and $\lim _{i} V\left(y, E_{i}\right)>0$. Since S is a sigma algebra, $E=\cap E_{i} \in S$; moreover, $V(x, E) \leqq \lim _{i} V\left(x, E_{i}\right)=0$. Finally, since y is countably additive on $S, V(y, E)$ $=\lim _{i} V\left(y, E_{i}\right)>0$.

Bibliography

1. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. and Phys. 39 (1960), 126-140.
2. R. B. Darst, A decomposition of finitely additive set functions, J. Math. Reine Angew. 210 (1962), 31-37.

Massachusetts Institute of Technology, Cambridge, Massachusetts

ERRATA TO VOLUME 98

C. C. Elgot. Decision problems of finite automata design and related arithmetics

Page 23, Lines 10, 11. Replace each \hat{f} by \hat{p}.
Page 23, 3.6(b), Line 2. The words "by a finite number . . . " should start a new line.

Page 24, Line 9 (second display formula). Replace " (a, b) " by " (b, a) ".
Page 46, 8.6.2, Line 5. Replace "let n be the maximum" by "let n be one more than the maximum".

Line 7. Replace "for some n-ary R " by "for some R which is n-ary".
The third sentence (beginning on the sixth line) of §8.6.2 on page 46 is in error but is readily correctable. "It may be seen that $T_{m+m^{\prime}+r}^{\infty}\left(\Lambda_{x} M\right)$ $=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$, where $S_{j}, j=1,2, \cdots, k$, is the set of all infinite R_{j-} sequences f such that $(f \upharpoonright n) \in E_{j}$, for appropriate R_{j}, E_{j}, and that k need not be 1 . For example, let M be

$$
\begin{aligned}
& 0 \in F_{1} \Lambda 0 \notin F_{2} \wedge\left(x \in F_{1} \Lambda x \notin F_{2} \cdot V \cdot x \in F_{1} \Lambda x \in F_{2}\right): V: \\
& 0 \notin F_{1} \Lambda 0 \in F_{2} \Lambda\left(x \in F_{1} \Lambda x \in F_{2} \cdot \vee \cdot x \notin F_{1} \Lambda x \in F_{2}\right)
\end{aligned}
$$

Then $T_{2}^{\infty}\left(\Lambda_{x} M\right)$ is the union of the set of all infinite sequences in $\langle 1,0\rangle$ and $\langle 1,1\rangle$ which begin with $\langle 1,0\rangle$ and the set of all infinite sequences in $\langle 0,1\rangle$ and $\langle 1,1\rangle$ which begin with $\langle 0,1\rangle$. Thus, in this case, $k=2$. Let Q be
$\left(0 \in F_{1} \Lambda 0 \notin F_{2} \cdot V \cdot 0 \notin F_{1} \Lambda 0 \in F_{2}\right)$
$: \Lambda:\left(x \in F_{1} \Lambda x \notin F_{2} \wedge x \in F_{3} \Lambda x^{\prime} \in F_{3} \cdot \vee \cdot x \in F_{1} \Lambda x \in F_{2} \Lambda x \in F_{3} \wedge x^{\prime} \in F_{3}\right.$
$\left.\cdot \vee \cdot x \in F_{1} \wedge x \in F_{2} \Lambda x \notin F_{3} \wedge x^{\prime} \notin F_{3} \cdot \vee \cdot x \notin F_{1} \Lambda x \in F_{2} \Lambda x \notin F_{3} \wedge x^{\prime} \notin F_{3}\right)$.
Then $\Lambda_{x} M \equiv \mathrm{~V}_{F_{3}} \Lambda_{x} Q$ and $T_{3}^{\infty} \Lambda_{x} Q$ is a set of R-sequences, for the binary R indicated by the formula, beginning in a designated way and $T_{2}^{\infty}\left(\Lambda_{x} M\right)$ is a projection of $T_{3}^{\infty}\left(\Lambda_{x} Q\right)$. Quite generally it is the case that $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is the projection of a set of R-sequences beginning in a designated way so
that the rest of the argument given may be applied. In particular, if the R_{j} 's are r-ary relations, $r \geqq 2, R$ may be taken as $R_{1}^{\prime} \bigvee R_{2}^{\prime} \bigvee \cdots \bigvee R_{k}^{\prime}$, where the field of R_{j}^{\prime} is taken as the cartesian product of the field of R_{j} with singleton j and $\langle a, j\rangle R_{j}^{\prime}\langle b, j\rangle \equiv a R_{j} b$. We define E_{j}^{\prime} analogously: $u^{\prime} \in E_{j}^{\prime} \equiv u \in E_{j}$ where $u^{\prime}(x)=\langle u(x), j\rangle$ for each x. Let $E=E_{1}^{\prime} \cup E_{2}^{\prime} \cup \cdots \cup E_{k}^{\prime}$; let $p(\langle a, j\rangle)=a$ for all a, j and let S be the set of R-sequences f such that $(f \upharpoonright n) \in E$. Then $\hat{p}(S)=S_{1} \cup S_{2} \cup \cdots \cup S_{k} . "$

ERRATA TO VOLUME 101

N. R. Stanley, Some new analytical techniques and their application to irregular cases for the third order ordinary linear boundary-value problem, pp. 351376.

Page 363, Line 18. Replace "zeros of Δ " by "zeros of $\Delta(\lambda)$ "
Errata to this paper were printed in vol. 102, March 1962, p. 545. Two of the items were incorrectly stated. The correct versions are:

Page 354, Line 13. Replace " $a_{i+1}=0$ and" by " $a_{i+1}=0$, and"
Page 364, Line 19. Replace " $c \in$ " by " $c \ni$ ". Last two lines and Page 365, Line 1. Replace from "where $|\operatorname{Re} \theta| \ldots$. . through "Therefore," by "where n is a positive integer and hence $|\operatorname{Re} \theta| \leqq \pi / 2$ without loss of generality. Thus, $\pm(-1)^{n-1} \sin \theta=\psi$. When n corresponds to $z \ni|\psi|<1$, then $|\operatorname{Re} \theta|<\pi / 2$. Therefore,"

