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1. Introduction. Let G he an arbitrary locally compact abelian group with

character group G. This paper is devoted to characterizing those functions

<peLx(G) which are equal almost everywhere (a.e.) to the Fourier tranform

of some function/e Li (G) n LP(G) where 1 f= p ^ oo. The characterizations

presented originate from the following theorem by I. J. Schoenberg [12]:

Theorem 1. Let V(— oo,oo) denote the set of all functions of bounded

variation on the real line, and for peV(-cc, oo) define p by p(x)

= ¡-œe~'xydp(y).If (peLœ(-00,00) then </>(x)=p(x) a.e. for somepeV(-co,co)

if and only if there exists a constantK > 0 such that

^  f(x)<b(x)dx\^K      sup    \f   e-ixyf(y)dy\

for all feLx(— oo,oo).

This theorem characterizes those functions <f>eLco(— oo,oo) of the form

4>(x)=p(x) a.e. in terms of a continuity condition on the linear functional

defined by F(f) = Jfœ f(x)<b(x)dx for /eLi(-oo,co). Given a subset N c

V(— oo,oo) it is possible to ask whether additional continuity conditions on F

can be found which, combined with the above condition, are necessary and

sufficient in order that (¡>(x) = p(x) a.e. for some peN. The following theorem

by A. C. Berry [1] illustrates such a condition when N is the class absolutely

continuous functions of bounded variation. Here we define

/(x) =   r e~ixy(y)dy for fe Lt(- oo.co).
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Theorem 2. Suppose that ¡p e Lx(-co,co). The following conditions are

necessary and sufficient in order that <b(x) =g(x) a.e.for some g eLx(— co,co):

(1) T6ere exists a constant K>0 such that |F(/)| ^ ^¡/||œ for all

feLA\ — co,co).

(2) For every e>0 there exists a <5=<5(e)>0 such that |F(/)| g «¡/¡a,

whenever fe L,(-co,co), /eL,(- co,co) and ||/||i ^5 ||/IU-

Condition (1) is just a restatement of Theorem 1 ; it is this part of the hypothesis

which insures that i> be equal a.e. to the Fourier transform of some p eF(- co,co).

Condition (2) implies that p is absolutely continuous.

A theorem similar to Berry's theorem was previously proved for the circle

group by R. Salem [10; 11].

Theorem 3. Let (Z) 6e the class of functions co(x) = Z"=i(a cosnx + ß„ sinnx)

w6/c6 are continuous and differentiable with |co(x)| < 1 and such that the

Fourier series of to' is absolutely convergent. The following conditions are

necessary and sufficient in order that (a„,bn) be the Fourier coefficients of an

integrable function:

(A) The formally integrated series Z„œ=i (ann_1 sin nx ~ K^1 °°s nx)

converges to a continuous function.

(B) The expression T,*=1 iana„ + b„ß„) tends to zero when co varies in (Z)

in such a way that S"= i (a2 + ß2) tends to zero.

Here condition (A) implies that (-6„n_1,a„n_1) is the set of Fourier co-

efficients of some continuous function. Condition (B) implies that this function

is absolutely continuous and hence an integral of some function /eLi(0,27i).

It then follows that (a„, 6„) is the set of Fourier coefficients for /.

In this paper we prove for an arbitrary locally compact abelian group a theorem

which gives as a special case the second part of Berry's theorem. This, combined

with the generalization of Schoenberg's theorem, constitutes a characterization

of the Fourier transforms of L^G). We also include a slightly different statement

and proof of Salem's theorem. Using the same ideas we characterize the Fourier

transforms of L^G) n LpiG) for 1 < p ^ co. The statement and proof of Theorem

1 generalize directly for a locally compact abelian group (see Eberlein [3]).

Thus, in the statements of our theorems we will generally assume that <p, the

function under investigation, is equal almost everywhere to the Fourier transform

of some bounded Radon measure p. Here we are concerned with the additional

conditions which <p must satisfy in order that d/t(x) = /(x)dx for some

feL¿G)nL¿G).
§ 2 contains notation and definitions; § 3 treats LAfG); § 4 is devoted to

Lt(G) nLP(G) for 1 <p^ co.

The author wishes to thank the referee for the very simple proof of Lemma 1

and the useful comments on the proof of Theorem 5.
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2. Preliminaries. Throughout this paper G denotes an arbitrary locally com-

pact abelian group, and the group operation is denoted by +. The character

group of G is denoted by G. The complex number (x, x) is the value of the cha-

racter x e G at the point xeG.

The space of all bounded, continuous, complex valued functions defined on

G is denoted by C(G). We give C(G) the usual norm :

U/H« = sup |/(x)|, feC(G).

C^G) denotes the subspace of functions fe C(G) which vanish at infinity, i.e,

for each/e CX(G) and e > 0 there exists a compact set A e G such that |/(x) | < e

for xeA' (=the complement of A). C^^G) denotes the set of functions in

C^G) which have compact support.

Let 38 denote the smallest c-algebra of subsets of G containing the compact

subsets(2), and let M(G) denote the space of all complex valued, bounded, regular

and countably additive set functions defined on 3$. M(G) is identified with the

space of all bounded linear functionals on CX(G), and an element p e M(G) is

called a bounded Radon measure. For detailed discussions of M(G) and referen-

ces we refer the reader to the survey articles by Hewitt [7] and Rudin [9].

Let m be a nontrivial Haar measure defined on 38. LP(G) for 1 ^ p < oo

denotes the space of all ^-measurable, complex valued functions defined on G

for which

|/|# - (j" |/(*)|'**m(x) )v» < + oo.

Lœ(G) denotes the space of ^-measurable functions such that

11/11« =inf ja|m{x|xeG,|/(x)|>a}=0 )< + co.

(life C(G) then the two definitions of \\f\\x agree.)

There corresponds to each feL^G) a unique measure pfeM(G) defined

by pf(E) = $Ef(x)dx for all E e 3§Q). By the Radon-Nikodym theorem p = pf

for some fe LL(G) if and only if p is absolutely continuous with respect to m.

The convolution of two functions feL^G) and geLp(G) with 1 ^ p ^ oo

is defined in the usual way :

/*a(x) = J f(x-y)g(y)dy.

This integral exists for almost every xeG and defines a function f*geLp(G)

with  \\f*g ||p s; ||/||i \\g \\p. If {wa|aej^} is an approximate identity for the

(2) See Halmos [5] for measure theoretic terminology not explained here.

(3) The differential of Haar measure will be written dx, dy etc.
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algebra L^G) then it is well known that lima || «„*/-/||p = 0 for all feLp(G)

with 1 ^ p<co. (See Loomis [8].) Since G is a locally compact Hausdorff space

we may assume that ua e C^^G) for all a es4. life C(G) is uniformly continuous

it is easy to show that lim^ ux *f(x) =/(x) uniformly for xeG.

The following notation will be used for the various Fourier transforms:

ft*) m      (-x,x)dp(x), peM(G).

fix) = f ( - x, x) fix) dx, f e ¿i(G).

If geLA[G) we will write

g(x) =       (x,x) g(x) dx.
J G

The Haar measure on G is normalized so that \G |/(x)|2dx = ¡$\fix) |2 dx

for feL^G) n L2(G). If N c M(G) then A/" denotes the set of functions p

where peN.

P(G) denotes the set of continuous, positive definite functions defined on G,

and [Lt(G) n P(G)] denotes the linear space spanned by Lt(G) n P(G). If

fe [L^G) n P(G)~] then / = geL^G) and f(x) = £(x) for all x £ G [8]. From

this it is seen that [Lt(G) n P(Gy]" = \_Lt(G) r\P(G)~¡. A simple argument using an

approximate identity shows that [L^G) n P(Gy] is dense in LP(G) for 1 = p < co.

Since (Lt( G)) "is dense in Cœ(G) it follows that [L^G) n P(G)] = [Lt( G) n P( G)] "

is dense in (^(G).

3. L^G). Throughout this section we assume that (beL^iô) is of the form

<b(x) = p(x) a.e. for some p e M(G). Theorems 4 and 5 present respectively ne-

cessary and sufficient conditions on (b in order that <b(x) = f(x) a.e. for some

feLx(G). A special case of these theorems, combined with the generalization of

Theorem 1, gives Berry's theorem.

Lemma 1.     IffeL¡(G) then the linear functional defined by

Fig) = [g(x)f(x)dx

for geLx(G) satisfies the following condition;

For every p with 1 ;£ p < co and every e > 0 i6ere exists a ô > 0 depending

only upon p, e and f and such that

\F(g)\è s IML

whenever g e LP(G)  n Lm(G) and

I'U'I'I-
Proof. Let p and e be given and fixed. Assume that \\g\\«> = 1. Then we

must find a ö > 0 such that | a ||p :£ Ô implies | F(g) | ^ s. If this were not possible
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there would exist a sequence of functions {g„} with || gn\\x = 1, || gn ||p < 1/n and

|p(an)| > e > 0. Then there exists a subsequence {g„k} such that a„fc-+0 a.e. on

the set where f(x) # 0. Hence by the theorem on dominated convergence

F(g„k) = Sg 9nk(x)f(x) dx tends to zero. This contradiction proves the lemma.

Theorem 4.   If <f> =f a.e. for some feLt(G) then the linear functional

defined for geLx(G) by

F(g) = f g(x)<P(x)dx

satisfies the following condition:

For every p with 1 ^ p < oo and every e > 0 there exists a ô > 0 depending

only upon e, p and </> and such that

\F(g)\$4$U
whenever ge^L^ô) niP(G)~\ and

|*|,-á<|0|.-

Proof.   If g e [L^Ô) n P(G)] then g e \_Lt(G) n P(G)] and hence a e L„(G) n

Lœ(G). By Fubini's theorem

F(g) =   Í   g(x)(j)(x)dx =      g(x)f(-x)dx.
Jg Jg

The result now follows from the lemma.

Theorem 5.    Suppose   </> = p a.e.  for  some peM(G).    Then   <p~f a.e.

for some feL¡(G) if the functional defined by

F(g) =   \^g(x)<f>(x)dx
J G

for geLi(G) satifies the following condition:

There exists a p with 1 ^ p < oo such that for every e > 0 there is a ô >0

depending only upon e, p and <p and such that

\F(g)\^z\\g\U

whenever ge^L^G) nP(G)] and

Proof.   If a e [Li(G) n P(ôy] then by Fubini's theorem

F(g) = ¡^(x)cb(x)dx =    f  g(-x)dp(x).
J G Je

Hence it is sufficient to show that if p is not absolutely continuous then there

exists a sequence of functions {gn} with gne^Ll(G) nP(G)~\ — \Li(G) nP(ô)~\"
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and such that || a„ ||œ -> 1, || g„ \\p -* 0 but such that ¡Ggn(x) dp(x) does not tend

to zero as n -+ co. Here p is an arbitrary number with 1 ^ p < co. It is also suf-

ficient to assume that p is a real valued measure since we will make the functions

g„ real valued.

Now assume that p has a nontrivial singular part X. In general | X \\

= sup { | JG6(x) dX(x) | | 6eC0000(G), 6 is a real valued and {{hW^ — 1}.

However since X is singular with respect to the Haar measure m the supremum

may be taken over just those functions for which m (support of h) ^ n where n

is an arbitrary positive number. In order to see this assume that X is positive.

The general case involves considering the positive and negative variations of X.

Then since X is regular | X || = sup {X(K) | K c G is compact, m(K) = 0} where

X(K) = inf { ¡Gg(x) dX(x) \ g e Cœx(G), g(x) = 1 for xe K and 0 S g(x) ^ 1}.

Since m('K) — 0 it is clear that the functions in this last expression may be taken

with m (support of a) :£ n, r\ > 0 and n independent of K.

Thus for every n = 1,2,3,... there exists a real valued function h^C^^G)

such that || h„ \\x = 1, | X || - | ¡Gh„(x)dX(x)\ ^ n-1and m (support of 6„) g n_1.

For each h„ we can choose a real valued function uneCxa0(G) from an approx-

mate identity such that

\K(x)-h„*un(x)\ a«"1.

The functions gn = hn*u„ then have the required properties. In particular

being a convolution of functions in C^^G), a„e[Li(G) nP(G)~] and

I gn \\p  ^   || K \\p || «„I,   =   || K ||„  g  [m (support of 6„)] 1/p ̂  n-1/p.

From | 6„(x) — g„(x) \ s¡n-1 it follows that

|| ff„ I « -» 1 and        9n(x) dX(x) -> || X || as n -^ co.

Writing

9n(x)dpix) =       gn(x)dX(x) +       g„(x) d(/t - A) (x)
.' G J G J G

we see that fG g„(x) dpix) -» || A || # 0 since by Theorem 4 the second integral

tends to zero. This proves the theorem.

Theorems 4 and 5 combined with Theorem 1 reduce to Berry's theorem

(Theorem 2) by letting G be the real line and p = 1.

We now apply Theorem 5 to prove Salem's theorem with slightly weaker

hypothesis. The notation is the same as in the statement of Theorem 3.

Theorem 6.    Suppose that

1       /• 2n 1      /» 2re

-6„n-1=—      /(x)cosnxdx,   a^1^—]   /(x)sinnxdx,   n = l,2,...,
¿n J0 271J0

/or some continuous function f defined on the unit circle. Then f is an absolutely

continuous function of bounded variation and
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»2ít i        (.2«1        f. ¿tí i        /.¿n

a„ = —I   /'(*)cos nx d*»   ^n =  ^~ \    f'(x) sin nx dx
271  J0 271  J0

if and only if condition (B) of Theorem 3 fto/ds.

Proof.   We will prove only the sufficiency of the condition.

Let Z be the class of all functions g(x) = Z"=1(a„cosnx + ß„smnx) for which

g' exists and has an absolutely convergent Fourier series. Then ge(Z) if and

only if geZ and \\g ||œ ^ 1.

For geZ define the linear functional F by

™ - -¿ í /(*)0'(*)d* = 2 (AA + M,)-
2tT ,/ o n = l

The continuity condition (B) and the fact that

t(oc2„+ß2n)=±J2*\g(x)\2dxS\\g\\l
» = 1 ¿n J 0

imply immediately that F is a bounded linear functional on Z. Since Z is

dense in C(0,27t) F can be uniquely extended to a bounded linear functional

F defined on C(0,27t). By the Riesz representation theorem for linear functional

of C(0,2n) there exists a function of bounded variation a such that

«*~sl
2%

g(x)da(x), geC(0,2n).
0

Letting g(x) be cos nx and sin nx gives

•i     " 2 it /» 2 it

a„ = —-     cos nxda(x) and b„ =      sinnxo*a(x).
2ti Jo Jo

This proves that (a„, t„) is the set of Fourier coefficients of a function of bounded

variation. The theorem now follows from Theorem 5 by taking G to be the circle

group and p = 2 and observing that if condition (B) holds for g e Z then it must

also hold for g e [Li(0,2rt) n P(0, 2te)].

4. Li(G) nLp(G) for 1 <p^ co. Presented in this section are two necessary

and sufficient conditions on <j>eLK(G) in order that <j> = f a.e. for some fe

Lx (G) n Lp(G) : Theorem 7 gives a continuity condition on the functional F(g)

= fgg(x)<b(x)dx ior geL^G); Theorem 9 presents a multiplier condition on <p.

Theorem   7. Suppose that </> = p a.e. for some peM(G) and define

F(g) = j^g(*)<K*)dx

for g eLi(G). In order that <p =f a.e. for some feLy(G) nLp(G) with 1 <p ^ oo

if is necessary and sufficient that there exist a constant K > 0 such that
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\F(9)\ïK\\g\\q

for all g e [L^G) n P(G)~] where 1/p + I/o. = 1.

Proof. A proof of the necessity of the condition is readily constructed by using

the techniques of the sufficiency proof in reverse. We therefore proceed directly

to a proof of the sufficiency.

Assume that there exists aK>0 such that

| F(g) | ^ K || g ||, for all g e [L^G) n P(Gf].

Define the linear functional H on [L^G) r*P(G)Y = [Li(G) nP(G)~} by

Hiß) = Fig).

Since Fourier transforms are unique H is well defined. Furthermore

\Hig)\£K\\g\\t

for all ge^LAf}) r>P(G)~\. This shows that H is a bounded linear functional

defined on a dense subset of Lq(G), and hence H can be extended uniquely to

all of Lq(G) without changing its norm. Let H be the extension of H. Then there

exists a unique function feLp(G) such that

8(g) = f g(x)f(-x)dx
J G

for all g e Lq(G). If g e [L,((5) n P( G)]

F(g) =   A g(x) ^ (x)dx = I   g(x) [    ( - x, x) d p(x)~\ dx =       g ( - x) dp (x).
Jg J g J g J g

Since F(g) = r?(g ) we have

g(- x)dpix) =    g{x)fi- x)dx =     g(- x)/(x)dx
Jg Jg Jg

for all ge[Li(G) nP(G)]~ = [L^G) nP(G)]. The fact that [L^G) nP(G)] is

dense in Lq(G) and C^G) implies that

g(x)dp(x) = \   g(x)f(x)dx
J G J G

for all g e Cœoo(G). From this it follows that

\\fI = sup ( | jgix)fix)dx\ (geC^G),^^ S 1 )   < + co.

Thus/eL^G) as well as LpiG), and jù(x) =/(x) for all xe G. This proves the

theorem.

If G is compact it is not necessary to assume that <p = p a.e. for some p e MiG).

In this case ||g||4^ ||g||oo for geL^Ú), and the condition |F(g)| ^K\\g \\q
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implies that \F(g)\ ^ K \\g ||w. Since for G compact Li(G) = [L^G) n P(Ôy]

this holds for all geLÁ[ú). The generalization of Theorem 1 then insures tha

<j> = p for some /i g M(G).

In the case that G is compact Theorem 7 implies th; Riesz-Fisher theorem.

For let <t> he an element of L2(G). Then if g e {LA[G) r\P(Gf\ we have | F(g)\

Ú || <A ¡21| Q ||2 = || 0 ¡2 10 ¡2» ana from Theorem 7, </> =/ for some/e L^G) n

L2(G)=L2(G).

The next theorem is related to certain older results by H. Cramer [2]. We

omit the proof since it is almost a direct consequence of Theorem 7.

Theorem 8. Let {/„} be a net of Fourier transforms with fa e LY(G) n Lp(G)

where 1 < p ^ oo, and such that \\fx \\p ̂  K < + oo. If([> = p a.e. for some

peM(G)andif

lim      g(x)fjjc)dx = \g(x)d)(x)dx
•'G "'G

/or a// a e [LX(G) n P(G)] then <f> = f a.e. for some fe Lt(G) n LP(G).

The final theorem is an addition to the extensive literature on multipliers or

factor functions. The proof is modeled after the proof of a similar theorem

by Helson[6].

Theorem 9. Suppose that </>eL00(G). Then <j> = /a.e. for some feLi(G)n

LP(G) with 1 < p <¡ oo if and only if <p ■ fe(Lt(G) nLp(G)f for all geLi(G).

Proof. The necessity of the condition is just the fact that/* a eLi(G) r>Lp(G)

and (f*gY =/• g. To show the sufficiency we first observe that the condition

implies that </> -g e(Li(G))~ for all geLt(G). Thus by Helson's theorem [6]

(b = p a.e. for some p e M(G). This p defines a bounded linear transformation

g -» p*g of Li(G) into Lj(G) with

||ji*ff|i^|M| II«¡i.    aeL^G).

The condition of the theorem implies by means of the closed graph theorem that

this transformation is also bounded from Li(G) into Lp(G). Thus there exists

a constant K > 0 such that

\\p*g\\p^K\\g\\1,geLi(G).

Ler {«„} be an approximate identity for LAfJ). Then for ge[Lj(G) r\P(G)~]

P(s) —      d(x) <t>(x) dx = lim      g(x) p\x) ux(x) dx = lim    g(— x)p* ua(x) dx.
Jg a  Jg a Jg

Combining the above inequalities give

| F(g) | ^ lim I p * ua \\p || g ||, ^ lim K || ua ||, || g\v and since | «« || i = 1
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we get

\F(g)\íK¡g\\q

for all gelL^G) nP(G)~\. The result now follows directly from Theorem 7.

Theorem 9 can also be proved by using a result of Edwards [4] concerning

the form of bounded linear transformations from Lt(G) into LP(G) which commute

with translations. From Edwards' theorem and \\p*g \\p ̂  K \\ g \\x it follows

that p * g =/* g for all g e LAfS) where fe LP(G). It is a simple consequence that
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