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The Hadamard determinant theorem [l] states that if A = (a,-/) is a posi-

tive semi-definite ¿-square Hermitian matrix then

k

(1) det A è II an
1=1

with equality if and only if A has a zero row or A is diagonal.

In a recent paper [3] it was conjectured that an analogous result to (1)

holds for the permanent of A. We recall that the permanent is defined by

k

periA) = X)  Il a*W
*eSk  ¿-1

where the summation is over the whole symmetric group of degree k. Recent

interest in the permanent function stems from its application to a variety of

combinatorial problems [4] and a partly unresolved conjecture of B. L. van

der Waerden [2]. In [3] it was suggested that if A is once again a positive

semi-definite ¿-square Hermitian matrix then

(2) peri A) ̂  Ù <m
i-i

with equality if and only if A has a zero row or A is diagonal. We are as yet

unable to prove this but the subsequent inequality (3) is a step in this direc-

tion.

The first purpose of this note is to exhibit (1) as a case of the Pythagorean

Theorem in a suitable symmetry class of tensors. Of course, many proofs of

(1) are extant and our purpose in reproving it here is to exhibit a technique

that is proving itself useful for examining a wide variety of matrix functions.

We then show by a similar approach that

(3) per(¿) è ( Il ««W*"

where the inequality is strict unless A has a zero row.
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The technique here is to regard the determinant and permanent functions

as analytic expressions for inner products in suitable symmetry classes of

tensors. To be explicit, let U he an re-dimensional unitary vector space with

an inner product (x, y). Let U(k) be the space of fc-tensors over U; i.e., the

«'-dimensional dual space of the vector space M(k) of multilinear functionals

<t> of ¿-tuples of vectors from U. Certain distinguished "pure" vectors in Um

are denoted by /=xi<£> • • • ®xk where XiEU and / is defined by f(<p)

= 4>(xi, ■ • • , Xk) for each <f>EMw. The pure vectors span (7(i) and the con-

jugate bilinear functional defined on pure vectors by

k

(4) (xi ® ■ ■ ■ ® xk, yi ® ■ ■ • ® yk) = J[ (xiy y<)
>-i

is extendable to a unitary inner product on Uik). Let T and 5 be the sym-

metry operators of U(k) into itself defined by

(5) 7(xi ® ■ ■ ■ ® xk) = —-  £ e(<r)x,(i) <g> • • • ® x„(*),
«' »es*

(6) 5(xi ® ■ ■ ■ ® xk) = —  £ x-w ® ■ ■ • ® x,(h),
k\  cesk

where e(<r) = ± 1 according as cr is even or odd.

It is well known that 7 and S are Hermitian (with respect to the inner

product in (4)) and idempotent. Moreover, one computes easily that

(7xi ® ■ ■ ■ ® xk, yi ® ■ • ■ ® yk) = — det((xi; y,))
k\

and

1
(Sxi ® ■ ■ ■ ® xk, yi ® ■ ■ • ® yk) = — per((x„ y,)).

kl

To prove (1) we first remark that if A is singular, detyl=0, then the

inequality obviously holds and equality requires that some o<, = 0. But then

0^atlayy—|ö<y| 2= — | a,-y|2 and hence a,y = 0, j=l, • • • , k, and row i of A

is zero. Hence assume A is nonsingular and let x\, • • • , xk be a set of linearly

independent vectors such that (x¿, x;) =a,y, i, j=l, • • ■ , k. Let ui, • • • , uk

be the E. Schmidt orthonormalizing sequence for Xi, • • • , xk. That is, the

space (xi, ■ ■ • ,xv) spanned by Xi, • ■ • , xp is the same as the space («i, • • • ,up)

spanned by «i, • ■ • , up, p = l, • • • , k. Then since utl® • • • ®uik, lúiaúk,

a= 1, • • • , k, is an orthonormal basis in Ulk) we have from the Pythagorean

theorem that



1 1
— det A = — det((xj, xi)) = iTxi
k\ k\
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• • ® xt, Txi ® • • • ® xk)

= "22 | iTxi ® • • • ® xk, uh ® • • • ® M<t) Is

- (—) E I det((x„ uu)) |2, s, t = 1, • • ■ , k,

where the summation extends over all kh ordered selections in, ••-,»*) from

I, • • ■ , k. Since the determinant vanishes when two columns are the same,

the last summation may be taken over sets of distinct ordered choices

(¿i, • • • , ik), i.e., over all kl permutations of 1, • ■ • , k. Hence

— det A = ( — ) ¿2   I det((x„ «,<„)) |
kl \k\/    ,est

1
— |det((x„ m,))|2
kl

1

kl
det

"(Xi, Mi)    0

(X2, Mi)  (x2, M2)  0

_(x*, Mi)  (Xjfc, M2)

0

0

iXk, uk).

= ̂ ni(^«.)i2
ki ,_i

i *        i *
^ -- n (*<> *ù = i; n ««•

ki <_i       k< ,=i

Now the equality holds by Schwarz's inequality if and only if xa is a multiple

of ua. But since U\, • • • ,U¡, is an orthonormal set, it follows that A = ((x,-, x/))

is diagonal.

From (6) we compute that

(7)

per A = kliSxi ® •

= kl\\Sxi ® •

^ *!| iSxi®

= ¿!| (xi® •

= ¿!| (xi® •

® Xk, Xi ®   •

® Xk\\2

•  ® Xk, u ®

® Xk, Su ®

® Xk, M ®   •

® xk)

• ® m) |2

• ® m) |2

® m)|s

= klll I (*.-,«)I2,
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where u is any unit vector in U.

The problem then is to find for fixed xit i' = 1, • • • , k, a significant lower

bound for the expression JWUi \ (xi, u)\2 as a function of the unit vector u.

We have the

Lemma. If Xi, • • • , xk are vectors then there exists a unit vector u such that

| (x„ u) |   ^ \\x,\\/k, s = I, ■ ■ ■ ,k.

Xi|| or —Xi/||x¿|| so that Eî-i J< is °f maximal length.

Ei-i ±#«-/||*i|| || for all choices of signs on the x,-. We

Proof. Let y< = Xi/

That is, || B-i*ll= I
assert that

(8) Re(ys,   £   y) is 0, * - 1, • • • , *.

For let z,= ¿2t-u*, y i and z= JZî-i V* and we nave

IMI,-||y. + *||,fc||-y. + *||,l

||y,||2 + 2 Re(y„ z.) + \\z\\2 £ \\y,\\2 - 2 Re(y„ z.) + \\z,\\2

and (8) follows.

It is clear that

(9) Ml ̂  i II y<|| = *
i-l

and thus

1/       z \|     1/     y. + z.\|

W" TmTJ = \\y" "TT~Jl\      «/I     IV 2    /I

10) = A   |(||>H2+(y.,2.))|
II8!!

^—rRe(i + (y,,8.))èirrr^Tllzll 11*11     *
In (7) we take re = 2/||z]| to obtain

per ,4 = ¿!ll | (*, «) MNI1
«=i

k

* on/*») n ni*¡=i
i

= (*!/*2*) n ««.
t-i
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Clearly if any Xy = 0 then per ^4=0, fly, = 0 and (3) is equality. If no Xy = 0

then (9) can be equality only if z = dky„ where | d\ = 1, 5= 1, • • -, k, in which

case

"M)| H(*'m)I = v* = 1>t(y.
and hence the inequality in the lemma is strict for k>l.

Actually a refinement of the above argument shows that

*   . .       k1'2 k1'2 - 1

IT I iy„ «) I = -r "7—r • '
,_i k    k — i

where r= \k/(kllt + \)], and therefore,

rkm ¿1/2 _ !

k1'2 - r      1

k-r    kk~

per(A) II  ««*!/(-k     k - 1

k1'2

k

'■ - r      1    y

- r    ¿*--"V '

For

(11) |2 = (z, z) = ¿2 (y., $ = k + 32 (y., *.) = * + Z Re(y.>*.) ^ *,

i.e., ||z|| ^k112. We can assume without loss of generality that Re (yi, z) ^ • • •

^Re (y*, z). Now from (11) we have

II «II = i^(y-'\ni) = kin
—i    V    II2Ik

and  therefore   Re(yi, z/||z||) ^kl'2/k, and a fortiori,   | (yh z/||z||)| ^kll2/k.

Further

I*/        z\       I*/        z\|      1/        z\l
Ely., rnr) = Ely., o) - (*, n)  = *" - i

I .=2\        z /       I s=i\      \\z\\/\      \\      \\z\\/\

and thus | (y2, z/\\z\\)\ ^(V'2-l)/(k-l).
In general

(12)
\(     z M
IV        M/l

A1'2 - j

A — j

Comparing (12) with (10) we find, by an elementary computation, that

A1'1 - í

max
Ik1'2 - s     n

li-j   'k]

k - s

1

k

for j ^ r,

for í > r,

where r is the greatest integer in k/(kll2 + l).
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Thus (12) gives a better lower bound for 5= 1, ■ ■ ■ , r while (10) gives a

better lower bound for 5 = r + l, • • • , k. The result follows.
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