and $\lim_{i} V(y, E_i) > 0$. Since S is a sigma algebra, $E = \bigcap E_i \in S$; moreover, $V(x, E) \leq \lim_{i} V(x, E_i) = 0$. Finally, since y is countably additive on S, $V(y, E) = \lim_{i} V(y, E_i) > 0$.

BIBLIOGRAPHY

1. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. and Phys. 39 (1960), 126-140.

2. R. B. Darst, A decomposition of finitely additive set functions, J. Math. Reine Angew. 210 (1962), 31-37.

Massachusetts Institute of Technology, Cambridge, Massachusetts

ERRATA TO VOLUME 98

C. C. Elgot. Decision problems of finite automata design and related arithmetics Page 23, Lines 10, 11. Replace each \hat{f} by \hat{p} .

Page 23, 3.6(b), Line 2. The words "by a finite number . . . " should start a new line.

Page 24, Line 9 (second display formula). Replace "(a, b)" by "(b, a)". Page 46, 8.6.2, Line 5. Replace "let n be the maximum" by "let n be one more than the maximum".

Line 7. Replace "for some *n*-ary *R*" by "for some *R* which is *n*-ary".

The third sentence (beginning on the sixth line) of §8.6.2 on page 46 is in error but is readily correctable. "It may be seen that $T_{m+m'+r}^{\infty}(\Lambda_x M)$ $= S_1 \cup S_2 \cup \cdots \cup S_k$, where $S_j, j=1, 2, \cdots, k$, is the set of all infinite R_j sequences f such that $(f \upharpoonright n) \in E_j$, for appropriate R_j , E_j , and that k need not be 1. For example, let M be

$$0 \in F_1 \land 0 \notin F_2 \land (x \in F_1 \land x \notin F_2 \cdot \lor x \in F_1 \land x \in F_2) : \lor :$$

$$0 \notin F_1 \land 0 \in F_2 \land (x \in F_1 \land x \in F_2 \cdot \lor \cdot x \notin F_1 \land x \in F_2).$$

Then $T_2^{\infty}(\Lambda_x M)$ is the union of the set of all infinite sequences in $\langle 1, 0 \rangle$ and $\langle 1, 1 \rangle$ which begin with $\langle 1, 0 \rangle$ and the set of all infinite sequences in $\langle 0, 1 \rangle$ and $\langle 1, 1 \rangle$ which begin with $\langle 0, 1 \rangle$. Thus, in this case, k = 2. Let Q be

$$(0 \in F_1 \land 0 \in F_2 \cdot \lor \cdot 0 \in F_1 \land 0 \in F_2)$$

: $\land : (x \in F_1 \land x \in F_2 \land x \in F_3 \land x' \in F_3 \cdot \lor \cdot x \in F_1 \land x \in F_2 \land x \in F_3 \land x' \in F_3$
: $\lor \cdot x \in F_1 \land x \in F_2 \land x \in F_3 \land x' \in F_3 \cdot \lor \cdot x \in F_1 \land x \in F_2 \land x \in F_3 \land x' \in F_3).$

Then $\Lambda_x M \equiv \bigvee_{F_3} \Lambda_x Q$ and $T_3^{\infty} \Lambda_x Q$ is a set of *R*-sequences, for the binary *R* indicated by the formula, beginning in a designated way and $T_2^{\infty}(\Lambda_x M)$ is a projection of $T_3^{\infty}(\Lambda_x Q)$. Quite generally it is the case that $S_1 \cup S_2 \cup \cdots \cup S_k$ is the projection of a set of *R*-sequences beginning in a designated way so

that the rest of the argument given may be applied. In particular, if the R_j 's are r-ary relations, $r \ge 2$, R may be taken as $R'_1 \lor R'_2 \lor \cdots \lor R'_k$, where the field of R'_j is taken as the cartesian product of the field of R_j with singleton j and $\langle a, j \rangle R'_j \langle b, j \rangle \equiv a R_j b$. We define E'_j analogously: $u' \in E'_j \equiv u \in E_j$ where $u'(x) = \langle u(x), j \rangle$ for each x. Let $E = E'_1 \cup E'_2 \cup \cdots \cup E'_k$; let $p(\langle a, j \rangle) = a$ for all a, j and let S be the set of R-sequences f such that $(f \upharpoonright n) \in E$. Then $\hat{p}(S) = S_1 \cup S_2 \cup \cdots \cup S_k$."

ERRATA TO VOLUME 101

N. R. Stanley, Some new analytical techniques and their application to irregular cases for the third order ordinary linear boundary-value problem, pp. 351–376.

Page 363, Line 18. Replace "zeros of Δ " by "zeros of $\Delta(\lambda)$ "

Errata to this paper were printed in vol. 102, March 1962, p. 545. Two of the items were incorrectly stated. The correct versions are:

Page 354, Line 13. Replace " $a_{i+1}=0$ and" by " $a_{i+1}=0$, and"

Page 364, Line 19. Replace " $c \in$ " by " $c \ni$ ". Last two lines and Page 365, Line 1. Replace from "where $|\operatorname{Re} \theta| \cdots$ " through "Therefore," by "where n is a positive integer and hence $|\operatorname{Re} \theta| \leq \pi/2$ without loss of generality. Thus, $\pm (-1)^{n-1} \sin \theta = \psi$. When n corresponds to $z \ni |\psi| < 1$, then $|\operatorname{Re} \theta| < \pi/2$. Therefore,"