
ON GLOBAL ASYMPTOTIC STABILITY OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS(1)

BY

PHILIP HARTMAN AND CZESLAW OLECH

1. Introduction.  Consider a system of real  differential equations for
-   I ■V *■        •     •     • iV*TC |

V     j j       J j

(1.1) x'=/(x)

in which f(x) is of class C1 on En. Let J(x) = (df/dx) denote the Jacobian

matrix of /and let H(x) = (J+J*)/2 be the symmetric part of J(x). One of

the results of [2] is to the effect that if

(1.2) /(0) = 0

and

(1.3) H(x) is negative definite (for fixed x ^ 0),

then x = 0 is a globally asymptotically stable solution of (1.1); i.e., every

solution x = x(t) or (1.1) exists for large t and x(t)—>0 as t—»oo. Among the

results of [4], which deals with the case w = 2, is the following: if

(1.4) x = 0 is a locally asymptotically stable solution of (1.1)

and (1.3) is replaced by the conditions

(1.5) tr/(x) = tx H(x) ^ 0,

(1.6) |/(x)|   ^ Const. > 0   for    |x|   è const. > 0,

then again x = 0 is a globally asymptotically stable solution of (1.1).

One of the main results of the first part of this paper will be a generaliza-

tion of the latter theorem to the case of arbitrary n ^2. In this situation, the

trace of H(x) will be replaced by the function

(1.7) a(x) = max(X¿(x) + Xj(x))        for 1 ^ i < / ^ n,

where Xi(x), • • • , X„(x) are the eigenvalues of H(x), the condition (1.5) by

(1.8) a(x) ^ 0,
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and the condition (1.6) relaxed to

| x |  | f(x) |   ^ Const. > 0       for | * |   è£ const. > 0,

or even to

(1.9) f    [min |/(x)|~U= ».
J     L|x|=p J

Instead of dealing with (1.7), it turns out to be more convenient to treat the

quantity introduced by Borg [l]

(1.10) y(x) = ma.xJ(x)ww       for | w\ = 1, w-f(x) = 0,

where w= (w1, ■ ■ ■ , wn). In particular, it will be seen that (1.4) and

(1.11) y(x) ^ 0

are sufficient for the global asymptotic stability of x = 0. The relationship be-

tween the conditions (1.8)—(1.9) and (1.11) is indicated below; cf. (2.6).

The proof of these facts depends on a modification of arguments of [4]

in which the plane E2 of [4] is replaced by a piece of a 2-dimensional surface

of E" covered by a 1-parameter family of solutions of (1.1).

The second part of the paper concerns the orbital stability of bounded,

nontrivial, solutions of (1.1) and is related to a result of Borg [l ] dealing with

a bounded solution x = x0(¿) of (1.1) in a portion D of En where |/(x)|

^ Const. >0 and y(x) <0. A modification and simplification of Borg's argu-

ments will be used to obtain stronger results. One theorem to be obtained

implies, as in [l], that x = x0(¿) has a periodic limit cycle x = x*(¿) which has

asymptotic orbital stability. Borg's condition ^(x)<0 will be relaxed, how-

ever, to one concerning the indefinite integral of 7(x0(i))- Borg has also

pointed out that his conditions enforce a "global" stability for x = x*(/) under

suitable conditions on f(x) on the boundary 3D of D.

Finally, in the third part of the paper, some of the results will be extended

to nonautonomous systems using the principles of Wazewski [5 ]. This method

can also be used to obtain some of the results of the second part of the paper.

The authors wish to thank Professor J. Moser for calling their attention

to the paper [l] of Borg.

2. Trivial and unbounded solutions. The notations /, H, a, y, w, etc.

introduced above will be employed.

Theorem 2.1. Let f(x) be an n-dimensional vector function of class C1 on

En such that

(2.1) f(0) = 0;       f(x) ¿¿0       iix* 0;

and (1.4) holds. Assume either that (1.8)—(1.9) holds or that (1.11) holds. Then

x = 0 is a globally asymptotically stable solution of (1.1).
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It is possible to formulate a condition which is more general than either

(1.8)—(1.9) or (1.11). This condition will involve the existence of a suitable

function p(x)>0.

Theorem 2.2. Let f(x) be of class C1 on E" and such that (2.1) and (1.4)

hold. Outside of a sufficiently small sphere \x\ <t, let there exist a positive func-

tion p(x) of class Cl satisfying the inequalities

(2.2) p'(x) + y(x)p(x)^0,

where p'(x) =grad ¿>(x) -f(x), and \x\p(x) iic>0 or, more generally,

(2.3) j        min p(x) \dp = oo.

Then x = 0 is a globally asymptotically stable solution of (1.1).

By the set of attraction of the asymptotically stable solution x = 0 is

meant the set of points xi such that the solution x = x(<) determined by the

initial condition x(0)=xi exists for i^O and satisfies x(t)—>0 as t—>oo. The

only condition on e>0 in the last theorem is that the sphere | x| ^e be in the

set of attraction of x = 0.

Theorem 2.1 is contained in Theorem 2.2. In order to see this, first note

that if (1.11) holds, then p(x) can be chosen to be ¿>(x) = 1. Also, note that if

(1.9) holds and

(2.4) y(x) | f(x) |2 + /(*)/(*) -f(x) ^ 0,

then ¿»(x) can be chosen to be ¿>(x) = |/(x) |. It will now be verified that (1.8)

implies (2.4).

For fixed x and a pair of constant vectors v and w,

(Jw-w) I v\2 +  I w\2(Jvi>) — (vw)[(Jvw) + (v-Jw)]

Si a[ | v \21 w\2 — (vw)2].

In fact, the left side of (2.5) is unchanged if J is replaced by its symmetric

part ii and v, w are subjected to an orthogonal transformation; so that, with-

out loss of generality, it can be supposed that iï=diag(Xi, • • • , X„) at the

given point x. The left side of (2.5) is then seen to be

n      n n      n

12 12 X^w'w'v'v' + w'w'vV — Iv'w'v'w*) = 12 2 Xi(wlv' — w'V)2,
«-i y-i ¿-i j-i

which is
1 Inn

-^2(A¡+ Xj)(wiv' - wh1)2 ^ — a 23 12 (w^' - W)*.
^        if¿j ¿ t=l i=l

Hence (2.5). If, in (2.5), v=f(x) and w are subject to the conditions in the

definition (1.10) of y, it follows that
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y(x) | f(x) \2 + J(x)f(x) -f(x) Ú a(x) | f(x) \2.

Hence (1.8) implies (2.4).

For later reference, note that the last inequality can be written as

(2.6) y(x) £«(*) -(log |/(x)|)',

where the prime has the same significance as in (2.2).

Theorem 2.2 can be further generalized as follows:

Theorem 2.3. Let x denote a point on a complete (noncompact) Riemannian

manifold Mn having a positive definite metric ds2 = gjk(x)dx'dxh of class C1. Let

x = 0 denote a fixed point of M". Let f(x) be a contravariant vector field on Mn of

class C1 such that (2.1) and (1.4) hold. Outside of a sufficiently small neighbor-

hood of x = 0, let the tensor eij = gikfk,j satisfy

(2.7) eij(x)wW'^ 0       if      gij(x)fi(x)w' = 0.

Then x = 0 is a globally asymptotically stable solution of (1.1).

In the definition of e<y, the tensor/*,/ is the covariant derivative of/; so

that in local coordinates,

1 1   r
(2.8) en = gikdf/dx'- + — (dgij/dxk)fk + — [dgki/dx' - dgki/dx^f.

In order to see that Theorem 2.2 is contained in Theorem 2.3, let p(x)

be a positive function of class Cl on all of E" satisfying (2.2) for |x ^e. Let

M" be the manifold of points x of En with the metric ds2 — p2(x)\dx 2, where

\dx\ is the Euclidean element of arc-length. It is readily verified that (1.10)

and (2.2) imply (2.7). In fact, (e0) is the matrix p2J(x) + pp'I

+p(fidp/dx'—f'dp/dxi), where / is the unit matrix and the last term is a

skew-symmetric matrix; thus eijWiw' = p(pJw-w-\-p'\ w\2). Condition (2.3)

assures that the distance from 0 to x on M" tends to oo as |x| —»°o, so that

Mn is complete.

The condition (1.11) of Theorem 2.1 or (2.7) of Theorem 2.3 contrasts

with the conditions in [2] involving negativity of J(x)f(x)-f(x) or

eij(x)fi(x)fi(x).
Conditions of the type (1.8) or (1.11) or those involving p(x) imply some

type of orbital stability, not only for trivial solutions (x(£)=.const.) but, for

all solutions of (1.1). The following theorem is applicable to both bounded and

unbounded solutions (and, for bounded solutions, it is not contained in those

of §5 unless "^" is replaced by "<" in (2.2)). The case of bounded (non-

trivial) solutions will be considered in detail in §5 under conditions somewhat

different from those of Theorem 2.4.

Theorem 2.4. Let Dbea domain in En. Let f(x)¿¿0 be of class C1 on D and

let there exist a function p(x) of class Cl on D satisfying
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(2.9) p(x)^c>0      .

and (2.2). Let x = x0(¿) be a solution of (1.1) defined on the maximal interval

0 ^ / <co( ^ oo) of fSiO with the property that there exists a number d>0 such that

dist(x0(0, dD)>d>0 for O^Kco. Then there are positive constants ô, K such

that, for any solution x = x(t) of (1.1) with |x(0)—x0(0)| <5, there exists an in-

creasing function s = s(t), 0;¡£<co, such that 5(0) =0, OáKs(w)á«) is the

maximal interval on ¿2:0 on which x = x(t) exists and, finally, \ x(s(t)) — Xo(t)\

^ K | x(0) - Xo(0) | for 0 g t <co.

The conclusion of this assertion is very crude in the sense that it does not

supply any estimates for \s(t)—1\. On the other hand, the assumptions are

ver}' light in the sense that, for example, there is no assumption concerning

the uniform continuity of J(x) to permit the replacement of (1.1) by a system

of differential equations which is a "small" perturbation of a nonautonomous

linear system.

The remarks above dealing with the relationship of Theorem 2.1 to Theo-

rem 2.2 imply

Corollary. Theorem 2.4 remains valid if the assumptions concerning p(x)

are replaced by either (1.8) and |/(x)| gc>0 or by (1.11).

Theorem 2.4 has a generalization analogous to that of Theorem 2.2 (cf.

Theorem 2.3).

Theorem 2.5. Let x denote a point on a Riemannian manifold Mn having a

positive definite metric ds2 = gjk(x)dx'dxk of class C1. Let f(x)^0 be a contra-

variant vector field on Mn of class C1 such that the tensor e,/ = gikfk,¡ satisfies (2.7).

Let x = x0(0 be a solution of (1.1) on the maximal interval 0^/<w (^ oo) of

t^O with the property that there exists a number d>0 such that dist(x0(¿), dM")

>d>0. Then there are positive constants ô, K such that, for any solution x = x(t)

with dist(x0(0), x(0))<§, there exists an increasing function s = s(t), 0:g¿<co,

such that s(0) =0, 0^/<5(w)^ oo is the maximal interval of t^O on which

x = x(t) exists and, finally, dist(x(s(¿)), x0(/)) =K dist(x(0), xo(0)) for 0^t<w.

If x, y are points of M", dist(x, y) is defined as usual as the infimum of the

Riemannian lengths of the rectifiable arcs on Mn joining x, y; dist(x0(i), dM")

>d is understood to mean, for example, that all geodesies issuing from the

point Xo(t) can be extended to a length greater than d.

This theorem has the following corollary (which reduces to Theorem 2.4

for the choice (gjk(x)) =p(x)I, where / is the unit matrix).

Corollary. Let D be a domain in E" on which there is defined a positive defi-

nite, symmetric, n by n matrix (gjk(x)) of class C1 satisfying (gjk(x))¿ic2I for

some constant c>0, that is,

(2.10) gjk(x)w'wk S: c2\ w\2forallw = (wl, ■ ■ • , wn).
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Consider D to be a Riemannian manifold Mn with the metric ds2 = gjk(x)dxidxk.

Let f(x) ¿¿0 be a (contravariant) vector field on D = Mn of class C1 such that

e,j(x) defined by (2.8) satisfies (2.7). Then Theorem 2.5 remains valid if "dist"

is interpreted to be "Euclidean distance" in both assumption and conclusion.

Theorem 2.5 and its Corollary will be proved in the next section. It will

be shown in §4 that Theorem 2.3 is a consequence of Theorem 2.5.

3. Proof of Theorem 2.5. Let r be a piece of hypersurface of class C1

through Xo(0) orthogonal to/(x0(0)) at x0(0). It can be supposed that tt has

a parametrization of the form x = z(r, u), where » is a unit vector at Xo(0)

orthogonal to/(x0(0)) and O^rán; r is arc-length along the arc x = z(r, u),

for fixed u, which starts at r = 0 in the direction u at Xo(0); furthermore, ir

with x0(0) deleted is covered in a one-to-one manner by this family of arcs.

[The existence of r and the parametrization x = z(r, u) is clear if one con-

siders local coordinates for which (g¡k(x)) reduces to the identity matrix at

x = Xo(0).] It is also clear that all solutions of (I.I) with initial point near

xo(0) cross it.

Fora fixed u and r, let x = x(/, r) be the solution of (1.1) determined by the

initial condition x(0, r)=z(r, u). Let 0^/<w(r)5¡ oo be the largest interval

on i^O on which x = x(t, r) exists. Thus x(t, 0)=x0(/) and co(0)=w.

For fixed u, consider the 2-dimensional surface S:x = x(t, r) defined on

some (t, r)-set containing O^i <co(r), O^r^ri. On S, consider the differential

equation for the orthogonal trajectories to the parameter arcs r = const, (i.e.,

to the solution paths of (1.1) on S) determined by the relation gjk(x)f'(x) (dxk/dr)

= 0, where x = x(t, r) and t = t(r). Let t— T(r, s) be the solution of this differ-

ential equation,

(3.1) dt/dr = - gjk(x)f(x)xkr/gjk(x)fi(x)fk(x),       x=x(/, r),

with initial condition

(3.2) T(0, s) = s

(so that the corresponding orthogonal trajectory starts at the point x = xo(s)).

In (3.1) and below, subscripts r, s denote partial differentiation.

Since the right side of (3.1) has a continuous partial derivative with

respect to the dependent variable t, the solution t= T(r, s) of (3.1), (3.2) has

a continuous second mixed derivative Tsr=Trs on its domain of existence.

Furthermore as a function of r, T,(r, s) satisfies a homogeneous linear differ-

ential equation, so that (3.2) implies that Ts(0, 5) = 1 >0 and

(3.3) T.(r, s)>0.

The reparametrization of 5 given by

(3.4) S: x = y(s, r) = x(T(r, s), r)

will be used below.
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Let D be the open set on Mn which is the union of the "spheres"

dist(x, x0(t))<d/2 for 0S*<w. Thus dist(x, dMn)^d/2 if xED. There is a

constant ¿>>0, independent of u, such that T(r, 0) exists for 0 Sr S¿» for every

u (so that the orthogonal trajectory starting at x0(0) reaches, for every fixed

u, the solution path of (1.1) through x(0, b)) and that

(3.5) f  [gjk(y(Q, r))yr(0, r)y*r(0, r)}l'2dr < d/2.
J 0

Since the integral in (3.5) is not less than dist(x0(0), y(0, r)) for 0SrS¿>,

where y(0, 0)=x0(0), it follows that x = y(0, r)ED for 0Sir g6.

The set of positive s-values for which t=T(r, s) exists for 0S/-S& is

open. Let s0, 0<soSJco, be the least upper bound for this set. Define

(3.6) L(s, er, r) =  f T[gik(y(s, r))y'r(s, r)ykr(s, r)] "2dr

for 0<Jo-<t<J& and OS s <s0. It will be shown that L(s, a, r) is nonincreasing

with respect to s (for fixed <r, t). In fact, if I(s, r) is the square of the integrand

of (3.6), then l„ = dl/ds^0. In order to see this, note that y, = dy/ds= T,f(y).

Hence, for y=y(s, r), y„= TJ(y)yr+Tr,f(y) and, since gjk(y)f'(y)ykr = 0 by

(3.1),

1
/. = 2Tt[gjk(dfk/dx")ymryT + — (dgjk/dxm)fmy\ykr\.

Hence, by (2.8), I, = 2ejk(y)y1TykrT, since the last term in (2.8) is skew-sym-

metric in i, j. Thus /.SO follows from (2.7) with w = yr and (3.3), and so

L,(s,a, t)<JO.
Thus L(s, 0, ¿>)SL(0, 0, b) if OSs<so. Since the integral in (3.5) is

¿(0, 0, b), it follows that L(s, 0, b) <d/2 and so, x = y(s, r)ED for OSs<.?0,

0S/-S&.

It will now be shown that

(3.7) T(s, r) —>co(r),        s -* s0,

for 0SrS¿>, where 0S/<w(r) is the maximal interval of existence of x = x(t, r)

on iiâO. Suppose, if possible, that (3.7) fails to hold for some r = r°, OS?-0S6.

Since the arguments to follow do not depend on the position of r = r° in [0, b],

let r" = b. Thus (3.7) fails for r = b. In particular, y0 = lim y(s, b) exists as s—>so

and yo is in the closure D of Z). There exists an orthogonal trajectory x = y(r)

on 5 such that y(&)=yo and y(r) is defined on some interval (0S)<r<rS¿».

In particular, the solutions x = x(/, r) of (1.1) for <r<r^b cross x — y(r) with

increasing t near /= T(so, b).

From the continuous dependence of solutions on initial conditions, it follows

that y(r) [and hence yT(r)] is the uniform limit of y(s, r) [and yr(s, r), respec-
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tively] as s—»so on every closed interval (<r<)T|r^J. Consequently L(s, t, b)

is continuous at s = s0 if L(s0, r, b) is defined by

L(s0, r,b)=f   [to(y(r))y'V(r)/r(r)]"2¿r

and a<T<b. By the monotone property of L, L(s0, t, b) gi(0, 0, b) <d/2.

Thus the arc x = y(r), o<r^b, has a finite arc-length. Since y(r)£JD and

dist(x, dAIn)s^d/2>Q for x£D, it follows that y(a) =lim y(r) as r—><r and

y(a)GD.

The limit relation y(s, r)—^y(r), s—>s0, holds uniformly on the closed

interval a^r^b since y(s, r) is equicontinuous with respect to r on a^r^b

for 0^s<s0. In fact,

(3.8) dist(y(j, ri), y(s, r2)) ¿ L(s, r1} r2) g L(0, rh r2)

and L(0, ri, r2)-^>0 as r\ — r2—>0.

Now it is easy to see that y = y(r) can be continued over the interval

O^r^b. For if <r>0, the arguments above can be applied to r = o~, instead of

r = b, to obtain an extension to an interval ffi^r^b, where 0^<7i<o\ Further-

more, the set of r = o"i which can be so reached is both open and closed relative

to 0^r<£>, so that r = 0 can be reached.

This implies that y = y(s, r) can be defined for 0^s^s0, Oúr^b, and hence

for Q^s^So + e, O^r^b for some €>0. But this contradicts the definition of

s = s0. Thus the assumption that (3.7) fails to hold for some r is untenable.

In particular, s0 = w.

By (3.8) with ri = 0, r2 = r, and the definition of y(s, r) in (3.4), it follows

that

(3.9) dist(x(P(s, r), r), x0(s)) g L(0, 0, r) for 0 g s < ».

The continuity of (gjk(x)) at x = x0(0) implies that if &>0 is sufficiently small,

then there is a constant Ki such that L(0, 0, r) ¿Kxr if O^r ¿b. Furthermore,

&>0 and Ki can be chosen independent of the unit vector u determining

S:x = x(t, r). Also, since r is arc-length on the arc x = z(r, u) on it,

dist(z(r, u), xo(0))}zK2r for 0¿ri£¡b if b>0 and K2>0 are suitably chosen

(independent of u). Thus if K = Ki/K2, then, for 0^i<w and O^r^b,

(3.10) dist(x(r(j, r), r), x0(s)) g K dist(x(0, r), x0(0)).

Hence if x = x(/) is a solution with an initial point x(0)=x(0, r) for some

r, O^r^b, and some u, the assertion of Theorem 2.5, except for 5(0) =0,

follows with s(t) = T(t, r). On the other hand, if x(0) is sufficiently near to

xo(0), then there exists a small |ii| such that x = x(/) crosses it at t = h near

Xo(0), i.e., x(/i)=x(0, r) for some small r^0 and u. Also, it is clear that

dist(x(0, r), xo(0)) is majorized by a constant times dist(x(0), x0(0)). Thus, if

K is suitably altered,
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dist x(h + T(s, r), xo(s)) S K dist(*(0), x0(0))

for 0Ss<w. Thus, the assertion of Theorem 2.5 forx = x(¿), except for s(0) =0,

follows with s(t) =h+T(t, r). In either of the two cases just considered, the

modification of s(t) so as to satisfy 5(0) = 0 is trivial. This proves Theorem 2.5.

On the Corollary of Theorem 2.S. This corollary is an immediate conse-

quence of Theorem 2.5. This is clear if it is first noted that E-dist(x0(i)i dD)

>d implies D-dist(x0(t), dD)>cd, where E-dist is Euclidean distance and

Z)-dist is distance on D = Mn relative to ds2 = gikdxidxk. Also, if 5>0, there

are constants 5i>0, K~i>0 such that the Euclidean sphere |x0(0)—x| <Si is

contained in Z)-dist(x0(0),x) <8 and Z?-dist(x(0), x) Si£i|x(0) — x| if

|x(0)-x| <5i. Finally, c\x(s(t))-x0(t)\ SD-dist(x(s(/)), x0(/)).

4. Proof of Theorem 2.3. Let "dist" refer to distance on Mn. Let e>0 be

so small that the closed sphere XXe): dist(0, x) S e is in the domain of attrac-

tion of x = 0 and that (2.7) holds if xG S(€)- Since the domain of attraction

of x = 0 is an open set, there exists a d>0 such that 12(e-r-d) is also in the

domain of attraction of x = 0. Let M denote the manifold obtained by deleting

2(e) from Mn. Then M, /(x)j^O on M, and the metric ds2 = gik(x)dx'dxk on

M satisfy the assumptions of Theorem 2.5.

Suppose, if possible, that Theorem 2.3 is false. Then there exists a point

Xo on the boundary of the domain of attraction of x = 0. Let x = x0(i) be the

solution of (1.1) with initial condition x0(0) =x0. Suppose that 0Si<w(S oo)

is the maximal interval of existence of x0(t) on t^O. It is clear that x0(i)

GZ)(e+d) for 0S/<w. Hence dist(x0(i), dM)>d for 0Si<co.

Thus, Theorem 2.5 is applicable and all solutions x = x(/) starting at

initial points x(0) sufficiently near to Xo(0) remain close to the path x = x0(0

in the sense of Theorem 2.5. In particular, x = x(t)EM on its entire interval

of existence on t^O. But this contradicts the assumption that Xo(0) =Xo is on

the boundary of the domain of attraction of x = 0.

5. Bounded solutions. Although the main subject of this section is the

stability of a bounded solution x — Xo(t) of (1.1), the first two theorems will

be stated so as to be applicable to unbounded solutions in some situations.

The following notations will be used below:

(5.1) fo(t) =f(x0(t)),       J(t) = J(xo(t)),       y(t) = y(x0(t));

(5.2) rc(/) =   f y(r)dr+ct    and    T(t) = T0(t);
J o

h(r) will denote a continuous, nondecreasing function for r^0 satisfying

A(0) = 0and

(5.3) |/(x)-/(y)|   ûh(\x-y\),

where the expression on the left denotes the norm of the matrix J(x) — J(y)

as an operator from E" to En.
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In the theorems in this section, the following hypothesis will be used:

(H) Let f(x) be of class C1 on a (not necessarily bounded) domain D in

En and have a Jacobian matrix J(x) which is bounded and uniformly con-

tinuous on D. Let x = x0(/) be a solution of (1.1) for 2^0 with the properties

that there exist a number d>0 satisfying

(5.4) dist(x0(0, dD) ^ d > 0       for í ^ 0

and a number »î>0 such that

(5.5) |/o(/)|   ^ m> 0       for* ^ 0.

When D is bounded, it can be replaced by a somewhat smaller domain so

that the assumption that J(x) is bounded and uniformly continuous becomes

redundant. Similarly, in this case, (5.5) can be replaced by/(x) 5^0.

Theorem 5.1. Assume (H) and the existence of constants c>0, C such that

(5.6) Tc(t)^C      fort^O.

Then x = Xo(t) exhibits the following type of asymptotic stability: for 0<b<c,

there exist a 8 = 8(b)>0 and a K = K(b) with the properties that if x = x(t) is a

solution of (1.1) with |x(0)—x0(0)| <5, then x = x(t) exists for t^O and there

exist an increasing function s(t) for t^O and a number to satisfying

(5. 7i.)    | x(s(t)) - x0(t) |   ^ K | x(0) - xo(0) | exp r6(/)       for t ^ 0,

exp Vb(r)dr       for t ^ 0,

(5.9) |fo|   ^ K\x(0) - x0(0)| .

//, in addition, f(x) is bounded on D, then, for t^O,

/0O

exp Yh(r)dr.

In analogy to (5.1), put

(5.11) a(t) = a(xo(l));

cf. (1.7). It is clear from (2.6) and (5.5) that condition (5.6) in this theorem

can be replaced by

c(t) =  I   a(r)d,
J n

(5.12) Ae(t) m  I   a(r)dr + ct < C for some c > 0 and t ^ 0.
J o

The condition (5.6) on y(t) can be lightened if some assumptions are

placed on a degree of continuity h(r) of J(x).

Theorem 5.2. Assume (H) and that
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(5.13) T(t) -* - oo    as   í-> «j,

/» 00

h(c exp V(t))dt < oo        for some c > O,
o

where h(r) is a nondecreasing function satisfying A(0)=0 and (5.3). 77te»

x = xo(¿) exhibits the following type of asymptotic stability: there exist 5>0,

K>0 such that if x = x(t) is a solution of (1.1) with |x(0)—x0(0)| <5, then

x(t) exists for t^O and there exist an increasing s = s(t), t^O, and a number to

satisfying (5.7o), (5.80), (5.9). In addition, if f(x) is bounded on D, then (5.10o)

holds.

(Incidentally, (5.13)-(5.14) imply Jx exp T(t)dt< oo ; cf. (6.2).)

If, for example, J(x) is uniformly Holder continuous of order t, 0<t^1,

then h(r) can be chosen to be Const. rT so that (5.14) reduces to the condition

/MexpTr(¿)áí<oo.

Corollary. In Theorem 5.1 [or Theorem 5.2] replace condition (5.5) by

the conditions fo(t) f^O,

/>  00

| fo(r) I"1 exp Th(r)dr < <=c    and    \ f0(t) I"1 exp Tb(t) g C
<

for some b, 0<b<c [or b = 0]. Then assertions (5.7¡.) [or (5.70)] and (5.9) re-

main valid, but (5.8¡,) [or (5.80)] must be altered by replacing the integral there

by the integral in (5.15&) [or (5.150)].

When x = Xo(i) in Theorems 5.1 or 5.2 is bounded and the main assump-

tions are made "uniform" so as to imply a "uniform" type of asymptotic sta-

bility, there results an analogue of Borg's theorem [l] asserting the existence

of a periodic solution having asymptotic orbital stability.

Theorem 5.3. In Theorem 5.1, let D be bounded and (5.6) replaced by

(5.16) rc(/) - rc(s) g C   for 0 g s < t < oo  and some c > 0.

Then (1.1) possesses a periodic solution x = x*(t) which is a limit cycle of

x = Xo(t) and has »—1 characteristic exponents with negative real parts; in par-

ticular, x = x*(t) has asymptotic orbital stability and the solution paths near

x = x*(t) possess asymptotic phases.

This theorem is due to Borg [l] under the stronger assumption 7(x) <0

on D. Since, without loss of generality, it can be assumed that log |/(x)| is

bounded on D, (2.6) shows that Theorem 5.3 remains correct if the function

rc is replaced by the function Ac of (5.12).

Theorem 5.4. In Theorem 5.2, let D be bounded and, in addition, to (5.13)-

(5.14), assume that
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(5.17) T(t) - T(s) ^C      for 0 S s < t < oo,

/OO

h(c exp(r(r) - T(t)))dr ^C      for t ^ 0.

Then the conclusion of Theorem 5.3 are valid.

The proofs of Theorem 5.1-5.4 will be modifications of that of Borg in

which his use of the (local) implicit function theorem for s = s(t) is replaced

by a differential equation for s(t) applicable for all /.

6. Proof of Theorem 5.1. For aid in proving Theorem 5.3, the proof of

Theorem 5.1 will be carried out with particular attention to the quantities

on which S and K depend. Let K0 satisfy

(6.1) |/(x)|   S #0       for x on D.

The case that J(x) is constant is simple and will not be considered. Hence,

by (5.3), there is a constant c0>0 such that, for small r^O,

(6.2) h(r)^c0r.

Let Si, Ki denote constants (not always the same) depending only on Ko, c0,

the degree of continuity of J(x), and the numbers d, m in (5.4), (5.5).

Consider a solution x = x(£) of (1.1) on some ¿-interval and the differential

equation for a function s = s(t), if it exists, such that

(6.3) w(t) = x(s(t)) - xo(t)

satisfies

(6.4) w(t)-fo(t) = 0.

Inserting (6.4) into (6.3) and differentiating with respect to / gives

(6.5) s' = ( |/o |* - w-f¿)/f(w + x„(/)) -/o s S(t, w)

when the denominator is different from 0. Correspondingly, a differentiation

of (6.3) gives

(6.6) w' = f(w + xo(t))S(t, w) - /o.

Equations (6.5), (6.6) can be considered a system of differential equations for

the (w-fT)-vector (s, w). This system splits in the sense that s does not occur

in (6.6) and s = s(t) is obtained by a quadrature if w(t) is known.

Conversely, let s = s(t), w = w(t) be a solution of (6.5)-(6.6) and suppose

that s'(t)>0, then

(6.7) x(s) = w(t(s)) + x0(t(s)),

where t = t(s) is the inverse of s = s(t), satisfies dx/ds=f(x(s)), i.e., is a solution

of (1.1). For dx/ds = (w'+x¿)/S is f(x(s))   by (6.6). Furthermore, if (6.4)
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holds at some ¿-value, then it holds for all points t for which w(t) is defined.

It will be shown that if \wa\ is sufficiently small and

(6.8) wo-/o(0) = 0,

then the solution of (6.5), (6.6) satisfying

(6.9) j(0) = 0,       w(0) = wo

exists and s'(t)>0 for i^O.

To this end, let

(6.10) A m A(t, w) = f(w + x0(t)) - /,(/).

Then

A - J(l)w =  J    [/(x0(0 + tw) - J(t)]wdr,
J o

so that, by (5.3) and the monotony of h(r),

(6.11) | A - J(t)w\   ^ h(\ w\)\ w\

and, by (6.1),

(6.12) | A |   è Ko\ to | .

By (6.10),

/(w+x„(i))-/o=  |/o|2 + A-/„=  |/o|2(l + A-/„/|/„|2);

so that

(6.13) \/f(w 4- *o(0) -/a =  IU h2(l + A-/,/ | /o I2)"1 á  | /o |"2(1 + Kx \ w \ ),

by virtue of (5.5) and (6.12). Since x = x0(i) is a solution of (1.1),fa =Jfo and

so, \w-f¿\/\fo\2^K0\w\/\fo\ ûKi\w\. Hence (6.5) gives

(6.14) | s' - 11   ■  | 5 - 11   g Ki I w |   < 1      for | w \   ^ 8i.

From (6.6), w' = 5A+(5-l)/0 and so, by (6.4), w-w' = SA-w. Hence (6.2),

(6.11), (6.12) and (6.14) show that

(6.15) w-w' ;S J(t)w-w + üTiA( | w | ) | w |2       for | w |   is «Y

Let 5i(è) >0 be chosen so that

(6.16) Kih(\w\)^b       for | t» |   ^ ii(i) ^ ii.

Then \w\'^(y(t)+b)\w\ for |w[ ^8i(b) and so, from (5.2),

(6.17) \w(t)\   á  I io(0) |  exPr6(i).

Thus, if

(6.18) do = sup exp Tb(t)        for t ^ 0,
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then the inequality (6.17) makes it clear that the solution of (6.6) with initial

condition w(0)—Wo, subject to |wo| S5i(&)/d0 and (6.8), exists and satisfies

(6.17) for i^O. Also, in this case, s(t) exists for t^O and s'>0 by (6.14).

From (6.14) and (6.18), /0=Tim (s(t)—t), i—»», exists and

exp Tb(r)dr;

furthermore 5(0) = 0 shows that

exp Tb(t)dt.
o

Consequently, it follows that if 5 = è(b) is chosen to be ôi(b)/d0, where 5i(2>)

is subject only to (6.16), and K = K(b) is chosen to be

(6.21) K = maxfl, Kt, Ki J     exp rb(t)dtj,

then the assertions (5.7)—(5.9) of Theorem 5.1 hold for solutions x(t) with

initial conditions x(0) satisfying |x(0)—x0(0)| S5, provided that x(0) lies

on the hyperplane (x — xo(0)) -/o(0) =0.

It is clear that this last proviso can be removed by decreasing 5 in a man-

ner which depends only on l/|/o(0)| and on the degree of continuity of

f(x) at x = Xo(0), i.e., only on m and K0. For if |x(0)—x0(0)| SSi, there is a

/-value t = h such that the solution x(t) with initial point x(0) satisfies

(x(<i)-Xo(0))-/o(0)=0 and |ii| £Ki\x(0)-x0(0)\. Thus it suffices to apply

the above result to the solution x = x(/-Ni) of (1.1), replacing s(t) by s(t)-\-ti

and to by to+h.

As to (5.10), suppose that |/(x)| S M on D, then (5.7), (5.8) and the

mean value theorem of differential calculus give

/OO

exp Tb(r)dr.

This together with (5.7) implies (6.10), for a suitable K, if it is noted that

(6.23) exp Tb(t)/ J     exp Tb(r)dr S Ku

For the derivative of the numerator is (y(t)+b) exp r¡,(í) and of the denom-

inator -exp Tb(t). Thus (6.23) follows from |t(/)+&| ÚKv

7. A lemma. The following standard type of lemma (cf. [3]) will be useful

in the proof of Theorem 5.2.

Lemma 7.1. In the differential equation

(7.1) w' = J(t)w + g(t, w),
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let J(t) be an » by n matrix, continuous for t^Q and g(t, w) a continuous vector

function for t^O, \w\ ^c. Let

(7.2) y(t) = max J(t)ww
I »l-i

satisfy

(7.3) T(t)=['y( r)dr —+ — oo    as    t —» oo.

Let h(t, r) be a continuous scalar function for t^O, r^O which is nondecreasing

in r (for fixed t) and satisfies h(t, 0) =0,

(7.4) | g(t, w)\   ^ h(t, \w\)\w\

and

J o

(7.5) dx=  \    h(t, c exp V(t))dt < oo.
J o

Lei 5 = c min (1, 1/sup exp (di+r(/))). Then any solution w(t) such that

\w(0)\ <8 exists for t^O and

(7.6) |w(/)|   ^  |w(0)|  exp (di 4- r(0)       for t £ 0.

Proof. If w = w(t) is a solution of (7.1) on some ¿-interval [0, T], then

(7.7) I w |' ^ y(l) I w |   4- h(t, \w\)\w\ .

Let

(7.8) v = | w/(0 | /exp T(0,

so that

(7.9) p' á A(í, » exp r(/))t>.

If í> = d(í) is a solution of this differential inequality on some interval [0, T]

and 0^i>(0) exp di<c, then by the monotony of h,

v(l) g »(0) exp   I    h(r, c exp T(r))dr ^ d(0) exp di
^ o

on any interval [0, To] on which í/(¿) í£c. But then i>(¿) ̂ i/(0) exp di<c on its

entire interval of existence. Consequently, (7.8) implies (7.6) if |w(0)| exp dx

<c. Since w(t) can be continued for increasing t as long as |w(i)| <c, the

lemma follows.

8. Proof of Theorem 5.2. The arguments at the beginning of the proof of

Theorem 5.1 lead to (6.15) or, equivalently, to

(8.1) I w\' g y(t)\ w\  + Kih(\ w\ )| w\        iflwI^Si
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and w(0) =w0 satisfies (6.8). The proof of Lemma 7.1 shows that the solution

w = w(t) of (6.6) then exists for /^0 and satisfies

(8.2) \w(t)\   S  | w(0) |  exp (¿! + r(0)        for t ^ 0

if

(8.3) | w(0) |   < ô = 5i min(l, 1/sup exp(¿i + T(t))),

T(l))dt

where

/I  00

h(Si exp
o

is finite if Si Se. Also, s'>0 by (6.14).

Note that (6.2) and (5.14) imply that

expT(t)dt < oo,

hence /°°| w(t)\dt< co. Thus the proof of Theorem 5.2 can be completed as

was the proof of Theorem 5.1.

(For the proof of Theorem 5.4, note that 5 and K in Theorem 5.2 depend

only on Ko, h(r), m, d and the quantities d0, di in (6.18), (8.4).)

9. Proof of the Corollary. If (5.5) is replaced by/0(¿) 5^0, the derivation of

(6.14), (6.15) leads instead to

(9.1)   |j'- l|   = \S- l|   £Ki\ w\/\fo\     if | w\   S 5j min (1, |/„|),

| w |' <j y(t) \w\   + h( | w | ) | w |   + Ki | w |2/ | /o |

if | w|  Ú h min (1, I /o I ).

In order to obtain an analogue of Theorem 5.1, the last inequality can be

written

(9.3) \w\'ú(y + b)\w\  + Ki\w\2/\fo\     if | w\   S 5,(¿») min (1, |/0| ).

It follows from the proof of Lemma 7.1, with h(t, r) =Kir/\f0(t)\, that

(9.4) | w(l) |   S  | w(0) | exp(d2 + Tb(t))

if | w(0) | is sufficiently small and

/, 00

I /,(*) |-> exp Tb(t)dt < oo.
o

In view of (5.15b), it is clear that one obtains the desired assertions as in the

proof of Theorem 5.1.

In order to obtain the analogue of Theorem 5.2, note that the proof of

Lemma 7.1, with h(t, r) = h(r)+ Kir/\fo(t)\, show that if |w(0)| is sufficiently



170 PHILIP HARTMAN AND CZESLAW OLECH [July

small, then (9.2) implies (9.4), with b = 0, where d2 must be replaced by the

sum of the integrals in (8.4) and (9.5). The proof is completed as before.

10. Proof of Theorem 5.3. It can be supposed that D is replaced by a

slightly smaller domain, so that/(x)?^0 is of class Cl on the closure of D.

Thus J(x) is bounded and uniformly continuous on D and |/(x)|, l/|/(x)|

are bounded.

Let Sä(F) denote the intersection of the sphere |x —x0(F)| <5 and the

hyperplane (x —Xo(F)) -fo(T) =0. The proof of Theorem 5.1 shows that there

exist a 5>0 and a K [depending only on bounds for |/(x) |, l/|/o(/) |, | J(x)|,

the degree of continuity of J(x), the number d in (5.4), a number b in the

range 0<6<c, abound for Tb(t)— Tb(T) for/^ Fand the number/y exp (Tb(r)

— Tb(T))dr] with the property that if x = x(/) is a solution of (1.1) with

x(F)£S{(F), then there exists an increasing function s = s(t) and a number

t = to such that s(T) = T,

(10.1) (x(s(t)) -x„(Z)) •/„(/) =0,

(10.2) | x(s(t)) - x0(t) |  g jr| x(T) - Xo(T) |  exp (r6(<) - Tb(T)) for/ ^ T,

/> 00

exp(r¡,(r) - Vb(T))dr
t

for / à T,

(10.4) |/01   á K\x(T) - x0(T)\ .

Note that Tb(r) -Tb(T) =Tc(r) -TC(T) - (e-b)(t- T), so that (5.16) implies

/i oo
exp (Tb(r) - Tb(T))dr ^ exp C/(c - b).

T

This makes it clear that 8 and K can be chosen independent of T and that

(10.2), (10.3) can be replaced by

(10.5) | x(s(t)) - xo(/) | é K\ x(T) - xo(T) | e-C«-««-D        for / ^ T,

(10.6) | s(t) - (t + to) |   £ K\ x(T) - Xo(T) | Éf-<<-»«-r> for / ^ T.

Let x = x* be a limit point of x0(/) as Z—> oo. Let 2* be the intersection of the

sphere |x*—x| <S and the hyperplane (x—x*) -f(x*) = 0. Choose t=T with

the property that |x*—x0(F)| is so small that all solutions of (1.1) starting

at a point of 1t*/2 for / = 0 cross Sj(F) for some small |/|. Correspondingly,

solutions starting, for /= T, at a point of SS(F) remain close to x0(t) for /^ P

in the sense of (10.5).

If t is large and suitably chosen, then |x0(r4-T)—x*| and exp(& — c)r

are arbitrarily small. This makes it clear that solutions starting on S*/2 for

/ = 0 cross S*/2 again for a unique /-value near t — r. This defines a continuous

map of S?/2 into itself which has a fixed point by Brouwer's theorem. Since the
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image of S*/2 under this map can be made an arbitrarily small set (arbitrarily

near x*) by choosing r sufficiently large, it follows that x = x* is a fixed point.

Thus the solution x = x*(i) of (1.1) with x*(0)=x* is periodic with a

period which is near t. It also follows that there exists a number to such that

|xo(/)-x*(i-r-Ho)| SK|x0(r)-x*| fori^r. Thus, if |x0(r)-x*| is suffi-

ciently small, then |y(¿)— y(x)\, where x = x*(t—T-\-to), is arbitrarily small

(say, <c — b) for t^T. It follows that if w is a period of x = x*(¿), then

/:
y(x*(t))dt < 0.

Thus Theorem 5.1 can be applied to x = x*(i), instead of x = Xo(i). Cor-

respondingly, the analogues of (10.1), (10.5) and (10.6) imply the statements

concerning the asymptotic orbital stability of x = x*(i).

11. Proof of Theorem 5.4. The last proof shows that in order to prove the

existence of a periodic solution x = x*(i), it is sufficient to verify that if i = 0

is replaced by t=T in Theorem 5.2, then 5 and K in the assertion of that

theorem can be chosen independent of T. From the remark at the end of §8,

this will be the case when (5.17), (5.18) hold.

In order to examine the stability properties of x = x*(f), consider first the

degree of continuity of y(x). Let | w\ = 1 and w-f(x) =0. For y near x, write

w = Wo+Wi, where w0= (w-f(y))f(y)/\f(y)\2 is the component of w0 in the

direction of f(y) and Wi-f(y) = 0. Since w-f(x) = 0 and |/|, 1/|/| are bounded,

it is clear that \wa\ úKi\f(x)—f(y)\, so that | w0\ èKi\x—y\. Thus, J(x)w-w

SJ(x)wi-Wi+Ki\x — y\ which, in turn, is at most J(y)wi-Wi-\-Ki\x — y\

+h(\x—y\). It follows that 7(x) úy(y)+Ki\x — y\ +h(\x—y\). Since x and
y can be interchanged in this argument, (6.2) shows that

(11.1) \y(x) -y(y)\  s Kih(\ x - y\ ).

Arguing as in the last section, it is seen that there exists T and t0 such that

/oo
exp T(r)dr        for / ^ T,

where |x0(r)—x*| can be made arbitrarily small, say, <e/K. Thus by (11.1),

(11.2) y(x*(t -T+ to)) Ú 7(0 + Kihte f    exp T(r)drJ       for /1 T.

By (6.2) and (5.18),

/co /* co

exp(r(r) - T(t))dt S  I    A(cexp(r(r) - T(t)))dr <C        for/ ^ 0;

in particular, e/," exp T(r)drS(Ce/c0c) exp T(/). Thus, if Ce/ca<c2, (11.2)

implies
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y(x*(t - T + to)) á y(t) + Kxh(c exp T(t))        for / ^ T.

Consequently, (5.13) and (5.14) show that

t
y(x*(r))dr —* — oo    as   Z —» oo.JJ o

Since x*(Z) is periodic, the last integral is of the form — CiZ 4-0(1), as H»,

for some Ci>0. Thus, again Theorem 5.1 can be applied to x = x*(/), instead of

x = Xo(Z), and the desired stability properties follow.

12. Nonautonomous systems. In order to illustrate the methods to be

used and the type of results to be obtained in this part of the paper, the simple

case of a linear system of equations *

(12.1) x'= J(t)x

will be considered first.

Theorem 12.1. Let J(t) be a continuous, bounded, » by » matrix for Z^O.

Let (12.1) possess a solution x = Xo(Z) ̂0 such that

(12.2) y(t) = max J(t)w-w       for \w\   =1, w-xo(t) = 0,

satisfies

/OO /•   t
| x0(Z) |_1 exp r(/)dZ < »,   where   T(t) =  I       y(r)dr.

Then (12.1) possesses an n — 1 parameter family of solutions x = x(t) satisfying

/CO

| xo(r) |-> exp T(r)dr     for t ^ 0,

where K is a constant (independent of x(t)).

This theorem can be generalized in case that one has knowledge of a k-

dimensional integral manifold of (12.1).

Theorem 12.2. Let J(t) be a continuous, bounded, n by n matrix for Z^O.

Let (12.1) possess k, l^k<n, linearly independent solutions Xi(t), • ■ • , xk(t)

with the property that if L(t) is the linear manifold spanned by xi(t), • • ■ ,xk(t),

then the integrals B(/), T(t) over [0, /] of the functions

(12.5) ß(t) = min J(t)vv for  \ v\   = 1, v £ L(t),

(12.6) y(t) = max J(t)w-w       for \ w\   = 1, w _L L(l),

satisfy

(12.7) T    exp (T(t) - B(t))dt < °o.
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Then (2.1) possesses an n — k parameter family of solutions x = x(t) such that

/> co
exp (r(r) - B(r))dr     for I ^ 0,

i

where K is a constant (independent of x(t)).

The symbol wl.L(t) in (12.6) means that w is orthogonal to L(t), i.e.,

w-Xi(t) = ■ ■ ■ =w-xk(t) =0. For k= 1, this theorem reduces to Theorem 12.1

since exp B(¿) is | Xi(¿) |, up to a constant factor.

In order to state an analogue of Theorem 12.1 for nonlinear, nonauton-

omous systems

(12.9) x'=f(t,x)

introduce the following notations: /(/, x) is the Jacobian matrix (df(t, x)/dx) ;

ft(t, x)=df(t, x)/dt; for a given solution x = x0(i), let f0(t) =f(t, x0(t)), J(t)

= J(t, Xo(t)),fto(t) =ft(t, Xo(t)), and finally the symbol Tc(t) as in (5.2), where

(12.10) 7(/) = maxJ(t)w-w       for | w\   =1, w-fo(t) = 0.

Note that/o'=/,o + J(0/o.

Theorem 12.3. Let D be a domain in E" and I: 0S¿< ». Let f(t, x) be of

class C1 on IXD and have a bounded and uniformly continuous Jacobian matrix

J(t, x) = (df/dx) on IXD. Let (12.9) possess a solution x = Xo(t), ¿2:0, with the

properties (i) (5.4) holds for some constant d; (ii) there exist constants m>0,

M such that 0<wS |/0(¿)| S M for £^0; (iii) (5.16) holds for some constants

e>0, C; finally, (iv)/¡0 satisfies

(12.11) /,0(0-»0    as   t->«>.

Then (12.9) possesses an n—i parameter family of solutions x = x(t) satisfying

(12.12) | x(l) - x0(t)\ S KexpTb(t),

where K = K(b) is a constant (independent of x(t)) and b is any number on the

range 0<b<c.

The proof will show that if b is suitably restricted, then (12.11) can be re-

laxed to the assumption that lim sup |/ío| /|/o| is sufficiently small, where the

"smallness" depends on the constants in (5.16).

It is also possible to refine this theorem by introducing the type of condi-

tions occurring in Theorem 5.2 and the Corollary following it. This type of re-

finement will be stated only for the case that (12.9) is replaced by an auton-

omous system (1.1). The notations of §5 will be used.

Theorem 12.4. Letf(x) be of class C1 on a domain D and possess a bounded

and uniformly continuous Jacobian matrix. Let (1.1) have a solution x = x0(t),

/SïO, satisfying (5.4) for some constant d and let the equation of variation (12.1)
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along x = xo(Z) possess k(<n) linearly independent solutions Xi=/0(Z), X2(Z),

• • • , xk(t) such that if L(t), ß(t),y(t), B(Z), T(t) are defined as in Theorem 12.2,

then (5.13), (5.14) and

/oo
exp ((T(r) - B(r)) - (T(t) - B(t)))dr <C      fort^O

hold. Then (1.1) has an n — k parameter family of solutions x = x(t) satisfying

(12.14) | x(l) - xo(t) |   g K exp T(t)       for t ^ 0.

The proofs of the theorems of this section will depend on the method of

Wazewski; cf. [5] also for further references. For the convenience of the

reader, the definitions and the main result in the form to be used below will

be recalled. Let/(/, x) in (12.9) be of class C1 on IXD (as in Theorem 12.3)

and let ñ be a (/, x)-domain in IXD. A point P=(/0, x0) of dû is called an

egress point with respect to fi and (12.9) if the solution x = x(/) through P

satisfies (Z, x(/))£Q for to — e</<Z0 and some €>0. If, in addition, (Z, x(/)) £fi

for Zo^Z<Zo4-e, then P is called a strict egress point. Let S denote the set of

egress points on dß, S* the set of strict egress points. A set A of a topological

space B is called a retract of B if there exists a continuous map u: B-+A

defined on all of B such that u(P) =P if P£^4. Wazewski's main theorem is as

follows: If S=S* and Z is a subset of ÜVJS such that Z(~\S is a retract of S

but is not a retract of Z, then there is at least one point P= (to, x0) in Z such

that the solution x = x(Z) of (12.9) determined by x(Z0) =x0 exists and satisfies

(Z, x(Z))£Q for Z^Z0.

13. Proof of Theorem 12.2. Let E(t) denote the matrix which gives the

orthogonal projection of En onto L(t). For a given x, let v and w be the com-

ponents of x in L(t) and orthogonal to L(t),

(13.1) v = E(t)x,       w = x — v = x — E(t)x.

Then along a solution x = x(/) of (12.1),

(13.2) w-w' = J(t)w-w g y(t)\ w\2.

For E(t)x is a linear combination of xi(Z), • • • , xk(t), say E(t)x= ^c^x^t),

where c¡(t) are scalars. Differentiating this, it is seen that (E(t)x)' — J(t)E(t)x

£L(/), so that w'-J(t)wGL(t) and (13.2) follows from w±L(t). The relations

(13.2) give

(13.3) | w\' ^ «y(Z) | w\ .

In order to obtain analogous inequalities for \v\ ', note that |p|2=|x|2—|w|2.

Hence |»| '= \v\~l(J(t)x-x — J(t)w-w) or, since x = v+w, \v\ '= |z>|-1(/(Z)i>-d

+2H(t)v-w), where H=(J+J*)/2. Thus, if Ko is a constant satisfying

| J(0| £Ko, then, by (12.5),
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(13.4) | »'|   ^ß(t)\v\   - 2Ko\w\ .

In terms of two positive continuously differentiable functions <p(t), yf/(t)

to be specified in a moment, put

(13.5) W= \w\   - <t>(t),       V = \v\   -*(<),

where v, w are given by (13.1). Then

(13.6) W S y<j> - <t>'       if W = 0,

where W' is the derivative of W(x, t) along a solution of (12.1). Similarly

(13.7) V è ßt - 2Ko<t> - V       if V = 0, W S 0.

Let g(r)>0 be continuous, bounded and integrable for r^O and let Q(t)

be the integral of q(r) over OSrS/. Put

(13.8) *(/) = exp(r(0 + Q(t)),

/CO

<b(r) exp[-B(r)]dr.

Then

(13.10)        y<t> - <b' = - q<t> < 0,     ßi> - 2K0<t> - V - K0<t> > 0.

In 7X-E", consider the set of points Q= {(t, x):t>0, W<0, V<0}. In

view of (13.6), (13.7) and (13.10) the set 5 of egress points with respect to ß

and system (12.1) is 5= {(t, x):t>0, 7=0, W<0}. Also the points of S are

strict egress points, so that S= S*. Let to and w0 satisfy the inequalities ¿o>0,

| Wo| < <p(to). Put Z={(t,x): t = to, w = Wo, FSO}. Note that 5 is the cartesian

product of the solid cylinder C={(t; w):t>0, W< 0J and the surface of

the sphere B={v: FSO}, that Z is the product of the point P=(/0, w0)EC

and the sphere B, and that ZC\S is the product of P and the surface of B.

Thus ZC\S is not a retract of Z but is a retract of 5. Therefore from Wazew-

ski's topological principle, it follows that there exists a v0, \vo\ < i^(/o),such

that the solution x(t) of (12.1) with initial condition x(t0) =Vo-\-w0 is contained

in fi for t^t0; that is, (t, x(<))Gß for íeío or, by the definition of fl, |w>(i)|

< (p(t), \v(t)\ <\¡<(t), where x(t) =v(t)+w(t).

Actually, <p(t)/\p(t) is bounded for t^O. In order to see this, note that

3Ko<t>/^ = <b exp( - B) /   I    4> exp ( - B)dr,

where the derivative of the numerator is <p exp (— B) times y-\-q — ß and the

derivative of the denominator is — <p exp (— B). Since ß, y, q are bounded for

¿^0, the ratio <p/\p is also bounded. Hence (/, x(/))Gß implies |x(/)| S \v(t)\

+ | w(t)\ S Const. \p(t), so that (12.8) holds for a suitable constant K. Finally,

since Wo, in the definition of Z, can be chosen arbitrarily from an n — k di-
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mensional sphere |w0| <<b(to) the existence of a family of solutions of (12.1)

satisfying (12.8) and depending on exactly n — k parameters follows from the

linearity of (12.1). Also, since (12.1) is linear, K can be chosen the same for all

solutions of this family.

14. Proof of Theorem 12.3. Introduce the new dependent variable

(14.1) y = x-x0(Z),

so that (12.9) becomes

(14.2) y' = J(t)y + g(t, y),

where the uniform continuity of J(t, x) implies that

(14.3) U(/,y)| /| y\ -»0,     |y|->0,    uniformly for Z ̂  0.

For a given y and Z, introduce the component of y in the direction /0(Z) and

orthogonal to it,

(14.4) v = (yfo)fo/ I/o|2,        w = y - v - y - (yf0)fo/ \fo\2.

By (14.2),

w' = J(t)w - (yfo)fto/1 /o |2 + g(t, y) + ( • • • )/..

Hence w-/0 = 0 implies

(14.5) \w\'ûy(t)\w\ + k(t)\v\ + \g(i,y)\,

where

(14.6) k(t) =   |/«o(0|/|/o(0|.

By an argument similar to that leading to (13.4) in the linear case,

| •» |' =  | v\~l(Jv-v + 2Hvw — (y/o)(/fo-w)/|/o|2 + g-v).

From the definition of v and from/0' = Jfo+fto, it follows that

(14.7) | »|' ^   | v\ (log |/„| )' - k(t)\ v\   - (2Ko + k(t) | w | ) -  | g(t,y)\ .

Introduce the functions W(y, t), V(y, t) of (13.5), where

/14.8) <p(t) = explV/),

/i 00

\fo(r)\-lexpTb(r)dr,
t

0<b<c and Ci is a constant to be specified below. Note that \p(t)/<p(f) is at

most Ci(M/m) times /" exp (Tb(r)— Tb(t))dr and this integral is bounded for

Z^O by virtue of (5.16) and b<c. Thus, for some constant C2= C2(C, c, M, m),

(14.10) ,ko g CiC^(0.

If   W^0 and   FgO,  then   |y| ^ \v \ +\ w\ é<t>+tú (l + CiC2)cp.  Hence
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W'=\w\'-<p', (14.3), (14.5), (14.10) and (12.11) imply that

(14.11) W < (y(t) + b)<j>- <t>' = 0       if IF = 0, FSO

and / is sufficiently large. Similarly, from (14.7),

(14.12) V' > ¿(log \fo\Y -f -Cz4>       if V = 0, W S 0

for large /, where C$ is a constant (which is arbitrarily near to 2Ko). Thus,

(14.9) shows that F'>0 if d>C3.
This makes it clear that the proof of Theorem 12.3 can be completed in

the same way that Theorem 12.2 was, using a set 12: {(t,x):t>T,W <0, F<0},

where T is a fixed large number.

15. Proof of Theorem 12.4. Rewrite (1.1) as (14.2) by introducing the

dependent variable (14.1). Then (14.3) holds and, in fact,

(15.1) \g(t,y)\   úh(\y\)\y\.

Let E(t) denote the matrix of the orthogonal projection on L(t), the mani-

fold spanned by xi(i), ■ • • , xk(t). For a given y and /, put

(15.2) v = E(t)y,       w = y — v = y — E(t)y.

Then a modification of the derivation of (13.3), (13.4) give

(15.3) \w\'^y(t)\w\  +h(\v\  + \w\)(\v\  +  \w\),

(15.4) |»|'fc ß(t)\v\   - 2K0\ w\   - h(\v\  + | w\)(\ v\  + \w\).

Introduce the functions W, F of (13.5), where

(15.5) 0 < W) S (ci - 1)0(0

for a constant Ci> 1 to be specified. Then

(15.6) W S y(t)4> + cih(ci<f>)<b -<b'       if W = 0, V S 0,

(15.7) F ^ ß(t)t - (2Ko + cih(ci<l>))<l> -*'       if F = 0, W S 0.

Choose (p, \p to be

(15.8) 0(0 = e exp Í r(0 + ci I    h(c exp T(r))dr J,

/i CO

4>(r) exp (-B(r))dr,
i

where e>0, Ci are to be specified.

If e > 0 is sufficiently small, then Ci(p(t) < c exp T(t). Hence

<t>' = (y+cih(c exp T))<t>>(y+cih(cicl>))<l>; so that IF'<0if IF=0, FSO. Sim-
ilarly, F'>0 when 7=0, JFS0, provided that Ci>2K0+Cih(ci<p). This pro-
viso is satisfied if C\>2Koand t is sufficiently large (since h(ci<p)—*0 as/—»»).
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The existence of a constant ci satisfying (15.5) is clear from (12.13) and

(15.8), (15.9).
The proof of Theorem 12.4 can be completed by using Wazewski's prin-

ciple as above.
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