F is associated with ^4 as

above.

Now with GÇOa, Ub) = F(a, b) for all (a, b)£(A~{ao})X(A~{a0}),

(1) of Theorem 3.3 follows from the observation that if there is a £>G^4~{a0}

such that GlTIa, IK) =0 for all a£.A~{a0} then F(a0, b)b0 = 0 with F(a0, b)

7^0, a contradiction.

Property (2) is taken care of by our choice of F.

For (3) let X be any linear relation over II (A ~ {a0} ). Then E«eA~(a0) Xn<JIa

= 0 or n(E°eA~Uol<W*) = 0 which implies E«eA-(a0} Xnoa = ra0 for some

real number r. If we define ß by ßa = \na for aG^4~{a0} and ßao= —r then

ß is a linear relation over A so that applying (3) of Theorem 3.3 to F and ß

we know there exist {bu b2, ■ ■ • , bn} QA and real numbers n, r2, • • • , r„

such that /30= E?-i riP(a< &<) Ior au öG^4. By our choice of F we may assume

{h, b2, ■ ■ ■ , bn}CA~{aQ\. Then, Xna= E?-i r,G(TIa, 116*) for all aEA
~{a0}.

(4) follows easily from the fact that F satisfies this property with respect

to ,4.
Hence, G satisfies all the properties required to be associated with

n04~{aoj).
3.4. Direct sums. Let At be a positive basis for L„ ¿G {1, 2}, and suppose

that L is the direct sum of Li and L2. Then it is easy to see that AiVJA2 is a

positive basis for L. The following theorem relates this situation to the asso-

ciated functions.

Theorem 3.5. Let A be a positive basis for the linear space L. Then L is the

direct sum of spanned subspaces Li and L2 if and only if there exist disjoint sub-

sets A i and A2 of A and a function F associated with A such that Ai\JA2 = A

awd F(a, b) = 0 if aG^4< awd ¿>G^4«. ¿Gil, 2}. Interchanging a pair of sub-

scripts if necessary, it then follows that Ai is a positive basis for Li and that F re-

stricted to A iX A i is associated with Ai.

Proof. For the "if part, using Theorem 2.6 and (3) of Theorem 3.3 we
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see that a minimal relation of P with respect to A involves only elements of

one Ai, îG{1, 2}. Hence, At is a positive basis for the space it linearly

spans. Let P¿ = pos Ai. It remains to show Li(~\L\=K. If not, there exists an

X7^0 such that xGpos ^4i and xGpos ^42. But then —xGpos ^42. Thus

x=E«eAiX0a for some XG^i, — x=E«eA20oa for some ßG^A2. Then

0= Eosa cua where a0=X0 for aG^i and a„ = ßa for aG-<42 so that aÇztyA.

Hence, by (3) of Theorem 3.3 there exist {ai, a2, • • • , am} C Ay,

{am+i, ■ ■ ■ , a„} C A2 and real numbers n, r2, • ■ ■ , rn such that aa

= E"-i fiF(a, o<) for all a£.A. Then

m m

x = E *°a = E «aa = 22 « 23 ̂ (ö» ai) = E *"» Z) ̂ (a> ö,)a = 0
oSA1 a€Ay oeAi       <—1 i—1 o6A

which is a contradiction.

Conversely, if P is the direct sum of spanned subspaces Pi and P2 then

Ay = AC\Ly and ^42 = -4r^p2 are positive bases for Pi and Ps respectively.

Hence, by Theorem 3.3 there exists Pi associated with .4i and P2 associated

with At. Now define P by F(a, b) = Fi(a, b) if (a, b) EAtXAf for ¿G {1, 2} and
F(a, b)=0 ii (a, b)EAXA but (a, b)£AiXAi for *€{l, 2}. It is easy to
check that P is associated with A.

4. Specialized Positive Bases

4.1. Introduction. If B is a linear basis for a linear space P, then for each

xGP there exists a unique element XG8P such that x= E&sbX¡,&. This im-

portant property does not carry over to positive bases, since the members of

a positive bases always admit a positive relation.

If A is a positive basis for P and xGP~{0} then we define a minimal

representation of x with respect to A to be an element XXG^)M such that

x= Eo^aX^ö and if also x= E«ex ßaa for some ßCzztyA then the number of

elements of A appearing in ß is at least as large as the number appearing in X1.

We define the length of an element xGP to be the number of elements of A

appearing in a minimal representation of x.

In general, even a minimal representation of an element need not be

unique, as is seen by considering the example at the end of §1.2. However,

we do have this type of uniqueness for certain positive bases. These are

studied in the next section.

4.2. Unique minimal representations. The following lemmas about mini-

mal representations are easily proved.

Lemma 4.1. Let A be a positive basis for a linear space L and X1 a minimal

representation of x with respect to A. Then for each positive relation ß over A,

there exists an element a of A such that a appears in ß but not in X*.

Lemma 4.2. Let A be a positive basis for a linear space L and xGP~ {0}.

If X1 and ßx are distinct minimal representations of x with respect to A then the
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set of elements of A appearing in X1 is different from the set of elements of A ap-

pearing in ßx.

The following theorem gives a sufficient condition for the minimal repre-

sentation to be unique.

Theorem 4.3. Let A be a positive basis for a linear space L and suppose that

any two distinct minimal subspaces of L with respect to A have only 0 in com-

mon. Then the minimal representation of each xGP~{0} is unique.

Proof. Suppose the minimal representation of some element x in P~{ 0}

is not unique. Then there exist distinct minimal representations X1 and ßx

satisfying 09éx= E«e¿^aa = E»sa ßaa- If some members of A appear in

both X1 and ßx we may transpose terms to obtain (*) E*-i <*<*<"" E™ i ^»'

where a<>0 and 5¿>0 for all i,j<n and m<n where n is the length of x, and

also {fli, a?, • ■ • , aj}r\{by, b2, • • • , bm} =A. Also, by Lemma 4.2,/^l and

w^l. Consider the minimal subspace containing ay and let a2, a3, ■ • • , ak,

1 _A^/, be (after re-indexing ifnecessary) the other elements of {ay, a2, ■ • • ,a,}

contained in this subspace. Let y be the minimal relation associated with this

minimal subspace. Then we have

k k

E (rTa, — a,)ai + E TaG + E «*a» = 0
i=l a€i;a$[ai, ■ • • ,aj¿\ i=l

for all real numbers r. If we choose r = r0>0 properly then there exists an

to, 1 úioúk, such that roya¡ — aio = 0 and r0yai— a.^0 for alH, l^j^A. Now

if we add the expression

*

(**) E (roToi - a<)a< + E roy*a
Í—1 a€A;a$.{ai, • • -.at)

to both sides of (*) we obtain

i m k

(***)        E  a'ai = 22 SJ>i +     E    (/oY0, — a,) ai + E roToö
i'=t+l i—l i—l;tVt0 aeAittilay, • • • ,ak]

in which a,0 does not appear. Notice that (**) ^0 since otherwise Ef-i a<a»

= 0 and (öi, at, ■ • • , ak} span a minimal subspace. Then since also each

a», 1 úi^k, appears in X* we have a contradiction of Lemma 4.1.

Transposing the left side of (***) we obtain (****) 0= Eí>i 8i¿><+(**)

— 22<-t+i aiai- We may use (****) to define a linear relation X* over A in

which a<0 does not appear. Since (**)^0, X* involves an element a* oí A

from the same minimal subspace to which aio belongs. But by Theorem 2.6,

X* is a linear combination of minimal relations. Now, by hypothesis, the

minimal subspaces are disjoint so this implies that since a* appears in X*

so must a,-,. This contradiction completes the proof.

The above theorem has a number of interesting consequences which we

now state.
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Corollary 4.4. // A is a minimal positive basis for a linear space L then

the minimal representation of each xG-£-~{0) is unique.

Corollary 4.5. // A is a maximal positive basis for a linear space L then

the minimal representation of each x(EL~{0} is unique. Hence, for every

linear space L there exists a positive basis providing unique minimal representa-

tions.

Corollary 4.6. Let A be a positive basis for a linear space L and let F be

associated with A as in §3. Consider the vector (F(a, b))(ERA for a fixed 6G-4

awd let E be the set of all such vectors. Let G be a maximal positively independent

subset of E. If for each aoG-4 there exists a unique ¿>0G^4 such that (F(a, bo)) ElG

and F(aa, bo) 5^0 then the minimal representation of each xG£~ {0} is unique.

Corollary 4.7. If A is a positive basis for a linear space L obtained by

applying the method of Theorem 4.14 to a positive basis B for which the minimal

subspaces have only 0 in common then the minimal representation of each

xG-i<~{0} is unique.

4.3. Strong positive bases. If A is a subset of a linear space L we shall

say that A is strongly positively independent if and only if for each XGtyA

and ßCityA, where X and ß are not positive relations over A, JZaeA^aa

— J^asA ßaa implies there exists an aG^4 which appears in both X and ß.

Notice that strong positive independence implies ordinary positive inde-

pendence but not conversely as the theorem below shows. We define a strong

positive basis A for L as a positive basis A for L such that A is strongly posi-

tively independent. We now show that this new concept is actually equivalent

to the property involving pairwise disjoint minimal subspaces which was

discussed in the last section. The following lemma will be useful.

Lemma 4.8. Let A be a positive basis for a linear space L. If each pair of

minimal subspaces of L with respect to A have only 0 in common then each

pair of spanned subspaces with no basis element in common have only 0 in

common.

Proof. Let Si and S2 be spanned subspaces with no basis element in com-

mon. Define AfSii^A, ¿G{l, 2}. Then Aif~\A2=A. Define F on A XA as
in the proof of Theorem 3.3. Now apply Theorem 3.5.

Corollary 4.9. Let A be a positive basis for a linear space L. Then L is

the direct sum of its minimal subspaces if and only if each pair of minimal sub-

spaces have only 0 in common.

Theorem 4.10. Let A be a positive basis for a linear space L. Then A is a

strong positive basis if and only if each pair of minimal subspaces of L with re-

spect to A have only 0 in common.

Proof. Suppose A is a strong positive basis. If there exist minimal sub-
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spaces My and M2 which have an element x ^ 0 in common then there exist

X and ß in fyA such that every element of A appearing in X is in My and every

element of A appearing in ß is in M2 where X and ß are not relations and

satisfy (*) x= E«eAXoO= E»e¿ ß°a- We may suppose that X and ß satisfy

the property (Z) that each involves an element not appearing in the other;

otherwise, we may add the minimal relation ay associated with My to X and

the minimal relation a2 associated with M2 to ß. By Theorem 2.4, ay and a2

satisfy property (Z) and since X and ß involve only elements appearing in ay

and a2 respectively, we conclude that «i+X and a2+ß also satisfy property (Z).

Now we may transpose like terms of (*) to obtain an equation (**) Eae¿ ^*a

= E»eA ß*a where X* and ß* are in tyA and such that no element of A ap-

pears in both X* and ß*. Property (Z) assures us that both X* and ß* involve

some (but not the same) element of A. If X* or ß* is a relation then both are

relations and since every element of A appearing in \*(ß*) must also appear

in \(ß) we have every element of MyP\A (M2C\A) appearing in X*(j3*). Hence

Myr\Ar\M2 = K and X*=X(j3*=/3). This contradicts the choice of X and ß

and thus shows that X* and ß* are not relations. Hence, (**) is a contradic-

tion of the strong positive independence of A.

For the converse, let 0 t*x = E«e¿ Xaa= E»e¿ ßaa. Define Ay — \a\a ap-

pears in X}, .<42= \a\ a appears in ß} and S¿ = spanned subspace generated by

Ai, ¿G {1, 2}. Then since xGSif>\S2, Lemma 4.8 implies the existence of an

aÇzA such that flGSi^Sü.

Corollary 4.11. If A is a strong positive basis for a linear space L then

the minimal representation of each xGP~{ 0} is unique.

It would be interesting to know if the converse of Theorem 4.3 and of the

above corollary are true, i.e., if A is a positive basis for which the minimal

representations are unique, must A be strong?

4.4. Change of basis. If A and B are linear bases for P then, as is well

known, we may find a biunique linear map of P onto P which carries A onto

B. There is no hope for such a theorem if A and B are merely positive bases.

Indeed, if P is finite-dimensional then card A need not be equal to card B.

However, if A and B are strong positive bases whose minimal subspaces cor-

respond in a certain natural way then we may normalize A and B, in a sense

to be defined, to obtain A* and B* for which there exists a biunique map of

P onto itself carrying A* onto B*.

If A is a strong positive basis for P we will denote by M (A) a set of mini-

mal relations of L with respect to A which includes exactly one relation in-

volving each element of A. Clearly, if M'(A) is another such set then each

element of M'(A) is obtained by multiplying an element of M (A) by a posi-

tive real number. Now let A and B be strong positive bases for P. We shall

say that A and B have the same pattern of minimal subspaces or the same PMS

if for some (and thus each) pair M(A), M(B) there exists a biunique map P
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of M(A) onto M(B) such that for each XG-M(yl), X and 7"X involve the same

number of elements of A and B respectively. A positive basis A is called a

normal positive basis provided there exists a set M (A) such that \<ElM(A)

implies Xo = 1 or X«, = 0. If A is a strong positive basis for L then we may define

a normal positive basis ^4* as follows. Choose a set M (A) and let

A*= {Xaa|aG^4, \£.M(A) and Xa^OJ. Clearly, A and A* have the same

PMS. We shall say that A* is a normalization of A. We are now ready to

prove the result stated at the beginning of this section.

Theorem 4.12. If A and B are strong positive bases for a linear space L with

the same PMS and A * awd B * are normalizations of A and B respectively then

there exists a biunique linear map $ of L onto L such that $(A*)=B*.

Proof. Since A and B have the same PMS so do A* and B*. Let M (A*)

and M(B*) have the property used in the definition of normal bases. We can

find a biunique map $' of A* onto B* such that if \£;M(A*) and CC^4* is

the set of elements appearing in X then there exists ßCzM(B*) such that

$>'C is the set of elements appearing in ß. For each XGJlí(i *) Í»' may be ex-

tended to a linear map of lin C onto lin (i'C). Now use Corollary 4.9 to define

<£ on L.

Corollary 4.13. // A and B are normalized minimal positive bases for a

linear space L (i.e., En) then there exists a biunique linear map of L onto itself

carrying A onto B.

4.5. Reducible bases. If a positive basis A for L has the property that

there exist elements ai and a2 in A such that (ai+a2)W(.4~{ai, a2}) is also

a positive basis for L then we say that A is reducible. We shall show that a

positive basis is reducible if and only if it is not minimal.

Theorem 4.14. Let A be a positive basis for a linear space L. Suppose

B={bi, ■ ■ • , bn} QA has the property that for each i, 1 ̂ i^n, there exists a

minimal subspace Mi of L with respect to A such that Mi(~\B={bi}. Let

fi, • • • , rn be positive real numbers. Then

C = Í JZ TibX \J(A~B)

is a positive basis for L.

Proof. If C is not positively independent we have E"=i rJ>i= JZaeA~B ßaa

for some ß£ty(A~B). Let X* be the minimal relation associated with Mi.

Then

—rd>i = —   E   ^<¡a.
Xj  aSA~B

rih= JZaeA~Bßaa+JZi.2 (rißüJLaeA-BKa. This is a contradiction of the
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positive independence of A.

To show that C positively spans P let x be an arbitrary element of

P~ { 0}. Then there is a XG^M such that x = E«e¿ X„a. Now we have

n n

x = ro E f<&< +    22   ~X«a+Yj (Xbi — for,)A<
¿=1 aeA~B i=.l

and we may choose r0 so that X6¿ — rof<<0 for each i, lz^iz%n. This means we

can represent x by

x - ro E r<&< +    22   X.« + E-i-'-   ¿2   ^*a
1=1 o€A~B 1-1 Af, a£A~B

which is the required form.

Corollary 4.15. A positive basis A for a linear space L is reducible if and

only if A is not minimal.

Proof. Clearly a minimal basis may not be reduced. For the converse we

need only note that if A is not minimal there exist at least two distinct mini-

mal subspaces My and M2 and so by Theorem 2.4 Mi contains an element of

A not in M2 and conversely.

It is not true that if A is a positive basis for P and {oi, o2} C^4 is a linearly

independent subset such that A~{ay, o2} linearly spans P then C= {ai+a2}

U(^4'~{ai, at}) must be a positive basis for P. Let P = £? and take the

columns of the following matrix as the elements of A and the last two columns

as ai and c2 respectively. Then the second column does not appear in any

positive relation over C:

"1111  -2"

0      1-1      0     0    .

.1      0     0-1      0.

References

1. N. Bourbaki, Espaces vectoriels topologiques, Actualités Sei. Ind. No. 1189, Hermann,

Paris, 1953.
2. Chandler Davis, Theory of positive linear dependence, Amer. J. Math. 76 ( 1954), 733-746.

3. Preston C. Hammer, Maximal convex sets, Duke Math. J. 22 (1955), 103-106.

4. V. L. Klee, Jr., The structure of semispaces, Math. Scand. 4 (1956), 54-64.

University of Washington,

Seattle, Washington

University of California,

Riverside, California


