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Introduction. In the theory of i7„-sets three main theorems stand out:

I. An tya-set is universal for totally ordered sets of power not exceeding fc$„.

II. Two r/a-sets of power tí« are isomorphic.

III. If Na is regular and if ^2s<a 2s« ^Ka, then an rja-set of power Sa

exists.

These results were proved by Hausdorff [15, pp. 180-185] and Gillman

[10]. Clearly they may be viewed as theorems about special objects in a

particular category. The author [l] showed that if a>0 then these three

theorems hold for the category of totally ordered Abelian groups and order

preserving (group) isomorphisms; the special group being totally ordered,

Abelian, divisible, and an rça-set.

Erdös, Gillman, and Henriksen [8] (see also Gillman and Jerison [ll])

proved that if a>0 then I and II hold for the category of totally ordered fields

and order preserving (ring) isomorphisms; the special field being real-closed

and an i7„-set. It was also shown in [8] that III holds for this category and

special object if a= 1. However in case a> 1, III was left open both in [8] and

in [11].

The initial aim of these researches was to show that, assuming a>0,

Ha regular, and 2s<a 2Kä^Ka, a real-closed field exists that is an r)a-set of

power Ka. The construction is as follows: let G be a totally ordered Abelian

divisible group that is an r¡a-set of power N«, a>0. Let PIG} denote the

field of formal power series with exponents in G and coefficients in R, the

reals. P{G} is an Tja-set but its power exceeds fc$«. Let P{G}a = {/£P{G} :

the support of /is of power less than K„}. Then R{G}„, again a real-closed

field, is an ?ja-set, and is of power Ha.

The only difficult point in these verifications was the proof that P{g}

and R {G} a are 7;a-sets. The proof arrived at by the author did not involve

the multiplication in these fields, but depended wholly on their structure as a
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totally ordered Abelian group. On analyzing the proof further, the following

construction presented itself. Let £ be an ?7a-set of power Na, a>0, and let

£{£} be the Hahn group on E with real coefficients. Let E{e}œ be the sub-

group of £{£} consisting of all elements with support of power less than ttfa.

Then £{e} and £JE}a are totally ordered Abelian divisible groups that are

7j„-sets, the latter being of power S«. Further, having proved this, it is im-

mediate that £ {G} and £ {G} „ are i7a-sets.

After further study it was found that two of the essential facts used in

the proof that £{e} and £{£}„ are i?a-sets, were that their value sets are

r/a-sets and that their factors (i.e., the Archimedean factor groups of their

convex subgroups) are conditionally complete. At this point the initial ver-

sion of the paper was written.

Let a be a nonzero ordinal number. A group (or a field) with valuation

is called a-maximal if every pseudo-convergent sequence of length less than

cûa has a pseudo-limit. The following was stated in [2].

Main Theorem. Let G be a totally ordered Abelian group and let abe a non-

zero ordinal number. G is an r¡a-set if and only if (1) its factors are conditionally

complete, (2) its value set is an Va-set, and (3) it is a-maximal.

The necessity of these three conditions was shown in [2]. The proof of

sufficiency given in [2] rested heavily on some lemmas proved in the initial

version of this paper. Having been requested by the referee to revise the

initial version of the paper extensively, it seemed appropriate to write this

revised version around the Main Theorem. The sufficiency of these condi-

tions will be proved in §1. In §2 it will be shown that various examples, given

in [2], satisfy conditions (1), (2), and (3) and thus are r;a-sets. In §3 it will

be shown that £|G}a is a real-closed field.

The following is an immediate consequence of the Main Theorem.

Main Corollary. Let K be a totally ordered field and let a be a nonzero

ordinal number. K is an rja-set if and only if (1) its residue class field is iso-

morphic to the reals, (2) its value group is an na-set, and (3) it is a-maximal.

Background. Let T be a totally ordered set and let a be an ordinal

number. T is said to be an r¡a-set ii given 77, ACT such that H<K and

|77|+|A| <Na there is a tET such that 77<{/} <K. (77<£ (77g£) if
given hEHand kEK then h<k Qi%k).) The initial results on 77a-sets can be

found in Hausdorff [15, pp. 180-185]. For more recent results see Sierpiñski

[21] and Gillman [10].

Let p be an ordinal number. By IF(p) is meant the set of all ordinal num-

bers 5 less than p. For an ordinal a, <oa is defined to be the least ordinal such

that IF(co„) is of power iS«. A nonempty totally ordered set T without a great-

est element is said to have upper character ua if the smallest cardinal number

of a cofinal subset of T is iSa; in this case T has a cofinal subset isomorphic to
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W(o>a) and &>„ is the smallest such ordinal. The lower character of P is the

dual concept. Let tET. If {xET:x<t} has no greatest element and if its

upper character is w«, then the left character of t is defined to be to«. The dual

definition defines the right character of t.

By a gap in T is meant a pair (H, K) of nonempty subsets of P such that

H has no greatest element, K has no least element, H<K, and HKJK= T.

Let (H, K) be a gap in P. By the left character of (H, K) is meant the upper

character of H. The dual definition defines the right character of (H, K).

Hausdorff [15, pp. 142-147] developed the idea of characters as here pre-

sented, although his notation has here been modified somewhat.

The following is readily verified: a nonempty totally ordered set that is

dense in itself and that has neither a least nor a greatest element is an r?a-set

if and only if its upper and lower characters are not less than wa; given a

point, its right and left characters are not less than cca; and given a gap, at

least one of its characters is not less than ua.

To conclude, Hausdorff [15] and Gillman [lO] have shown that an

Tja-set of power N« exists if and only if K« is regular and 2«<« 2X« ̂ t<a.

Let G be a totally ordered Abelian group. For gEG let \g\ =max(g, —g).

A subgroup G' of G will be called convex if given gEG and g'EG' such that

I g| = | g'|, then gEG'. The set of all convex subgroups of G is totally ordered

under inclusion and, under this order, is a complete lattice. For aEG let

X(a) be the smallest convex subgroup of G that contains a. Such subgroups

will be called principal convex subgroups. Clearly X has the following prop-

erties, given a, bEG:

(0.1)   \a\ á|6| implies X(a) EX(b).
(0.2) X(a) =X(b) if and only if there exists a positive integer n such

that |a| =í w| ô| and |&| ^«|a|.

(0.3) X(a ±b)E X(a) W X(b), and if X(a) ^ X(b) then X(a ± b)
= max (X(a), X(b)).

Let G* be the nonzero elements of G and let P = X(G*). The totally ordered

set P will be called the value set of G under X. (Note: by (0.1), X(a) = {o} if

and only if ci = 0.) Clearly X(G)= JOJUP. A mapping of G onto a totally

ordered set, with a least element, that satisfies conditions (0.1)-(0.3) will be

called a natural valuation of G. Clearly two natural valuations of G are essen-

tially identical.

The valuation on G induces a uniform structure on G. It generates the

interval topology (under which G is a topological group) if P has no least

element and the discrete topology if P has a least element.

Let aEG and let N denote the set of positive integers. It is easily seen

that X(a)=\gEG:\g\^n\a\ for some nEN}. Let a^O and let Y(a)

= {gEG: n\g\ < |a\ for all nEN}. Clearly Y(a) is the largest proper convex

subgroup of X(a); thus X(a)/Y(a), which will be denoted by G(a) and will

be called a factor of G, is an Archimedean totally ordered group under the
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natural order on the cosets of F(a) in A(a). Let £ be a totally ordered field

and let X be the natural valuation on K, considered as a totally ordered

group. Let a, bEK* and let A(a)+A(&) = A(a&). Under this addition, which

is independent of the choice of representative, £ is a totally ordered Abelian

group. Further, £ is a field with valuation X and value group P whose valua-

tion ring is A(l), whose valuation ideal is F(l), and whose residue class field

Jfe = A(l)/F(l) is totally ordered and Archimedean. Although anticipated by

Hahn [14], these ideas are due to Baer [4] and Krull [17]. More recent re-

searches have been done by Conrad [6; 7], Gravett [12; 13], and Fleischer

[9].
Let p be a nonzero limit ordinal number and let G be a totally ordered

Abelian group. A sequence igs)s<P of elements of G is said to be pseudo-

convergent ii given 5<7<ju<p then A(g7 — gs)>A(g^ — gy). By the length of

the sequence is meant the ordinal number p. Let (ga)a<«. be a pseudo-conver-

gent sequence and let ps = Xigs+i — gs) for all 8<p. Clearly ips)s<P is a strictly

decreasing sequence in P, the value set of G. It is well known [16] that if

5<7<p then A(g7—gi) = ps. An element g of G is called a pseudo-limit of

igs)s<P if Xig-gi)=pi for all 5<p. Let B= {hEG: Xih)<ps for all 5<p}.
B is known as the breadth of (ga)a<p. It is well known [16] that if the sequence

has a pseudo-limit in G it is uniquely determined modulo B. These ideas,

introduced by Ostrowski [20], were extended by Kaplansky [16] and have

been used on valued linear spaces and ordered Abelian groups by Gravett

[12; 13], and on normed modules by Fleischer [9].

Clearly £ is a convex subgroup of G. Let G' = G/B and let £' = {p E P : ps < p

for some 5 <p}. X induces a natural valuation X' on G' whose value set is £'.

Let g{ be the image of gj in G'. Then (ga')a<P is a Cauchy sequence in the

valuation uniformity on G' whose topology, since £' has no least element, is

the same as the interval topology on G'. Let g be a pseudo-limit of (ga)a<p in

G and let g' be the image of g in G'. It is easily seen that g' is the limit of

iis)i<p- Conversely, let g' be the limit of (gj )«<«, in G' and let g be a pre-image

of g' in G. Then g is a pseudo-limit of (gj)a<> This may be shown by the fol-

lowing argument: let 5<p. Since (g/)i<p converges to g' in G', there exists

7, 5<7<P, such that A'(g'-gr') <p,. Thus, X{g-gy)<pt and Xig-gt)

= Xig—gy-T-gy—gs)=ps. The equivalence of the pseudo-convergence of

(ga)a<P in G and of the convergence of Íg¿)¡<j, in G', a result which is stated

implicitly in [9], will be used several times in this paper.

Let a be a nonzero ordinal number. G is called a-maximal ii every pseudo-

convergent sequence of length less than coa has a pseudo-limit in G. This

definition, introduced in [2], is closely related to the idea of a maximal field

with valuation ([17; 20] and [16]), and a maximal group with valuation

([6; 12] and [9]). For the sake of completeness it can be said that a totally

ordered group G is maximal if every pseudo-convergent sequence in G has a

pseudo-limit in G.
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1. Let G be a totally ordered Abelian group, let X be its natural valuation,

and let P be its value set. In this section it will be shown that the three condi-

tions of the Main Theorem are sufficient.

Theorem 1.1. If the upper character of P is ua then both the upper and the

lower characters of G are equal to ua. If the lower character of P is coa, then the

point character of G is coa.

Proof. Let A be a subset of positive elements of G. If A is cofinal in G

then X(A) is cofinal in P. If A is coinitial in {g£G:g>0} then X(A) is

coinitial in P, proving the theorem.

Assuming the conditions of the Main Theorem we see that it remains to be

proved that given a gap in G, one of its characters is at least coa. A gap in G

is associated with a unique point in the Dedekind completion of G. It is

sufficient therefore to consider the Dedekind completion of G and to prove

that no point in it exists both of whose characters are less than wa.

Assume now that G has no least positive element. (This will certainly be

assured if P is nonempty and without a least element.) Thus G is nondiscrete

in the interval topology, under which G is a topological group. Let 2 be the

Dedekind completion of G: i.e., let S be a totally ordered set, conditionally

complete as a lattice, without a least or a greatest element, in which G is dense.

Let a, ¿>£2 and let oPô = l.u.b. [g+A: g, A£G, g^-a, and hzib} and let

aUb = g.l.b. {g+A:g, hEG, g^a, and *£&}. Clearly aLb^aUb. Clifford
[5 ] has shown that S is a semigroup under P and U, that P is lower semi-

continuous and U is upper semi-continuous, and that P and U extend the

addition on G. Let gEG. For x£G the mapping x—>x+g is a one-to-one order

preserving mapping of G onto G. Clearly this mapping extends uniquely to a

one-to-one order preserving mapping of 2 onto 2; thus aLg = aUg for any

a£2. In case a or bEG, we will write a+b instead of aLb or aUb.

The mapping x—►— x is a one-to-one order reversing mapping of G onto

G. Clearly it extends, uniquely, to a one-to-one order reversing mapping of

2 onto 2. For a£2 let a* be the image of a under this mapping. Clearly

a** = a and (aLb)* = a*Ub* for all a, ô£2. A subset 2' of 2 will be called

symmetric if it is closed under the mapping a-*a*. Let 2' be a symmetric sub-

set of 2. Then 2' is closed under P if and only if it is closed under U, since

(aLb)* = a*Ub*. A subset 2' of 2 will be called convex ii given a, c£2' and

5£2 such that a<b<c, then £>£2'. The set of all convex, symmetric sub-

semigroups (under P or equivalently under U) of 2 is totally ordered under

inclusion and as a lattice is complete. For a £2 let S(a) be the smallest con-

vex, symmetric subsemigroup of 2 that contains a. It is easy to verify that 5

has the following properties: S(a) ={o} if and only if a = 0; if \a\ ú\b\,

where |a| =max(a, a*), then S(a) ES(b);and S(aLb)\JS(aUb) ES(a)VJS(b).

Let V(a) = S(a)r\G. Clearly F satisfies these properties and in addition

V(a) is a convex subgroup of G. Further,  F extends X: i.e., given gEG,
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F(g)=A(g). However, F(o) need not be in P. Hence the natural valuation

A on G has been extended to F, the natural valuation of 2.

It should be noted, in passing, that if 2G = G and if G' is a proper, convex

subgroup of G, then F(l.u.b. G') =G'. In the following example this does not

hold, however. Let G= {fERw (*,0+1): the support of/is finite and/(w0)GZ}

and let it be ordered anti-lexicographically. Let G'= {/£G:/(ü>0) =0}. Then

G' is a proper, convex subgroup of G and yet F(l.u.b. G') = G. Further,

G'£F(2)(2).

Our task is to show that if G satisfies the conditions of the Main Theorem,

then there are no elements a£2 both of whose characters are less than cca.

We will proceed by contradiction, after proving three lemmas.

Lemma 1.2. Let abe a nonzero ordinal number and let G be such that P is an

r)a-set. Let a£2, a>0, such that both of its characters are less than coa. There

exist h, kEG such that 0<h<a<k and A(A) = A(ife); thus F(a)=A(fe)G£.

Proof. Since the characters of a axe both less than co„, there exist nonempty

subsets of positive elements of G, 77, and K, such that H<K, lu] +1 A| <!Sa,

and l.u.b. 77=a = g.l.b. A. Clearly A(77)^A(£). Were A(77)<A(£) then,
since P is an r?a-set, there would exist pEP such that A(77) < {p} <A(£).

Let g be a positive element of X~lip). Then 77< {g} <£; thus g = a. Since P

is an r;a-set, its lower character is at least a>„; thus, by Theorem 1.1, the point

character of G is at least ioa. Hence the characters of g( = a) are at least coa,

which is a contradiction. We conclude that there exist hEH and kEK such

that XQi) =Xik), proving the lemma.

On assuming the second condition of the Main Theorem, that P is an na-

set, Lemma 1.2 may be invoked. Some machinery will now be introduced

that will allow us to exploit the first condition of the Main Theorem: that

the factors of G be conditionally complete.

Lemma 1.3. Let hEG, h>0, and let f be the canonical homomorphism of

XQi) onto A(ä)/F(ä) = G(ä). Assume that YQi)^ {o} and that Gih) is condi-

tionally complete. For bESQt), the Dedekind completion of XQi), let £o(&)

= l.u.b. {/(g): gEXQt) and g<b} and let £i(£)=g.l.b. {/(g): gEXQt) and
g>b}. Then £0 and £i are order preserving mappings of Sih) onto Gih) that

extend f, E0(&)áEi(¿), £o(è£c) = £0(&) + £o(c), FiibUc) = £i(6) + £i(c), £„(&*)

= —Fiib), and £i(i>*) = — £o(2>) for all b, cESih). Finally, if Gih) is dense,

£o=£i.

Proof. 5(Â)={i>GS: —nh<b<nh for some w£A} and thus is condi-

tionally complete; hence it is the Dedekind completion of XQi). That £0 and

(*) If ¡EG such that {/} >G' then/(«0)ël; thus if o = l.u.b. G', the sequence a, aUa,
(aUa)Ua, ■ • • is cofinal in 2. Hence S(a) = X and V(a) = G. Let 6£s, 0Si<a. There exists

gEG' such that 6<g<a. Since the value set of G' is isomorphic to W(cno), V(g) is a proper sub-

group of G'; thus V(b) is a proper subgroup of G', showing that G'E ^(S)-



1962] REAL-CLOSED FIELDS ft 347

Pi are order preserving is obvious, as is the fact that F0(b) ^ Pi(&) for all

bES(h). Since Y(h)¿¿{0}, P0 and Pi extend/, but of course since G(A) is

Dedekind complete, the ranges of/, P0 and Pi coincide. Let b, cES(h). Given

g, g'EX(h) such that g = 6 and g'^c then g+g'^bLc; thus Fo(b) + F0(c)

= Po(Z>Pc). Since P is lower semi-continuous, a fact proved by Clifford [5],

given g"EX(h) such that g"<bLc, there exist g, g'EX(h) such that g<b,

g'<c, and g"<g+g'. Thus P0(6Pc) = P0(&) + Po(c). By a dual argument

Fy(bUc) = Fy(b) + Fy(c). Further, P0(&*) = l.u.b.|/(g): gEX(h), g<b*}
= - g.l.b. {/(- g): - g £ X(A), - g > b} = - Pi(&). Using this, Fy(b*)
= — P0(&**)= —Fo(b). Assume that G(A) is dense and, for a moment, that

Fo(b)<Fy(b) for some bES(h); then there exists gEX(h) such that F0(b)

<f(g)<Fiib). lig = b then P0(&) =/(g). If g<& then /(g) = P0(6), and if g>&
then f(g)^Fy(b), which is absurd. Hence F0(b) = Fy(b) for all &£S(A) if

G(A) is dense, proving the lemma.

The following example shows that if G(A) is not dense, Po need not equal

Pi. Let G^ZXR, lexicographically ordered. Let A=(l, 0); then G(A) is

isomorphic to Z. Let & = l.u.b. {(0, r):rER}. Then P0(&)=0 and Pi(&) = l.

In Lemma 1.3 condition (1) was used. In the next lemma conditions (1)

and (2) are used in the hypothesis; in its conclusion, a result appears which

will be used to exploit condition (3).

Lemma 1.4. Let G be such that P is an i)a-set, a>0, and such that the factors

of G are conditionally complete. Let ci£2 such that both of its characters are less

than o>a. Then there exists gEG such that V(a—g) < V(a).

Proof. Since P is an ?;a-set its lower character is at least coa. By Theorem

1.1, the point character of G is at least wa. Hence a9^0. Without loss of

generality we may assume that a>0 merely by replacing a with a* if o<0.

By Lemma 1.2 there exist A, kEG such that 0<h<a<k and X(h)—X(k)

= V(a). Since P does not have a least element, F(A) 5^ {0}. Let P be a cofinal

subset of positive elements of F(A). Clearly X(T) is a cofinal subset of

{pEP: p<X(h)}. Since P is an t]a-set, | P| èNa; thus the upper (and lower)

character of F(A) is at least coa. Clearly a £ 5(A). Let /be the canonical homo-

morphism of X(h) onto G(h)( = X(h)/Y(h)). Let P0 and Pi be the mappings

of 5(A) onto G(A) defined in Lemma 1.3. If G(A) is dense, P0=Pi. If G(A) is

not dense, it is isomorphic to Z, the additive group of integers; thus X(h) is

isomorphic to Z X F(A), ordered lexicographically. Since the upper (and

lower) character of F(A) is at least wa and since both characters of a are less

than w«, a lies over a coset of F(A) in X(h) rather than between two such

cosets; thus F0(a) = Fy(a).

Let r=P0(a). Let gEX(h) such that /(g) = r. Using Lemma 1.3 we see

that Po(a-g) = 0 = Pi(a-g). Let K = Fo~\0)C\Fy\0); thus a-gEK. Since

Po and Pi are order preserving, K is convex. Let b, c£P. Then F0(bLc)

= Fo(b) + F0(c) = 0 = Fy(b) + Fy(c) = Fy(bUc).   Since   P0áPi   and   bLc^bUc,
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0 = FoibLc)-£FiibLc)uFiibUc)=0; thus bLcEK, showing that K is closed

under L. Since £o(ô*) = — £i(&) = 0 and £i(ö*) = — £o(ö) = 0, K is symmetric.

Thus A is a symmetric, convex subsemigroup of 2. Hence Sia—g)r\GEKf~\G

=/-i(0) = Y{h) <Xih) = Via), proving the lemma.

The reader may wonder at the complexity of the last paragraph, and in

particular at the use of both £0 and £i to define K. In case G(A) is discrete,

£o-1(0) and £rx(0) will not be symmetric, for if d = l.u.b. YQi) then £0(d) = 0,

Foid*) = -1, £i(d) = 1, and £i(d*) = 0.
With this machinery we can now prove the sufficiency of the conditions

in the Main Theorem.

Theorem 1.5. Let a be a nonzero ordinal number and let G be such that (1)

its factors are conditionally complete, (2) its value set P is an ria-set, and (3) it

is a-maximal. Then G is an ■na-set.

Proof. Since P is an «7a-set its upper and lower characters are at least u>a.

Applying Theorem 1.1 we see that the upper, lower, and point characters of

G are all at least coa. Let aG2, the Dedekind completion of G. It suffices to

show that at least one of the characters of a is at least caa. Assume for a

moment that both of the characters of a axe less than wa. Without loss of

generality we may assume that a>0 merely by replacing a with a* if a<0.

There exist nonempty subsets of G such that {o} <H< {a} <K, \H\

+ \k\ <«a,andl.u.b.77=a = g.l.b.£.Let£o={F(a-x):xGG}. By Lemma

1.2,£oC£. By Lemma 1.4, given x£G there exists g EG such that Via — x — g)

< F(a —x); thus £o has no least element. Let Pó = { F(a —x): x£77UA}.

Clearly P¿ is coinitial in P0. Hence the lower character of Po is less than «„.

Let B= {gEG: {A(g)} <£o}. Since G is a-maximal, G' = G/B is Cauchy

complete. For pEPo let Up = {gEG: Via—g)<p}. Clearly ÍUp)pepl) is a

filter base of open sets in G. Let Up be the image of Up in G'. Clearly ( Up )Pe.p„

is a Cauchy filter base of open sets in G'. Since G' is Cauchy complete, this

filter base has a limit g' in G'. Let g be a pre-image of g' in G. Thus g£ Up for

all pEPo and therefore F(a-g) <p for all pEPo- But Via-g)EPo, which is

absurd, proving that at least one of the characters of a is not less than wa(3).

2. Having proved the Main Theorem, we can now give a number of

examples of totally ordered Abelian groups that are ^-sets, a>0.

Let T be a totally ordered set, let k be a field, and let fEkT. Let s(J)

= {tET:fit)^0}. Then s(J) will be called the support oí f. The set s(J) is

(•) Given a, &Gs such that V(a) * V(b) then V(aLb) = F(a)U V(b) = V(aUb). Using this
result (which is not as easily obtained as the corresponding result for a, bEG), the last part of

this proof can be simplified as follows : choose a sequence (ga)a<i> in H\J JsTsuch that ( V(a —gi))t<p

is strictly decreasing and is coinitial in P¡ . Clearly p is a limit ordinal less than ua. With the

aid of the result which begins this footnote it is easily seen that (ga)a<p is pseudo-convergent by

observing that if S <£ <p and if V(a —g¡) j¿ V(gs —gf) then V(a —gt) = V(a —gs+gf —g,) = V(a —g¡)

{JV(g¿—ge)â V(a—gi), which is absurd. Since G is a-maximal there exists gE G that isa pseudo-

limit of this sequence. Then V(a—g)<p for all pEPo, which is absurd, completing the proof.
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called anti-wellordered if every nonempty subset of it contains a greatest

element. Let k{ P} be the set of all/£¿r such that s(f) is anti-wellordered.

k{ T} is an Abelian group under pointwise addition. Let/ be a nonzero ele-

ment in k{ T} and let d(f) be the greatest element in s(f). Let k be a totally

ordered field and define />0 if f(d(f))>0. Under this ordering k{ T} is a
totally ordered Abelian group. Further, if k is Archimedean d is a natural

valuation of k { P} with value set P. The group k { T} is called the Hahn group

on T with coefficients in k. See Hahn [14], Zelinsky [23], and B. H. Neu-

mann [19] for details.

Let E be an ?;a-set, a > 0, and G = R {E}, R being the field of real numbers.

Let Ga= {/£G: \s(f)\ <ft*}. Clearly Ga is a subgroup of G. Let Po be a
nonempty subset of E and let M= {fEG: given e£P0,/(e)£Z|. Clearly M

is a subgroup of G. Let Ma = Mr\Ga. It will be shown in this section that G

and M are r/a-sets and if Na is a regular cardinal number, then Ga and Ma

are ?7a-sets. Clearly G and Ga are divisible, whereas M and Ma are not.

Finally it will be shown that if E is of power ft^, then Ga and Ma are of

power fta.

Clearly G, Ga, Af and Ma have as their value set E, an 7?a-set. Further,

in each case the factors are either the reals or the integers; thus conditions

(1) and (2) of the Main Theorem hold. Clearly G and M are maximal, thus

a-maximal, and by the Main Theorem are 7?a-sets.

Theorem 2.1. Assume that ft, is regular. Then G„ and Ma are a-maximal.

Proof. Let p be a nonzero limit ordinal less than coa and let (es)s<p be a

strictly decreasing sequence in E. Let B= {gEG: d(g) <e¡ for all 5<p} and

let Ba = BC\Ga. Clearly B(Ba) is a convex subgroup of G(Ga). To show that

Ga is a-maximal it suffices to show that Ga/Ba is Cauchy complete. Clearly

£'= {eEE: e}±ei for some 8<p} is the value set of Ga/Ba and G/B under

natural valuations. Further GJBa may be identified, in a natural way, with

a subgroup of G/B. Let a' be in G/B and be the limit of a Cauchy sequence

in Ga/Ba. Let a be a pre-image of a' in G. Let s(a) = (xM)M<7, the sequence

being strictly decreasing. Let a(xp) = r„ for all ju <7. Let c(xp) be the character-

istic function of xM. Clearly o= ¿ktVW. If (x^)^<yC\E' = 0 then a' = 0

and is in Ga/Ba. Assume that the intersection is not empty. Since given

p'EE' and pEP such that p' <p then p£P', and since (x,,),,^ is strictly de-

creasing, there exists an ordinal y' such that Xy.EE' if and only if p.<y'. In

the next paragraph it will be shown that y' <ua. Let b= 12i><f *VC(*/«)- Thus

¿>£G„ and a' is the image of b in Ga/Ba, proving that Ga/Ba is Cauchy com-

plete.

Since a' is the limit of a Cauchy sequence in Ga/Ba, given 5<p there

exists gsEGa such that ¿(a — gs)<ej. Thus {x„:ju<y and x^^ej} Es(gs).

Hence {x,,: M<7'} =U»</1 Ix,,: p.<y and x„=ej} £Us<p s(g¿). Therefore

| {/í:/í<7'}| =| {x„:m<7'} I ̂  2»<p |s(gj)| • Since gs£Ga, |s(gs)| <ft*. Since
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p<co« and since iS« is regular, 2«</> U(¡?a)| <N<*. This proves that y' <wa. A

similar argument shows that Ma is a-maximal, proving the theorem.

A more general version of this theorem can be proved by dropping the

assumption that IS« is regular and by replacing "a-maximal" by "c/(a)-

maximal" in the conclusion, coc/(a) being the upper character of IF(wa)

(= {S: 5<w„}). (See Tarski [22] for details on cfia).) Of course, ÍSa is regular

if and only if a = c/(a). If ttfa is singular (i.e., not regular), then cfia) <a. That

cfia) is the largest ordinal number for which Ga (or similarly Ma) is cfia)-

maximal may be seen as follows. Since E is an ?7a-set, its lower character is

at least «a; thus there exists a strictly decreasing sequence Íes)¡<a in E. By

definition o)Cf(a)i=p) is the upper character of IF(w„); thus there exists a

strictly increasing sequence 0t(ô))j<p that is cofinal in IF(coa). Let ir(p)=wa.

For €^p let ge= 2«<»(<o cíes). Clearly geEGa for all e<p, however gPEGa.

Clearly gp is a pseudo-limit of (ge)t<> Given any pseudo-limit h of (ge)£<P1 then

ies)s<T(p)Esih); thus hEGa, proving that Ga is not (c/(a) + l)-maximal.

Corollary 2.2. G aw<7 M are r¡a-sets. If ÍS« is regular then Ga and Ma are

r¡a-sets.

Theorem 2.3. Let £ be of power Xa. Then Ga and Ma are of power tXa.

Proof. Clearly | Ma\ èNa; thus it suffices to show that \Ga\ ^tSa. Haus-

dorff [15] and Gillman [10] have shown that the existence of an 57a-set of

power K„ implies that S„ is regular and that X]s<<* 2N«i£,Sa. Let the ordering

on £, under which it is an ?7a-set, be suppressed and let E be identified with

Wioa). For irEWiwa) let Aw= {fEGa: s(J)EWÍt)}. Let /GG.. Since
\sif)\ <^« and since ÍS« is regular, there exists 7r£TF(w<,) such that sif)

EWiix); thus GaOJ*<*aAr. Hence \Ga\ á E-<-« M-l = £-<«« (2Mo)iw(-)i

Ú Z)a<a N8+i2N°N«^N„X)5<a 2««á^a = tSa, proving the theorem.

Corollary 2.4. If Eis of power !Sa then Ga and Ma are r}a-sets of power Xa.

3. Having these results on totally ordered Abelian groups, we can apply

them to totally ordered fields, which of course are totally ordered Abelian

groups under addition.

Let a be a nonzero ordinal number and let G be a totally ordered Abelian

group that is an 77a-set. Let K = R{G} ; thus £ is a totally ordered group. For

a, bEK let abig)= 2XEs a(x)&( — x+g). Hahn [14] showed that under this

definition, £ is a field, often referred to as the field of formal power series with

coefficients in R and exponents in G. (For a more modern presentation see

[19].) Clearly G is isomorphic to the value group of K, and £ is isomorphic

to the residue class field of K. Since £ is maximal [17], the Main Corollary

applies and asures us that K is an ?;a-set. Let £„ = £{G}a. By Corollary 2.2,

if iSa is regular then Ka is an ?7a-set. By Corollary 2.4, if G is of power Ka

then Ka is of power fc$a.
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It is easily verified that two necessary conditions for a totally ordered

field to be real-closed are that its value group be divisible and that its residue

class field be real-closed. As shown in §2, if an 7ja-set exists, then nondivisible

Abelian groups G that are ?;a-sets exist; thus for G nondivisible, K and Ka are

not real-closed.

Krull [17] observed that if G is divisible then R{G}, which is maximal,

is real-closed. MacLane [18] has shown that the field of formal power series

with coefficients in an algebraically closed field and exponents in a totally

ordered Abelian divisible group, is algebraically closed. Knowing [3] that a

totally ordered field Pis real-closed if and only if F(i) is algebraically closed,

i being a root of x2 + l, it is clear that "algebraically" can be replaced by

"real-" in the last sentenced). After stating an obious lemma, this result will

be somewhat extended.

Lemma 3.1. Let F be afield, let H be a totally ordered Abelian group, and let

H' be a subgroup of H. For a' £ P {H'} lett (a') be the extension of a' to H, letting

its values outside of H' be zero. Then t is an isomorphism of F{H'} into F{H}

and if F is a totally ordered field then t is order preserving.

Corollary 3.2. Let F be a real- (algebraically) closed field, let H be a totally

ordered Abelian divisible group, and let a be a nonzero ordinal number. Then

F{H} a is a real- (algebraically) closed field.

Proof. Let f(x) = ^Ji-o ajX> be a nonzero polynomial with coefficients in

F{H}a. Let H' be the smallest divisible subgroup of H containing U"_„ s(ay).

Since a,EF{H}a, |s(ay)|<fta; thus \H'\ <ft*. Let aj be the restriction of

ay to H' and let/'(*)= 22%0a'jX'. By results of Krull [17] and MacLane

[18] stated above, F{H'} is a real- (algebraically) closed field. Clearly the

isomorphism t, defined in Lemma 3.1, extends to an isomorphism t* of

F{H'} [x] into F{H} [x], which sends/'(x) to/(x).

Let f(x)=x2 — b, b>0. Since F{H'} is real-closed, f(x) has a root in

F{h}u. If /(x) is any polynomial of odd degree then, since F{H'} is real-

closed, f(x) has a root in P{pf}a, proving that F{H}a is a real-closed field.

A similar argument holds in case P is algebraically closed, proving the

corollary.

The following example shows that the two necessary conditions for a

totally ordered field to be real-closed, given earlier in this section, are not

sufficient. Let U=R{R{ W(coy)} } and let Ui = R{R{ W(coy)} }y. By Corollary

3.2, Pi is a real-closed field, as is U. Further, Uy is a proper subfield of U,

(*) This rests on the fact that (F(i)){G} is isomorphic to (F{G})(i), as can be seen by the

following: clearly F{G\ is a subfield of (F(i)){G}, which is algebraically-closed. Hence

(F{G})(i) may be identified with {a + bi: a, bE FÍO}], a subfield of (F(t)){(7}. For

zE(F(i)){G}, s(z) (the support of z) is an anti-wellordered subset of G. For gEG let z(g)

=a(g)+b(g)i, a(g), b(g)EF. Clearly s(a), s(b)Es(z); thus a, bEF{G} andz£(f {G})(t).
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since there are uncountable anti-well ordered subsets in £ {JF(wi)}. Let a be

a positive element in U that is not in Ui. Then Uiia) is a transcendental ex-

tension of Ui\ hence the square root of a, which is in U, is not in ¿7i(a),

showing that £/i(a) is not real-closed. However, its value group is divisible

and its residue class field is real-closed.

To conclude, a construction of the fields referred to in the title of the

paper can be achieved as follows. Let £ be an 77a-set of power tba, a>0. Then

£ {£} a is a totally ordered Abelian divisible group that is an ?;a-set of power

iSa. Finally, £{£{£}„} a is a real-closed field that is an «7a-set of power iSa.
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