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This paper has three purposes: (1) to develop the machinery of a com-

mutative cohomology theory for commutative algebras, (2) to apply this

cohomology theory to give a working theory of ring extensions for commuta-

tive algebras, and (3) to employ and test the theory by relating certain natu-

ral cohomological conditions to corresponding conditions in algebraic geom-

etry.

The first purpose is approached in the first and third sections. Our co-

homology has several properties not enjoyed by the Hochschild theory (an

explicit relation for the tensor product, a workable sequence for changes from

an algebra to a factor algebra, and an explicit formula for going local) ; how-

ever, unlike the Hochschild theory, we have no dimension shifting techniques.

For this reason, we restrict consideration to the first, second, and third co-

homology modules.

The second purpose is considered in the second section. For B and A com-

mutative algebras, we let M (A) denote HomA(A, A), taken modulo the ideal

of multiplications by elements in A. Following the prototype theory which

Eilenberg and Mac Lane developed for groups, we associate to each algebra

homomorphism from B into M(A), an element in a third cohomology module.

The homomorphism is called unobstructed if this element is zero. The unob-

structed homomorphisms, together with the elements of a certain second

cohomology module, are associated in a one-one fashion with the commuta-

tive algebra extensions of A by B.

The purpose of the fourth and last section is best expressed by considering

a point p on an affine variety V over a perfect field k. Let A be the coordinate

ring of V, p be the prime ideal associated with p, and Q be the quotient field

of A/ft. We prove that p is a simple point if and only if the second cohomology

module of A with coefficients in Q is zero. In this manner we give a character-

ization of regular local rings. We also prove that p will be a complete inter-

section if and only if the difference between the dimensions of the first and

second cohomology modules (both of A with coefficients in Q) is the dimen-

sion of V. Our third main result is that V will be nonsingular if and only if

A has trivial second cohomology with respect to all finitely generated A-

modules.
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1. Commutative cohomology. Let i be a field and A be a commutative

associate algebra (possibly infinite dimensional) over k. Let E be an A -module

(this includes the assumption that £ is a vector space over k). Before defining

specifically the three special cohomology modules which will actually concern

us, we consider briefly the general commutative cohomology situation. Let T

be the tensor algebra (without the usual identity adjoined) of A. Then T

with the shuffle product (see [l]) is a skew-commutative, graded algebra.

Hom(r/r2, E) will turn out to be a complex with the usual coboundary

operator(2,3). We denote the homology module of this complex at the nth

place by &n(A, E). Theorem 2 which follows and which only involves the

cohomology modules for n— 1, 2, and 3 will be our main tool. It is because we

can not extend this result to the higher modules (actually an extension exists

but it involves unknown modules) that we limit ourselves in this paper to

M = l, 2, and 3. We point out that a satisfactory extension of Theorem 2 to-

gether with our §2 would lead, by induction on the index of nilpotency, to a

complete theory for finite dimensional nilpotent commutative algebras (and

thus for all finite dimensional commutative algebras).

The first cohomology group is the module of all derivations from A to E.

Let Z2(A, E) be the module of all symmetric bilinear maps/ from A XA to

E such that

«/OS, y) - /(«ft y) + /(«, ßy) - t/(«, ß) = o

for all a, ß, yEA. Let B2(A, E) be all those/such that there is a linear map g

from A to E with

f(a, ß) = ag(ß) - g(aß) + ßg(a)

for all a, ßEA. Then &2(A, E)=Z2(A, E)/B2(A, E). Finally let Z3(A, E)

be all trilinear maps/ from A XA XA to E such that

f(a, ß, y) - f(ß, a, y) + f(ß, y, a) = 0

and

«/08, y, «) - fictß, y, ô) + f(a, ßy, 5) - f(a, ß, yô) + 8f(a, ß, y) = 0

for ail a, ß, y, ôEA. If BZ(A, E) denotes those/such that there is a symmetric,

bilinear g from A XA to E with

f(a, ß, y) = ag(ß, y) - g(aß, y) + g(a, ßy) - yg(a, ß)

for all a, ß, yEA, then &(A, E)=Z*(A, E)/B*(A, E). Following usual argu-

ments we get

(2) The author is indebted to the referee for this simple definition of our commutative

cohomology modules. The original equivalent definition was given in terms of complicated

permutations which were rigged up so that an extension of Theorem 2 would hold.

(3) See, say [2], for the usual coboundary map.
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Theorem 1. If L is a submodule of an A-module E, then there is a natural

exact sequence

Q-*&l(A,L)^&\A,E)^&\A,E/L)^>&(A,L)^&2(A,E)^>

Either direct computations or the usual arguments for complexes can be

used to give a long but straightforward proof of our next result. A * will de-

note A if E is unitary (that is, if A has an identity 1 with l-e = e for all

e££); otherwise, A* will denote A with an identity adjoined. It is necessary

to point out that

Extl*(o, E) ~ H\A*, Homt(a, E)) sa h\a, B.omk(a, E))

(see p. 170 of [3] and see [4]).

Theorem 2. If a is an ideal in A with a-E = 0, then there is a natural exact

sequence

0 -> &l(A/a, E) -> Z\A, E) -» Hornea, E)

-> &(A/a, E) -> S2(4, E) -» Ql(A, a, £)

-^S3U/a, £)-^S3(/l, £)

where Q1(A, a, E) is a submodule of Exti*(a, E).

The next two lemmas follow from tedious repeated applications of the

defining conditions for Z2(A, E) and ZZ(A, E).

Lemma 3. Iff<E.Z2(A, E) then

f(aa', ßß') = aßf(a', ß') + a'ß'f(a, ß) - aa'f(ß, ß') + f(aß, a'ß') - ßß'f(a, a')

for alla, a', ß, ß'GA.

Lemma 4. lff<EZ3(A, E) then

f(aa', ßß', 77') = «187/(0', ß', y') + aß'y'f(a, ß, 7)

- aa'[f(ß, ß', 77') + ßf(y, y', ß') - f(ß, y, ß'y')]

+ [f(aß, a'ß', 77') + «18/(7, 7', a'ß') - f(aß, 7, a'ß'y')]

- [f(a, oí, ßyß'y') + af(ßy, ß'y', «') - /(«, ßy, a'ß'y')]

+ 77'L/(«, «', ßß') + «/08, /8', «') - /(«, /3, «'/3')]

foralla,ß,y,a',ß',y'eA.

Theorem 5. Le/ ^4 ow¿ A' be commutative algebras with identities. Let E be

both a unitary A-module and a unitary A'-module with a(a'e) =a'(ae), for all

a<EA, a'<EA', e££. Then

£n(A ® A', E) ~ &n(A, E) ® &"(A', E)

for n= 1, 2, and 3.
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Proof. For n=\, the result is easily computed. For w = 2, fEZ2(A, E),

and f'EZ2(A', E) we map/9/' onto h where

h(a ®a',ß® ß') = aßf'(a', ß') + a'ß'f(a, ß)

for all et, ßEA, a', ß'EA'. It is easily checked that this defines a monomor-

phism from S2(.4, E)®&2(A', E) into &2(A®A', E). To show that this map

is onto, we let t+B2(A ®A', E) be any element in &2(A ®A', E) and employ

Lemma 3 to get that

t(a ® a',ß® ß') = aßt(l ® a', 1 ® ß') + a'ß't(a ® 1', ß ® 1')

- aa't(ß ® 1', 1 ® ß') + t(aß ® 1', 1 ® a'ß') - ßß't(a ® 1', 1 ® a')

for all a, ßEA, a', ß'EA'. The proof for w = 3 can be given in a similar

manner using Lemma 4 instead of Lemma 3, and then showing that an ap-

propriate map is symmetric.

It is useful for all of these computations to note that if E is unitary,

fEZ2(A, E), and hEZ\A, E), then by defining

f'(a, ß) =  - af(l, ß) + /(l, aß) - ,8/(1, a) + f(a, ß),

h'(a, ß, y) = - a(h(l, ß, y) + h(\, y, ß)) + (h(í, aß, y) + h(í, y, aß))

- (h(l, a, ßy) + h(l, ßy, «)) + y(h(l, a, ß) + h(l, ß, a)) + h(a, ß, y)

for all a, ß, yEA, we can show that/'(a, ß)—0 when either of a, ß is 1,

h'(a, ß, y) = 0 when any of a, ß, y is 1, and f-f'EB2(A, E), h-h'EB3(A, E).
Another remark which we shall need is that Theorem 5 is true for infinite

tensor products. If 7 is a linearly ordered indexing set and if we have algebras

with identities, Ait iEI, then ®Ai is the direct limit of the finite tensor prod-

ucts. If £ is a unitary <g)^l¿-module, then it is a straightforward extension of

the proof of Theorem 5, that

&"(®A{, £)~IIs*(i¡, E)

for n— 1, 2, 3 where ]\ denotes the unrestricted direct sum.

2. Commutative algebra extensions. If D is a commutative algebra and a

is an ideal, then a and D/a are algebras and D is a commutative extension

of these two algebras. Our aim is to start with a and D/a and to find all ways

that they can be put together. The results are considerably simpler than if

commutativity is not assumed (see [5]). Our methods are an extension to

commutative algebras of the ideas of [6].

Let A be a commutative algebra. Consider Hom¿(^4, A) ; this is the set of

all k linear maps from A to A such that f(aß) — af(ß) for all a, ßEA.

Honu(yl, A) is an algebra in the obvious fashion. If a E A we let

/aGHom^(^4, A) be defined by fa(ß) =aß for all ßEA. This gives an algebra

homomorphism from A to Hom¿(yl, A) whose kernel is 0: A (the set of all

aEA such that aß = 0 for all ßEA). We denote the image by A. It is easily
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checked to be an ideal in HomA(A, A). Let M (A) be Honu(^4, A)/A. For

g£Hom¿(vl, A) we let g* beg4-Jin M (A). For g*GM(A), a£0: A we define

g* -a as g(a). It is easily checked that this makes 0: A into a left module over

M(A). In particular 0: A is a module over any commutative subalgebra of

M (A).
A subalgebra W of M(A) will be called strongly commutative if the sub-

algebra of \±~omA(A, A) consisting of all g with g#£; W" is commutative. Hence

we have a one-one correspondence between the commutative subalgebras of

\iomA(A, A) which contain A and the strongly commutative subalgebras of

M(A). Incidentally it is easily checked that A is in the center of Hom^^, A).

Proposition 6. To each strongly commutative subalgebra W of M(A) we

have associated in a natural fashion an element Xw of &3(W, 0: A).

Proof. Choose arbitrarily a linear map b—>gb from W to HomA(A, .4) such

that gf = b for all &£PF. Since W is strongly commutative gb,b2 — gbl o g&2 gives

a linear map from the symmetric product of W with itself (those elements of

W<8>W left fixed by â where â(bi®b2) =b2®bi) into A. Now arbitrarily pull

this map back to a linear map from the symmetric product to A. Hence for

h, &2£I4V we have y(bh fa)EA with y(bu b2)=y(b2, bi) and gb¡b¡ - gbl o gb,

=fyHui¡). For h, b2, b$E.W let

h(bu b2, bs) = gbl(y(b2, 63)) - 7(61*2, 63) + y(bh b2b3) - gb3(y(bh b2)).

It is tedious but straightforward to show that Ä£Z3(M/, 0: A). One must use

that all the gb commute (since W is strongly commutative), and that if a(E.A

then y(h, b2)a = gblb2(a)—gb¡(gbl(a)). Let Xw be h+B2(W, 0: ,4). It is an easy

computation to check that Xw is independent of the choice of the y(bi, b2).

To show that it is independent of the choice of the gb is more difficult. Let g'

be another choice. Then there is a linear map b^>a(b) from W to A with

gb—gb =fa(h) for all b(EW. Hence

/r(f>l,62)   =   gbib, 4"/a(6i62)   —   (gbl + /a«.!)) O (gb¡ + /a(¡,2))

=   (g&l¡>2 — ftl°fe) +fa(b¡,bl) — /o(!-i>0/a(62) — gi.iO/a(62)  — gb,Ofaíbl).

This means that we can choose 7'(61, b2) as

y(bi, b2) + a(bi)-a(b2) - a(bib2) + gbM°d) + gbM°i))-

If we use this and that gb =gb—fa(b) to get rid of all prime terms in the defini-

tion of h! (bi, b2, b3), we get after a long computation that h' (bi, b2, b3) =h(bu b2, b3).

This completes the proof.

Let A and B be commutative algebras and let A be an algebra homomor-

phism from B to M (A). A will be called unobstructed if:

(1) the image W of A is strongly commutative,

(2) A'(Xw) = 0 where A' is the natural map from &(W, 0: A) to &*(B, 0: A)

(since A is onto W, 0: A is a 5-module in a natural fashion).
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We remark that if fEZ3(W, 0: A), then A'(f+B3(W, 0: A)) is the coset

containing/' where /'(ft, ft, ft)=/(A(ft), A(ßi), A(ß3)) for all ft, ft, ßzEB.
A' is the map appearing in the exact sequence of Theorem 2,

• ■ • -► &2(B, 0:A)-> &(B, b, 0: A) -» £3(W, 0:4)-» £3Cft 0:4) -> • • •

where b is the kernel of A.

We return now to the problem of finding all extensions of a commutative

algebra A by a commutative algebra B. By an extension of A by B we mean

a triple (<p, D, 9) where D is a commutative algebra, <f> is a one-one algebra

homomorphism from A into 7?, 9 is an algebra homomorphism from D onto

B, and the image of <p is the kernal of 9. Thus except for isomorphisms, A

is an ideal of D with (D/A)~B. Two extensions (0, £>, 9) and (0', D', 0')

are called equivalent if there exists an isomorphism g from D to D' with

go <p = <p' and 6' o g = 9. Theorems 7 and 8 will give computational character-

ization of the set of all equivalence classes of extension of A by B.

Let (<p, D, 6) be an extension of A by B. For ßEB we let A(ß)=f+A

where f(a) =<p~l(y<p(a)) for all aEA and where y is any element in D with

ö(t) = ft It is easy to check that A is a well defined algebra homomorphism

from B to M(A). It is also easy to check that equivalent extensions give the

same homomorphism.

Theorem 7. Let A and B be commutative algebras. An algebra homomor-

phism A from B to M(A ) is the homomorphism associated with some extension

of A by B if and only if it is unobstructed.

Proof. Let A be associated with (<j>, D, 9). For bED let i}(a)=<p-1(ô<p(a))

for all aEA. Note that i^(a)=/a for aEA. Let b be the kernel of A. Then

<p-1(b)={ôED\is = i4l(a) for some <¡>(a)E4>(A)} =<p(A) +0:cp(A). Let t be a

linear map from b to 0: <p(A) such that 9 o t is the identity map. Extend / to a

map from 73 to D with 9otthe identity. For ß E B, A (ß) =iiW+A. Since ¿iW=0

if /3£b, we may define gb as ¿ua-1»)) for bEW (the image of A). We use the

notation of the proof of Proposition 6. Since D is commutative, the gb com-

mute with each other and W is strongly commutative. Let s be a linear map

from W to B with Ao s the identity map. For ¿>i, biEW, s(bibi) —s(bi) -s(ô2)

£b (A of it is zero) and thus íí(,(o1-6s))=íí(.(61)-«(Kí)). This means that we can

choose y(bi, bi) as <£-1 of t(s(bi) -s(bi)) —t(s(bi)) -t(s(bi)). This is in <p(A) since

9 of it is zero. Now for ft, ft E B we let

r(ßu   ß2)=t(s(A(ß1))-s(A(ß2)))-t(ßi-ß1)-t(s(A(ß1)))-t(s(A(ßi))) + t(ß1)-t(ß2).

Note that

s(A(ßu)-s(A(ßi)) - s(A(ßvßi)) + s(A(ßvß2)) - ßvßi

is in b, as are s(A(ßi))—ßi and s(A(ßi))— ft. This can be used to show (since
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t(b) £0: <b(A)) that r(ßi, j32)£0: <p(A). By taking 6 of r(ßu ß2) we can see that

it lies in <p(A). It is now an easy though tedious exercise to show that

h o (A X A X A) can be computed from <p~x o r in the way that makes

ho (AXAXA)£53(5, 0:^4). Note for use in the next theorem that every

element in D can be written uniquely as t(ß) -\-<p(a) for ft£-B, aÇ^A, and then

[t(ß) + 0(a)] 4- [/OS') + *(«')] = '(0 + /SO + *(« + «0,

[/(«+ *(«)] • [«/n + *(«')]
= /(/3/3') + *(&(«(«') + &»<)(«) + ««' + Mft ft))

where XC8, ß') ^^(KßW) -t(ßß')).
Now let A be an unobstructed homomorphism from B to M (A). Then

there exists a symmetric bilinear map r from J5 to 0: A with

A(ft)r(ft, ft) - r(ftft,ft) + r(ft, ftft) - A(ft)r(ft,ft) = A(A(ft), A(ft), A(ft))

for all ft, ft, ft£5. Let X(ft, ft) =7(A(ft), A(ft)) -r(ft, ft) for ft, ft£5. Let
D be all pairs (ft a) with ft£5, a£^4. Define

(ft a) 4- (ft, a') = (|8 + ft, a + a')

08, a)-(ft, a') = (/?ft, gAW(a') + fr«n(a) + aa' + X(ft ft)).

Let 0(a) = (0, a) and 0(0?, a)) =ft Then it is easily checked that D is a com-

mutative algebra and that (</>, D, 6) is an extension of A by J5 whose homo-

morphism is A.

Theorem 8. Let A be an unobstructed homomorphism from B to M(A). Then

the equivalence classes of extensions of A by B which have A for homomorphism

are in one-one correspondence with the elements of &2(B, 0: A).

Proof. As in the proof of Theorem 7 we choose an extension where D is

B®A and

(ft a)-(ft, a') = (ßß', gA(ß)(a') + g4<fl.,(a) 4- ««' + X(ft ft)).

We had noted that all extensions are like this except possibly with a different

map X'(ft ft) in place of X(ft ft). It is easy to check that X' must be and can

be of the form X4-s where sGZ2(B, 0: A). For s, s'£Z2(5, 0: A) the exten-

sions for X-f-s and X-\-s' will be equivalent if and only if they give the same

element in S2Cft 0: ,4).

We close this section with some remarks about M (A). Clearly M(A)=0

if and only if A has an identity. M (A) =k is the next simplest situation.

Proposition 9. If A is nilpotent, then M(A) = k if and only if A* (A with
an identity) is self-infective (which is equivalent to A* being quasi-Frobenious

if dim A is finite).

Proof. Using that A is nilpotent, it is easily checked that Honu'O^, A*)
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= HomA'(A, A). Hence the exact sequence

0->A->A*-->k^0

gives

Honu*U*, A*) -» Hom¿.(,4, A*) -» Ext¿«(¿, A*) -* 0

and thus Exti«(fc, A*)~M(A)/k.   If  Ext]*(ife, 4*)=0 and E is  any J*-
module, then by the exact sequence

0 -» 2V-E -» E -* £/#•£ -» 0

and induction on the smallest re with Nn-E = 0, we get Extj*(7i, 4*) = 0. For

the parenthetical remark we refer to [7].

Proposition 10. If A* is an integrally closed Noetherian domain, then

M(A) = k.

Proof. Let F be the quotient field of A*. For a^O, ft^O elements of A,

af(ß)=f(aß)=ßf(a) so f(ß)/ß=f(a)/a. Butf(ß)/ß times the ideal A is in A
and thus by the usual determinant argument for integrally closed domains,

f(ß)/ßEA* (see [8]).
3. Calculations for S2. In this section we give some computational theo-

rems for S2. Perhaps our most interesting result is a canonical characteriza-

tion for polynomial rings.

Let k be a field and X be a set of indeterminants. Let 7? be k[X] and 7?„

be the subspace of 7? generated by the monomials of degree re. Then 7? is a

graded algebra (R= ]£^7?n direct and RnRmERn+m) and it is connected (this

terminology comes from homology rings and means that R0 = kl). Also

7?n= (Ri)" for all re. We remark that if A = 2«>o -^m then E will be an i-

module if and only if it is a unitary 7?-module; also, £n(7t!, E) = &n(A, E) for

«=1, 2, 3.

Theorem 11. 7/7? is a polynomial ring and E is any unitary R-module,

then £2(7?, 72) =0 and £3(7?, £)=0. Conversely if R=^Rn is a connected

graded algebra with (Ri)n = Rnfor all » and &2(R, k) =0, then R is a polynomial

ring.

Proof. The first part follows from the two remarks after Theorem 5 to-

gether with the next three lemmas. We use that any polynomial ring is a

tensor product of copies of k[x].

Lemma 12. If fEZ2(k[x], E) with /(l, xn)=0 for all re, then f(xm, x")
= — xmg(xn)-\rg(xm+n)— xng(xm) for all m, re where g(xm) = y¡Tlx'f(x, xm_1_i).

with the sum from i = 0 to i — m—\.

Proof. Induction on m.

Lemma 13. If fEZ2(k[x], E) with/(l, xn, x!) = 0 for all re, s, then
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f(xm, xn, x') = — xmh(xn, x") + h(xn+n, x") — h(xm, xn+') + x"h(xm, xn)

for all m, n, s where

h(xm, x") = 2Z xif(x, xm-l~\ x"),

with the sum from i = 0 to i = m — \.

Proof. Induction on m.

Lemma 14. With h defined as in the last lemma, h(xm, xn) = h(xn, xm) for

all m, n.

Proof.

h(xm, xn) = 2 x<f(x, xm~1^i, xn)

= X) x'f(x, x", ¡s"»-1-«) — ^ x%xn, x, xm-1_i).

If we substitute into this the formula of Lemma 13, simplify, and use that

h(x, x") =0 for all s, we get h(xn, xm).

We now must prove the second part of Theorem 11. Let X be a set of in-

determinants in one-one correspondence with a basis of Ri. We have a homo-

morphism from k[X] onto R with kernel b. b£a2 where a is the ideal in k[X]

generated by the set X. If fE&\k[X], k) and a, ft£ct, then f(aß)=af(ß)
+ßf(a) =04-0 = 0, so/ is trivial when restricted to 6 which is in a2. Thus from

the exact sequence (Theorem 2)

0 -* S1^, *) -» &Kk[X], k) -* Horn* m (b, *) -* 0

we get that

0 = Homi[x](b, k) = Homifc(b/(a-b), k).

Hence b/(a-b)=0 or b = a-b. This gives by induction that b = u"-b for all n.

Thus every polynomial in b has degree greater than n for all n. Hence b = 0

and k[X]~R.
We refer to [8] for quotient rings.

Theorem IS. Let R be a polynomial ring and S be a multiplicatively closed

subset of R (with 1£5, 0£5). Let A be the quotient ring Rs. Then &2(A, E) = 0

for all unitary A-modules E.

Proof. Let fGZ2(A, E). The restriction of / to R is in B2(R, E). By ex-

tending the appropriate map from R to A and taking/ minus this extension,

we may assume (for the purpose of proving f(EB2(A, E)) that the restriction

of / to R is zero. Thus if 7£i?, 5£5,

f(yÔ, 1/5) = 7/(5, 1/5) 4-/(7, 1) - (1/«)/(t, «) = 7/(5, 1/5).

For a£i?, ft£5 we write t(a, ß) for (l/ft/(a/ft ft. Then if 5£5,
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t(aô, ßS) = (\/ßo)f(a/ß, ßo)

= (l/ß)[f(a/ß,ß) -/(««, 1/5) + (a/ß)f(ßS, 1/S)] = t(a,ß).

Thus if a/ß = a'/ß' with ft ft E S, then

¿(a, ft = t(aß', ßß') = /(«'ft ßß') = /(a', ft).

This means that we can write t(a/ß) for t(a, ß). It is easily shown that t is

linear from A to E. Also it is easily computed that t(a/ß) =at(l/ß) —f(a, l/ß).

Thus for a, a'ER, ft ß'ES,

(a/ß)t(a'/ß') - t(aa'/ßß') + (a'/ß')t(a/ß)

= aa't(l/ßß') - (a/ß)f(ßa', l/ßß')

- aa't(l/ßß') +/(««', 1/ftft) + (a'/ß')t(a/ß)

= /(a/ft «7ft) - (\/ßß')f(a/ß, ßa')

+ (a'/ßß')f(a/ß, ß) = /(a/ft <*'/ft)

- (l/ftft)/(a, a') + (l/ßß')(a/ß)f(ß, «')

= /(a//3, a'/ft).

Hence fEB2(A, E).

Theorem 16. Le¿ As be a quotient ring of a commutative algebra A, and let

E be any As-module. Then

£2(As,E)~B2(A,E).

Proof. Let X be a set of indeterminants in one-one correspondence with

a generating set for A, and let <f> be the natural algebra homomorphism from

&[X]=7? onto A. Let T = <p~1(S), a be the kernel of <p, and b be the set of

ßER such that ßyEo- for some y ET. Then we have the following commuta-

tive, exact diagram :

O-^bTir-^r-» As -> 0

î       î      T

0-»   a   ->72->yl->0.

0

0

which is easily checked to be commutative. Using the division formula for

derivations and some straightforward computations, it is easily checked that

Now using Theorems 2, 15, and 16 we get

^(Rt, E) -» Hom7?r(b7ir, E) -> &2(AS, E)

v 4" 4*

Sl(R, E) —» HomÄ(a, E)-> &2(A, E) -
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the first two vertical arrows are isomorphisms, from which it follows that

the third is.

Theorem 17. Let k be a perfect field, and let the algebra A over k also be a

field. Then &2(A, £)=0 for any unitary A-module E.

Proof. Let/£S204, £) be chosen according to the remark after Theorem

5. Let B be the direct sum of A and £ with (a, a) (ft b) defined as

(aß, ab+ßa+f(a, ft) for a, ßGA, a, ¿>££. Then B is easily checked to be a

commutative algebra whose only maximal ideal is 0©£=M. Thus Af2 = 0

which implies that B is a complete generalized local ring. k®0 is a subfield

of B and if k is of characteristic p, k®0 = kp®0(ZBp. Hence by the proof of

the existence of coefficient fields (see [10]), k®0 is contained in a field D with

D®M = B. For each a£yl there is a unique (a, g(a))Ç_D. It is easily checked

that

f(a, ft = - ag(ß) 4- g(aß) - ßg(a)        for a, ß £ A.

Since every algebra is a factor ring of a polynomial algebra, our next

theorem gives a calculation of S2 for the irreducible modules.

Theorem 18. Let R be an algebra over a perfect field k, and let M be a maxi-

mal ideal which contains an ideal a. If S2(R, R/M) = 0, then

&2(R/a, R/M) ~ ((M2 H a)/M-a)*

where # denotes the dual as an R/M vector space.

Proof. Using Theorem 17 and the easily established fact that

Homß(a, R/M) = HomÄ(a/ilf-a, R/M), we have the exact diagram

Sl(R/M2, R/M) -> RomR/mKM/M2, R/M) -^ 0

i                                i

ß^R, R/M)-> HomB(a/M-a, R/M)-> &\R/a, R/M) -> 0.

It is easily shown that the first vertical arrow is an isomorphism. With this

and vector space theory, the result can now be read from the diagram.

4. Rings of algebraic geometry. In this section we give characterizations,

in terms of £2, of regular local rings, of complete intersections, and of non-

singular affine rings.

Theorem 19. Let the algebra R over a perfect field k be a local ring with

maximal ideal M. Then R is regular if and only if &2(R, R/M) = 0.

Proof. Suppose that R is regular. Then M has a basis ah a2, • • • , an

where n is the Krull dimension of R. We prove that 62(£, R/M) = 0 by induc-

tion on n. For w = 0 this is merely Theorem 17. For w>0 we consider the exact

sequence
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£2(7c/(a„), R/M) -► £2(7?, R/M) -+ Ext«««*), R/M)

of Theorem 2. Since 7? is a domain, (an)~7? and thus the last term of the

sequence is zero. Since R/(an) is a regular local ring of dimension re —1 (see

p. 301 of [9]), the first term is zero by induction. Hence £2(7?, R/M) =0.

Now suppose that 7? is a local ring with £2(7?, R/M) = Q. We shall prove

that 7? is regular by showing that the associated graded ring R/M®M/M2

© • • • is a polynomial ring (see p. 301 of [9]). This in turn will be shown

by establishing that each Mi/Mi+l has the proper dimension over R/M.

Let re be the dimension of M/M2. Let 5 be the polynomial ring

(R/M)[Xi, ■ ■ ■ , Xn] and let a=(Xu ■ ■ ■ , Xn). We now prove by induc-

tion on i that S/a* is isomorphic to R/M* for all i. Suppose S/a1' is isomorphic

to R/M*. SinceR/Mi+1 is a complete local ring, by the Cohen structure theorem

(see [9]) it will be isomorphic to S/ai+l if and only if M*/Mi+1 and a'/a**1

have the same dimension. This fact is obvious if i= 1 and if i = 2 we may use

Theorem 18 to get

(M'VM*1)* ~ &2(R/M\ R/M) ~ 82(SM R/M) ~ (aVai+1)'.

Corollary 20. If pis a prime in an affine ring R over a perfect field k, then

p will represent a simple point if and only if &2(R, (?) = 0 where Q is the quotient

field of R/p.

Corollary 21. Let N be a commutative radical algebra (in the sense of

Jacobson) which satisfies the ascending chain condition on ideals. Then there

will be a symmetric inner product with (a, ßy) = (aß, y) for a, ft y EN and with

the inner product not of the form (a, ß) =g(aß) for a functional g, if and only if

N* is not a regular local ring.

Proof. The details, such as that N* will be local (in particular Noetherian)

are left to the reader.

Theorem 22. Let R be an affine ring (that is, a finitely generated algebra with

identity) over a perfect field k. Then R will be nonsingular if and only if

£2(7?, E) =0 for every finitely generated unitary R-module £(4).

Proof. Suppose &2(R, 72) = 0 for all finitely generated E. Then if M is a

maximal ideal, £2(7?, 7?/M) = 0; thus by Corollary 20, Rm is regular. Since

any of the local rings of 7? can be gotten by going to some Rm first, it follows

from p. 307 of [9] that 7? is nonsingular.

(4) The methods of proof here show that if A is a regular local ring of an affine ring, then

&(A, E) =0 for all finitely generated E. If in addition, A is the local ring at a zero dimensional

point and k is algebraically closed of characteristic not 2 or 3, then &3(A, E)=0 for all such E.

This is proved by using that A =M*, that dimH\M, *) = (*), that i{0{M, k)) is in the kernel

of the alternating map T, and that C3( M/M2, k) modulo the image of T already has dimension at

least (J). &3{A, k) = 0 implies &{A,E) =0 as below except: A ®A is Noetherian since (R®R)s®s—

Rs<S)Rs, and £3(^4, E) is a submodule of H"(A, E) by a use of the characteristic of k not being 2.
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Now suppose R is nonsingular, and just suppose that there is a finitely

generated £ with S2(£, E)t£0. Let L be maximal in £ with the property

that S2(£, E/L) ¿¿0. If M is any maximal ideal, we have the exact sequence

&2(R, L:M/L)-+&2(R, E/L)-^52(R, E/L:M)

where L:M/L is a direct sum of copies of R/M. Thus with Corollary 20

and the assumption that R is nonsingular, it is easily shown that

&2(R, L:M/L) = 0 (the reader can either show that 82 preserves direct sums

or else use Theorem 1 a finite number of times). By the choice of L, this

means that L — L:M. Hence M is not in any of the primes of L; thus it is

not in the union of these primes (see [8]); and thus there is an a(~.M with a

not in any of the primes of L. This means that L:a = L, and in particular, it

means that L^aE+L. Thus

0-^E/L-^-E/L -> E/(aE + L) -> 0

gives

&2(R, E/L) ^ &2(R, E/L) -+ 0.

We have proven for every maximal ideal M, that M-&2(R, E/L)=&2(R, E/L).

It is an easy consequence of the intersection theorem that this implies a con-

tradiction, once we have that &2(R, E/L) is finitely generated. Now R is

affine; thus R®R is also. This implies that R®R is Noetherian. There exists

an ideal a with R®R/a isomorphic to R; thus both R and E/L are finitely

generated as £®7?-modules. This implies that Ext2A®A(A, E/L) is finitely

generated as an A (8>^4-module, and thus as an ^4-module (see p. 122 of [3]).

But

&(A, E/L) C H (A, E/L) =* Extl^U, E/L).

Corollary 23. Let a be an ideal in a nonsingular affine ring R. Then R/a

will be nonsingular if and only if there is an algebra homomorphism from R/a

to R/a.2 which when followed by the canonical map gives the identity.

Proof. This is equivalent to there being a derivation from £/a2 to a/a2

which is the identity on a/a2 (take the identity minus the homomorphism).

The exact sequence

&l(R, E) -> Homß(a, £) -+ S2(i?/a, E) -* 0

gives the singularity of R/a in terms of the raising of homomorphisms to

derivations. The corollary can now be reasoned out from this sequence.

Theorem 24. Let R with maximal ideal M, be a local ring (over a perfect

field k) which is a factor ring of some regular local ring (say R is a local
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ring of algebraic geometry). Let dim R = n and d\mRiM(M/M2)=m. Then

dimA/M£2(7?, R/M) ^.m — n with equality holding if and only if Ris a complete

intersection.

Proof. Suppose A, with maximal ideal N, is a regular local ring with A/a

isomorphic to 7?. Then by straightforward usual arguments, a new A can

be chosen with aEN2. Thus by Theorem 18 and duality theory for vector

spaces

dimfi/M£2(7?, R/M) = dimA/N(a/N-a).

Since dim A =m and dim a = re, the result now follows from the Krull dimen-

sion theorem.

Corollary 25. Let A be an affine ring of dimension r over a perfect field k.

Let p be a prime of A and let Q be the quotient field of A ¡p. Then

dimgS1^, Q) - dimQ£2(^, Q) g r

with equality holding if and only if p represents a complete intersection.

Proof. It can be checked that

&\A, Q) ~ &(A„ Q) ~ (p-AJf-Ap)* ® &(Q, Q)

and that dimg S1«?. Ç>) = dim p.

Added in proof. My student M. Barr has pointed out that "finitely gener-

ated" may be removed from the statement of Theorem 22 by using the device

of Corollary 23.
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