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The classical Liouville Theorem of analytic function theory can be stated

in either of two equivalent forms:

The Liouville Theorem [l, p. 98]. Hf(w) is analytic and bounded through-

out the finite w-plane, then f(w) is constant.

If z(x, y) is a real valued function of the real variables x and y which is a

solution of zxx+zyy = 0 and is bounded either above or below throughout the

finite plane, then z(x, y) is a constant.

Here we are concerned with the question of whether or not the second

formulation of the above theorem is valid for solutions of more general elliptic

partial differential equations. In what follows the usual notation will be

adopted: p = zx, q = zy, r = zxx, s = zxy and t = zyy.

The equation

(1) A(x, y, z, p, q)r + 2B(x, y, z, p, q)s + C(x, y, z, p, q)t = 0

is said to be quasi-linear. It is said to be elliptic with respect to a given solu-

tion z(x, y) in a domain D of the xy-plane in case A >0 and B2 — AC<0 for

all (x, y)ED when z, p, q are replaced in A, B, and Cby z(x, y) and its respec-

tive first partial derivatives.

Bernstein [2] showed that if z(x, y) is a bounded solution of (1) through-

out the plane and if (1) is elliptic with respect to z(x, y) throughout the plane,

then z(x, y) must be constant.

This is not quite the Liouville Theorem since the solution is assumed to

be bounded, however, it is the best that can be obtained without stronger

assumptions being placed on A, B, and C .This is illustrated by the elliptic

equation (2-f-4y2)r+4ys-t-i = 0 which has ex~y as an entire solution which is

bounded below but which is not constant.

The equation (1) is said to be uniformly elliptic in a region D of the xy-

plane in case there is a constant X>0 such that

X-K£2 + v2) è A? + 2Bfi, + Cr,2 g X(e + r,2)

for all (£, r¡), all (x, y)ED, and all (z, p, q). Serrin [3] proved that, if (1) is
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uniformly elliptic, its solutions satisfy a Harnack inequality. He used this

result to establish the Liouville Theorem for (1) in the case of uniform el-

lipticity. Bers and Nirenberg [4] proved in a different way that, if equation

(2) below is uniformly elliptic and FsO, its solutions satisfy a Harnack in-

equality.

Consider now the equation

(2)    L[z] = A(x, y, p, q)r + 2B(x, y, p, q)s + C(x, y, p, q)t = F(x, y, z, p, q)

concerning which the following assumptions are made:

(i) A, B, and C are continuous and have continuous first partial deriva-

tives with respect to p and q for all (x, y, p, q).

(ii) ^4>0 and B2 — AC<0 for all (x, y, p, q). There are continuous func-

tions a(p, q) and c(p, q) and a constant d>0 such that AC — B2> d, A(x, y, p, q)

ûa(p, q) and C(x, y, p, q) úc(p, q) for all (x, y) and all (p, q) with p2+q2 ^ 1.

(iii) F(x, y, z, p, q) is continuous and has continuous first partial deriva-

tives with respect to z, p, and q with F^O lor all (x, y, z, p, q). Given any

7V>0 there exists an 77jv>0 such that

I Fix, y, z, p,q)\   è HNip2 + q2)

for \z\ gTV, p2 + q2ûl, and all (x, y).

Theorem. If equation (2) satisfies conditions (i), (ii) and (iii), then a func-

tion z(x, y) which is of class C(2) and a solution of (2) throughout the finite plane

and which is bounded on one side must be a constant.

Proof. The proof employs a modification of the methods used by Serrín

[3] and is based on the following principle:

Maximum principle [5]. Let D be any plane domain and consider the

function Fix, y, z, p, q, r, s, t) with the following assumptions:

(i) F is continuous in all 8 variables in the region T defined by

P— {ix> y, z, P, 2. r, s, t): (x, y)CD and — » <z, p, q, r, s, t< «> } and

(ii) F2, Fp, Fq, Fr, F„ and Ft are continuous on T, Ff — AFrFt<0, Fr>0,

and Ft^O on T. Let Zi(x, y) and z2(x, y) be continuous in a bounded and

closed subdomain ÜCD and of class C(2) in the interior of ÍÍ. Furthermore,

suppose Zi(x, y)^z2(x, y) on the boundary of ß and suppose that in the

interior of Q

F(X,   y,   Zl,   ZlX,   Zly,   Zlxx,   Zlxy,   Zlyy)     ̂     0,

F(X,  y,   Z2)   Z2x,   Z2y,   Z2XX,   Z2xy,   Z2yy)     ̂     0.

Then, either zi(x, y) <z2(x, y) in the interior of Ü or zi(x, y) =z2(x, y), on Í2.

The conditions placed on equation (2) are such that L[z] — F(x, y, z, p, q)

satisfies the hypothesis placed on F(x, y, z, p, q, r, s, t) in the Maximum Prin-

ciple.
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It suffices to consider the case in which z(x, y) is a solution of (2) which is

bounded below in the finite plane since the bounded above case can be re-

duced to this one by replacing z(x, y) by — z(x, y).

Assume that there is a nonconstant solution z(x, y) of (2) which is

bounded below in the finite plane and let z0 = glbz(x, y). Then w(x, y)

= z(x, y) —Zo is a solution of

(3) L[w] = F(x, y,w + Zo, wx, wy)

throughout the finite plane and gib w(x, y) =0. Furthermore, it is clear that

equation (3) also satisfies conditions (i), (ii), and (iii) placed on equation (2).

It follows from the third condition that F(x, y, z, 0, 0) =0 so that constants

are solutions of (2). Since z(x, y) is assumed to be nonconstant we can apply

the Maximum Principle to conclude that z(x, y) >zo or w(x, y) >0 throughout

the finite plane.

Let K be the closed circular disk in the plane with center at (0, 0) and

radius 7?. Let E denote the component of the set

[(x, y) E K: w(x, y) > (l/2)w(0, 0)]

which contains (0, 0). We can again apply the Maximum Principle to con-

clude that E must contain an arc of the circumference of K. Hence, there is a

Jordan arc T contained in E with one end at (0, 0) and the other end at a

point (xo, yo) on the circumference of K which is such that with the exception

of (xo, yo) T is contained in the interior of E. Let Ki and K2 be the two closed

disks each of which has radius 27? and each of which has the points (0, 0) and

(xo, yo) on its circumference.

Each point (x, y)EKiC\K2 satisfies at least one of the following condi-

tions:

(a) (x.y^rUbdry^nTQ,
(b) (x, y) is in a subdomain of Ki the boundary of which consists of arcs

of T and arcs of the circumference of K\,

(c) (x, y) is in a subdomain of K2 the boundary of which consists of arcs

of T and arcs of the circumference of K2.

Let K~z be the closed disk with center at (x0/4, yo/4) and radius 37?/4 and

let (xi, yi) and (x2, y2) be the respective centers of Kx and Ki. It is clear that

there exists a fixed e, 0<e<l, such that

[(*, y):(x- xi)2 + (y- yi)2 Ú e2(27<)2] E comp K,

[(x, y):(x- xi)2 +(y- yi)2 Û e2(27?)2] C comp K,

[(x, y):(x- xo/4)2 + (y - y0/4)2 ^ e2(37</4)2] C mt(Ki H K2).

For example, « = 3/128 would do.
With a fixed e satisfying the above condition, consider the function
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N(e-a't - e~ar2)

v(x, y, £, v, r) =-1-
1 - e-"

defined on the annulus

Sit, V, r) m [(x, y): eV g a2 m (x - £)2 + (y - r,)2 g r2]

where 7V=w(0, 0)/2 and a>0. In this annulus

s       2      4a2ArVe-2a"2       4/V2       47V2
v, + vy= -;— g-g-< 1

(1 - e--2)2 <x2     '  eV

provided r^27V/e. Furthermore » g TV on S(£, 17, r), o = 0 when <r = r, and 0 >0

when <r<r.

Let r and /3 be any fixed real numbers with r*t2N/e and 0</32¡l. Then,

if /I, 73, and C are evaluated at (x, y, /Si;,, /8»v), the following succession of in-

equalities are valid in S(£, 17, r).

L[ßv] - Fix, y, ßv + zo, ßvx, ßvy)

2Ne~c"r*

=-ï {2a2ß[A(x - £)2 -f 273(x - Qiy - r,) + C(y - V)2] - aß(A + C)}
1 — e~ar

- F(x, y, ßv + zo, ßvx, ßvy)

2Ne-"°1   l 4a2ß(AC - B2)a2

1 - e~<"  {A + C + [(A + C)2 - 4(AC - 732)]1'2

2  2 2  2

-    HN+Ui\(ßVx      "f   ß   Vy)

aß(A + C)\

2ßNe-«°' (2a2(AC - B2)a2 2HN+u,\a2No-2e-<"'\
2: -;<-a(A + C)--.->

1 - e--2 \       A + C 1 - e--2        J

2aßNe~<"'1
> -r   2arW - Ô2 - 2SHn+\m.\NM}
- (A 4- C)(l - e--2) l '

where5 = Max[a(£,g)-f-c(£, ç)] for p2+q2gland M = Maxíe-«Sí/(l-c-') for

0gi<4- °°. Thus there is a fixed constant 7>0 independent of r, (£, 17), and

ß such that

7|>] - Fix, y, ßv 4- *o, jftfe, 0%) ^ 0

in S(£, 17, r) when a = y/2e2r2d.

Now assume that 7? the radius of the disk K is chosen so that

27V      w(0,0)
3R/4 è — = -LL-L ■

Set
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vi(x, y) s v(x, y; xh yu 2R)

and

v2(x, y) = v(x, y; x2, y2, 2R).

Recall that each point (x, y)EKiC\Ki satisfies at least one of the previously

listed conditions (a), (b), or (c). Assume that (x, y) is in the interior of

R~iC\K2 and that either (x, y)£T or (x, y) satisfies condition (b), then we

can apply the Maximum Principle to conclude that w(x, y) =^i(x, y). Simi-

larly, if (x, y) is in the interior of KiC\K2 and either (x, y)£T or (x, y) satis-

fies (c), we can conclude w(x,y) ^v2(x,y). Thus for all (x,y)E int (Ki(~\Ki) it is

true that

w(x, y) ^ Min[t)i(x, y), v2(x, y)\.

Now on the circle (x-x0/4)2 + (y-y0/4)2 = e2(37?/4)2

ßo = Min[ti!(x, y), v2(x, y)] =
1   _ e—ll1¿A

where p= (61)1/2/8 + 3e/8<l. Another application of the Maximum Principle

yields

w(x, y) ^ ßoVz(x, y)/N

on 5(xo/4, yo/4, 372/4) where

n(x, y) = v(x, y; x0/4, y0/4, 372/4).

The annulus S(xo/4, yo/4, 372/4) contains the disk with center at (0, 0)

and radius (1/4 —3i/4)72. On this disk

ßo                    ßo[e-^2'2'2d - e-y'2'2"]

— Vz(x, y) = --.-
N 1 - e->i2'd

where t = 2/3 —e.

We conclude that there is a fixed j3i, 0 <ßi < 1, independent of 7? such that

w(x, y) =■ ßiw(0, 0)

on the disk with center at (0, 0) and radius (1/4 — 3e/4)7?. Since 7? can be

taken as large as we please, we conclude that

w(x, y) è ßiw(0, 0)

everywhere. However, this contradicts the fact that gib w(x, y) = 0 and we

conclude that a solution of (2) which is bounded above or below must be a

constant.
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