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Introduction, (a) In 1925, Hasse [2] proved the following existence theorem:

Let K be a field of algebraic numbers, and PX,...,PS prime ideals of the ring

A of algebraic integers of K; for each i = 1,..., s denote by K¡ = A/P¡ the residue

class field of A modulo P¡. Suppose given, for each i = 1, ...,s, g¡ positive integers

en> •••»*«« and g i (non necessarily distinct) algebraic extensions Xl71 K¡ of finite

degree ftj   (j = l,...,g¡) in such a way that

91

(1) S e j -ftj = n (for every i = 1,..., s).
/-!

Then, there exists a finite extension X of K, having degree n, such that, for each

i = 1, ...,s, the prime ideal P¡ decomposes in the field X as a product

Pi = n p«r>

Pu being prime ideals of the ring A of algebraic integers of X, having residue

class field AIPi} = Ku.

(b) In 1959, Krull [5] indicated (among other results) the following general-

ization of Hasse's theorem:

Let K be a field, let vx,...,vs be discrete valuations (of rank 1) of X, and assume

thatK has at least one further discrete valuation v; for each i = 1, ...,s, denote

by X, = K/v, the residue class field of K with respect to the valuation v¡.

Suppose given, for each i = 1, ...,s, g¡ positive integers eiX, ...,eig. and g¡ (not

necessarily distinct) simple extensions Ktj of K¡ of finite degree fu (J — 1, ...,g¡)

[in particular, this is the case when X¡y | K¡ are finite separable extensions, for

example, when the fields X¡ are perfect]; furthermore, we assume that for

every i = l,...,s the relation (1) holds. Then, there exists a finite separable

extension X of K, having degree n, such that for every i = l,...,s, the val-

uation i>; of K has g¡ distinct prolongations viX.vig. to X, having ramification

indices eu and residue class fields X/u0- =XM (j = 1, ...,g¡).

Krull's theorem applies to fields of algebraic functions of one variable over a

finite constant field, or over a constant field of characteristic zero; the extra

valuation required in the hypothesis may be taken to be the valuation at the

"point at infinity" in the classical sense.

(c) In our paper, cf. [8], we have proved a result along the line of Krull's
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theorem; instead of s valuations of K we dealt there with only one valuation,

which was supposed to be discrete of rank r=l.

In the prolongation of this valuation to a separable extension, it is possible

to specify independently the ramification indices, the extensions of the residue

class field and the tree to be generated by the prolongations of the valuation.

(d) It is our purpose here to complete our previous investigations, obtaining

a similar theorem, starting from a finite set of discrete valuations of rank r ^ 1

in a field K, which may generate any tree whatsoever.

We obtain an existence theorem, whose full statement will be given after adequate

terminology is introduced.

1.   Definitions.   In order to prepare for the statement of the main theorem

we must introduce several concepts.

Definition.   A free (of length r = 0) is a set X satisfying:

(1) X is a finite ordered set (by a relation ^);

(2) X has first element ô ;

(3) for every element y e X the set {y ' e X | y ' ^ y} is totally ordered ;

(4) all the maximal chains in X have r + 1 elements (these conditions are

mutually independent).

It follows that:

(5) X is an inf-lattice: if y, y'eX then there exists the infimum y a y'eX.

Definition. Let X be a tree. The /en0f A of y e X is said to be I «Ay) = I whenever

the set {y'eï|y'^y} has l + l elements.

In particular, ô has length 0, the maximal elements of X have length r (equal

to the length of X).

We denote by 9JÍ the set of all maximal elements of X and by 23 the set of all

elements of X with length 1.

Definition. A value function of the tree X (of length r) is a mapping T that

associates to each yeX a totally ordered abelian additive group, T(y),satisfying

the following conditions:

(6) T(y) is a group of rank r if and only if y is a maximal element of X;

(7) if y' ^ y there exists a homomorphism ( of ordered groups) 0vy: T(y) -» T(y')

which is onto T(y'), and moreover, this homomorphism is an isomorphism

if and only if y = y';

(8) if y" á y' = y then 6yy = 0y.,y.. o 9y,.,..

From the above conditions 6, 7, 8, we deduce:

(9) r(y) is a group of rank / if and only if y is an element of length I of X;

(10) T(ô) = 0, trivial group.

Definition. A field function of the tree X (of length r) is a mapping ft that

associates to each yeX, y # <5, a field ft(y), satisfying the following conditions :

(11) if y' <L y, y' # ô, there exists a place nyly' of ft(y'), with value field equal

to ft(y) (in particular, this place is trivial if and only if y' = y);
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(12) if y" á fá y, y" *» S then rty/y" - (ny/y')°(^'/v").
Definition. Let ï be a tree, T a value function of X and ft a field function of

X. The triple (I = {X, T, ft} is called a configuration. We say that G has length

equal to the length of the tree X.

Definition. Let G = {X, T, ft}, (£' = {X', T', ft'} be configurations. A mapping

T.X-+X' which is an order preserving isomorphism from X onto X' is called an

isomorphism of G onto G' whenever the following conditions are satisfied:

(13) for every yea: : Y(y) = r'(/(y));

(14) for every y eX, y * b : ft(y) = ft'(/(y)).

A finite set 23 of valuations of finite rank r of a field K defines a configuration

in the following way.

Let X be the set of all valuations of K coarser than at least one of the given

valuations. Then, X is a tree of length r, as it is well known (cf. [6; 8]).

For each valuation veX let us consider its value group viK); the mapping

v -»• viK) is a value function of the tree X. If v' ^ v in X, then there exists a prime

ideal P of the ring of v, such that v' = vP; if A is the isolated subgroup of viK)

corresponding to P, we take 0„_„- : t>(K) -» v'(K) to be the quotient mapping

by A.
For each nontrivial valuation veX, let us consider the residue class field

K/v of K with respect to v; the mapping v -+ K/v is a field function of the tree X.

If t>' <s » in £, if »' = t)p, let t>/P be the valuation of K/v' having ring AjP; we

take njv' to be the place of the field K/v' associated with the valuation vjP.

Hence, we have assigned to K and the set 23 of valuations the configuration

G = {X,v-*viK), v-+ K/v}, which we call the configuration of K generated by

the set 23 of valuations of rank r.

Definition. A tree X is a prolongation of a tree X (or lies over X) when there

exists a mapping p :X-^-X such that:

(15) p is an order-preserving mapping onto X;

(16) for every yeX: Zz(y) = hipiy));
(17) if y, y'eX and p(y) < p(y') there exists yie2 such that y ^ y[ and

Piy'i) = PÍy')'< (these conditions are mutually independent).

It follows that:

(18) if y < y' in % then p(y) < p(y') in 2;

(19) p(y) = ô if and only if y = ô;

(20) p(y) is maximal in % if and only if y is maximal in X;

(21) the length of (£ is equal to the length of C

Definition. A configuration (£ = {X,T, ft} is a prolongation of a'configuration

G = {I, r,ft} (or lies over (£) whenever the tree X is a prolongation of X (with

a mapping p) in such a way that:

(22) for every yeX the group T(p(y)) is an ordered subgroup of the group

L(y);
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(23) if y' ^ y then 0p(y)i(,(y0 is the restriction of 6y¡r to r(p(y)); i

(24) for every ye 2, y ̂  ô, the field $t(p(y)) is a subfield of R(y);

(25) if y' ^ y, y' ? Ô, then  Jtp(y)/p(y') is the restriction of nyly' to Ä(p(y')).

It follows that the groups T(y), T(p(y)) have the same rank, equal to /s(y)

= h(p(y))-
The mapping p is called the covering mapping of G over (£.

It is clear that if (£, (£, (£' are configurations and (£ lies over (£, (£' lies over

(£, then (£' lies over (£.

Let X be a field and 35 a finite set of valuations of rank r of X; let X be

an algebraic extension of degree n over X and 33 be the (finite) set of valuations

of X extending the valuations in 33.

Then, the configuration f£ of X, generated by the set 93, is a prolongation of

the configuration C of X generated by the set SL

Indeed, we take for p(v) the restriction of the valuation v to the subfield X and

we conclude using well-known results of the theory of valuations [8 ; 10].

Let us denote by 2(23) the tree defined by the set of valuations SÎ and by

X(93) the tree defined by the set 93 of their prolongations to X.

If v e 2(93), let 5(f) = {v' e 93 |u'^u}; in this set we introduce the equiva-

lence relation v' = v" (in $(v)) when v', v" have the same restriction to X.

We point out the following trivial facts: 3(u0) = 93 (where t;0 is the trivial

valuation); if vx,v2 62(93), vxi=v2, and have the same rank, then ^(vx)n> 5(t>2)

= 0; if vx,v2 6 2(93), vx ̂  v2 then g(t>,) 2 %(v2).

For each valuation v e 3Î let us denote by (£(») = {t; e 931 p(v) = v} ; then

(£(») is an equivalence class in  $(v0) = 93.

Let9B be the set of all we 2(93) having rank 1. In 973 we define the equivalence

relation: wx = w2 (in 9B) whenever their restrictions to X coincide. If we2(9}),

and it has rank 1, \et(èx(w) = {we3!B| the restriction of w to X is w}; then (¿x(w)

is an equivalence class in 913.

Now, if ve 33, if m» is the unique valuation of X, of rank 1, v ^ w, we have:

the sets (£(») ng(vv), where we(&x(w), are pairwise disjoint,

(2) (£(»)=      U      WnW

and (£(») n g(w) ^ 0   if and only if we&x(w).

We give now a proof of these last assertions. If w,w' e ¡èx(w), w # w', then

5(w) n 5(w') = 0, hence the sets <£(»)n3(w) are pairwise disjoint; if ue93

has restriction to X equal to v, then the unique valuation of rank 1 w,v~2lw, has

restriction w, so we(£x(w) and tie<S(r)n0'W; finally, let we&x(w), then

(cf. [10]), there must exist a valuation t; of X whose restriction to X is » and such

that w ^ v, which shows that (£(») n $(w) # 0; conversely, if ve(S(v) O 5(WX

then the restriction of w is coarser than v, hence coincides with w.
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Let us suppose, furthermore, that:

(i) each valuation v e 31 is discrete of rank r ;

(ii) for each valuation v' strictly coarser than some of the valuations ue23,

the residue class field K/v' is a separable extension of K/v' (where v' is the restric-

tion of v' to K); in particular , K is also a separable extension of K.

If v e 2(23) and v is its restriction to K, we let e(i>) = (t<K):t>(K)),/(i;)

= [K/v : K/v] ; in particular, if v is the trivial valuation v0, then e(v0) = 1,

f(v0) = n = lK:K].
Then, with above hypothesis and notations, we have, for each r'e£(23) and

for each equivalence class G in ^(v'):

(3) f(V) = I     e^,-fiv)
vtS      eiV)

(cf.  [10]). In particular, when we consider the trivial valuation, we obtain for

each valuation v e SI :

(4) n = [K:K]=     I     «(»)•/(»).

All these considerations suggest us to introduce some definitions and nota-

tions.

Let G = {2, T, ft} be a configuration, let G = {X, T, ft} be a prolongation of

the configuration G, p the covering mapping.

For each y e X let g(y) = {y' e X | y' = y, y' maximal in X} ; in this set we intro-

duce the equivalence relation y'sy" (in 3Ky)) whenever p(y') = p(y").

(26) We have: g(<5) = SETI (set of all maximal elements of X); if yi,y2e!£,

yt ^ y2 and yuy2 have the same length, then g(y,) n 3f(y2) = 0; if 7i,y26£>

yx ̂  y2 then gfa) 2 3í(y2).
The proofs are straightforward.

For each y eSDl (set of maximal elements of 2), let G(y) = {ye£|p(y) = y};

hence each y e G(y) has length r and G(y) is an equivalence class in SR.

Let 23 be the set of all ßeX with length 1. In 23 we define the equivalence

relation: ßi=ß2 (in 23) whenever p(ßi) = p(ß2). If ße2, with length 1, let

®i(ß) = {/?e23|p(/3) = ß}: then Gi(ß) is not empty and it is an equivalence

class in 23.

(27) Now, if ye9K £ 2, if ß is the unique element of 33 S 2 (of length 1),

ß <; y, we have: the sets G(y) n $(/?), with piß) = ß, are pairwise disjoint,

S(Y)=     U   Wy)n%iP))

and G(y) n g(/3) * 0 if and only if ß eGi(ß).

Indeed, if /?, p" e (g,(ß), 0 # ¿3' then ¿(J?);n gí/T) = 0, hence the sets G(y)

ng(j8) are pairwise disjoint; if yeSUÎ, p(y) = y then for the unique element
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ße 93 such that ß£y, we have p(ß) ^ p(y) = y, hence p(ß) = ß and ße®x(ff),

y eCS(y) n %(ß). Finally, let ¿Seg^ß), let y e (£(y), hence p(j?) = ß ^ y = p(y),

hence there exists (by property 17) yx e% such that ß ^yx and p(yx) = p(y) = y,

that is yx e ©(y) n g(jS); conversely, if ye (£(y), y ^ ß, then y = p(y) ^ p(/ß),

so that p(j3) = ß and ße (^(ß).

Definition. Let (Ê = {2, T,jt}, G = {2,r, ft}, be configurations such that

£ is a prolongation of (£. We say that (£ is an admissibble prolongation of (Ê

whenever:

(28) for every y e 2 the index (T(y) : T(p(y))) is finite, denoted by e(y) ;

(29) for every y e 2, y # <5, the field ft(y) is a separable extension of ft(p(y))

of finite degree, denoted by/(y);

(30) for every y' e2, y' # <5 and for each equivalence class (£ of 3(y'):

(5) /(r0- S   -aâ-'/M;
y«r<ï        e(?)

(31) for any two equivalence classes (£, (£' in 5(ó) = 9JI we have:

(6) Ie(y)-/(y)=   I   */)•/(/).
y£<8 y'ett'

2. The theorem. We want to now prove the following converse existence

theorem :

Theorem. Let K be a field, 33 a finite set of discrete valuations of rank

r ^ 1 of the field K, let (Ê = {2, »-»-»(X), »-* K/v} be the configuration of K

generated by the given set of valuations. We suppose:

(32) for each ueZ having rank strictly smaller than r, there exists a dis-

crete valuation v' of rank r such that v' a v = u for every t> e SJ, v > u.

Let (Z be a configuration which is an admissible prolongation of (£, and de-

note by p:2->2 the covering mapping o/(£ over (£.

Then, there exists a finite extension X|X such that:

(33) X| X is separable;

(34) there exists an isomorphism I of the configuration (£ onto the configu-

ration of X generated by the set 93 of valuations which extend the valuations of

3Î to X, in such a way that p(y) is equal to the restriction to X of the valuation

Ky)ofK;
(35) for each valuation t>e9J:

[K:k-]=le(v)-f(v)

(sum over the set /(£(») of valuations v of X which extend v).

Proof. The theorem will be proved by induction on the rank r.

If r = 1 the theorem reduces to Krull's existence theorem [5], the hypothesis

32 being exactly Krull's hypothesis of the existence of a further discrete valuation

of rank 1 in K.
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We now suppose that r > 1 and that the theorem is true for fields with the

above properties and given valuations of rank at most r — 1.

Let 23 be the set of elements of length 1 in X.

For each ße 23 we shall define a configuration G^.

Let Xß = {y eX\ ß ^ y} ; Xß is again a tree, with first element ß and length

r — 1 > 0. We remark that lZß(y) = lz(y) — 1 for every y eXß.

Let Tß be a mapping that associates to each y e Xß the following totally ordered

abelian additive group : Tp(y) = ker 97fß.

Then Tß is a value function for the tree Xß. Indeed, Tß(y) is a group of rank

r — 1 if and only if y is a maximal element of Xß, because riß) has rank 1, hence

ker 9y¡f has rank r — 1 whenever T(y) has rank r. If y' ^ y we define (0,jL,y' :

Tßiy) -* Tßiy') as the restriction of 0y>y. to Tp(y); for that purpose, we must notice

that from ß ^ y' ^ y it follows that 97if = 6y.tßo9yy,, hence Tß(y) = ker0y£

= 0~¿ (ker 6y',ß) = 6y,y'[Tß(y')]; on the other hand, (6ß)7ir is onto T^y') =

ker 9y.ß as is shown by the commutative exact diagram below:

(7)

-> ker 9y y.

U

r.y,ß
-*r(y)

-» ker (9ß)y r-> Tß(y)

■+ riß)

(">)„.

0/,p

->   r(y')-

-> 0

-> 0

-> r.(y')->o

Indeed, let aeFßiy'), then there exists AeT(y) such that 0y>y-(A) = i2(a). But

0 = 0y,_„ o i2(a) = 0y,>/( o 0yy.(A) = ix o 0y>í(A), hence 0y,e(A) = 0, so we have

A = i3(c) for some c e Tp(y) and i2 o (0p)y>y.(c) = 0?jy. o j3(c) = i2(a) from which

we conclude that (0p)y>y'(c) = a.

Moreover, (0ß)yy is an isomorphism if and only if y =

show that the mapping i4 is onto ker0yi,.. Let aeker0

0y>y.(A) =0, hence 0 = 9rs ° 0y>y-(A) = i, o 0y>/)(A), thus 91<ß(b) = 0 and there

exists ceTßiy) such that i3(c) = A; it follows that 0 = 0y_y. o i3(c) = i2<> (9ßyy,(c)

y'; it is sufficient to

■ and ¿5(a) = A, then
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hence (9ß)ytr(c) = 0 and there exists deker^),, y. such that i6(d) = c; finally,

's ° U(d) = i3 ° i6(d) = b = is(a), so U(d) = a.

Finally, if y" ^ y' i£ y then (0ß)>>y» = (fyV,y" ° (öp)y,y- because those mappings

are defined as restrictions of corresponding mappings 0yy-, öy>y», 0y._y».

Let now Rß be the mapping that associates to each y e Zß, y # ß, the field

Rßil) = &(y)', we put also (nß)yly' = nßjy' whenever ß < y' S V-

Then, this mapping is a field function for the tree Xß, the conditions being

trivially satisfied.

This being so, we now have, for every ;8e93, a configuration &ß — {Zß,Tß,$tß}

whose tree has length r — 1.

Let SB be the set of valuations we2 having rank 1; hence, by 16, SB = p(93).

For each we SB, let 9J(w) = {t>e93|»^ w}; then the sets 93(w) are pairwise

disjoint and their union is 93. For each w e SB we denote also by ß^w) = {ß e 93|

p(ß) = w}, hence these sets are nonempty, pairwise disjoint and their union is

93. Similarly, for each v e 93 let g(t>) = {ye2|p(y) = »}, let we SB be the

unique valuation of rank 1 such that w g », then: ße(£x(w) if and only if

G(i')n5(jS)*0, and

<£(») =    U    (<£(») n W))

these sets being pairwise disjoint, by 27.

We remark also that the maximal ideal Q of the valuation ring of w e SB is

a prime ideal of the ring of every valuation v e 2 , v ^ w.

For each ße 93let X^, =X/w be the residue class field of X with respect to

p(ß) = w and for every » e 2, v ^ w, let v = u/Q; the fields Xp, X^ coincide when

p(/0 = Pin-
Then Zß - {v = vjQ | » e 2, o ^ w = p(/?)} coincides with the tree of Xp gen-

erated by the set 93/, = {v\ ve93, v ̂  w = p(0)} (cf. [6]).

We want to show now that the configuration &ß is an admissible prolongation

of the configuration C^ of X^,, (^ = {2^, v-+v(Kß), v-*Kßl~v}, generated by

the set 93^ of valuations of X^.

Let pß :Zß-*Xß be defined by pß(y) = p(y)/Q. We have indeed pß(y)eZß be-

cause p(y) e 2, y ^ ß, implies p(y) ^ p(ß) = w hence p(y)IQ e Zß.

(15/?) The mapping pß is clearly order-preserving and onto 2^: if veZß then

v = »/Q, with v e 2 = p(2), t> ̂ w = p(ß); if y e2 is such that p(y) = v ̂  p(/?),

there exists y' ^ ß such that p(y') =p(y) = v hence y'e2p and p/y') = v.

(16/0 If V 6 2, then, by 16, Jt(y) = /x(p(y)); as lxß(y) = /s(y) - 1 and p,(y)

= p(y)/Ö then hß(pß(y)) = /s(p(y)) - 1 = lxß(y).
(llß) Let y, y'e%ß and pP(y) < pß(y'); then p(y) <p(y'), hence (by 17) there

exists yie2, such that y<y/ and p(y[)=p(y'), hence pß(y'x) - pß(y'); from

ß g y < y'x it follows that yi e2„.
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Thus, we have established that Xß is a prolongation of Xß. We show now:

(22/3)  For every yeXß the value group of the valuation v = p(y)IQ of Kß is

an ordered subgroup of the group Tß(y).

Indeed, v(Kß) = A, isolated subgroup of v(K) (where v = p(y)^. w) which

corresponds to the prime ideal Q of the ring of the valuation v. On the other hand,

by definition Tßiy) = ker0y ß. By hypothesis, viK) is an ordered subgroup of

T(y), w(Äj is an ordered subgroup of riß) and 8p(y)pW = Qv¡w : v(K) -> w(K)

is the restriction of 9yß to v(K). Thus, we have the following commutative exact

diagram :

0V

(8)

0-.Tfiy)--i-► r(y) —*!£—> T(fi)

Î,

-» viK.) -Í2-> v(K)      Q"-w -»   w(K)

->0

->  0

Tiii

Indeed, let a e v(Kß) = A, A = i2(a), then 0„jM,(A) = 0 hence 0 = i4 o 0BjH,(A)

= 0y>p o i3(b) hence there exists ceT^iy) such that i^c) = i3(A) = i3 o i'2(a);

we define X(a) = c; thus fj o A(a) = ¡3 ° i2(a), the diagram is then commutative;

X is clearly an order-homomorphism and finally, if X(a) = 0 then 0 = (t o A(a)

= i3 o i2(a) hence a = 0.

(23/?) If y' g y in Ï/, then (0ß)Pß{y)iP ír) is the restriction of (0/,)y>y< to the value

group of » = p(y)IQ.

Let v = p(y), v' = p(y')» »' = »76- By hypothesis, r(K) is an ordered sub-

group of T(y), v'iK) is an ordered subgroup of r(y'), 0r „. :,s the restriction of

97t7. to viK).

Hence, the following diagram on the next page is exact and commutative.

Indeed, we want to show that p o (8/,)--. = (9ß)yy, ° X. Let aev(Kß) then

jiopo (%)iv(a) = 73 o 72 o (8,)—.(a) = j3 ° 8fî. o i2(a) = 0yy, o ¿3 o í2(a)

= 0y>y. o ¿j c X(a) = 7! o (0^, o X(a) hence p ° (8/,)j - <a) = (0p)yy. o A(a).

(24/9) Let y el/,, y //?; then ft/¡(y) = ft(y). On the other hand, the residue

class field of K/w = Kß by the valuation f= v/Q is the same as the residue class

field of K by the valuation v : Kßlv = K/v. By hypothesis, ft(y) = ft/,(y) is an

extension of the field K¡v = Kßlv.

(25/3) Let ß<y' = y, p(y') = »_', p(y)_=_i>, p¿y') = «70 = »', P/K?) = WC = »■
We show now that the place n-Jv' of Kß/v' = Ä7V (associated with the valuation

v/P, where t' = vP and P =P/Q) is the restriction of the place 7iy/y' of ft/,(y')

=ft(y').
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0-^kerö

A /X (e,)y,       S^
'-WO,)-.-*-r,(y)

0

(9)

Indeed, we remark that v/P = v/P and by hypothesis the restriction of the

place Jiy/y': ft(y')-> R(y) is the place associated to viP; we conclude noting that

&ß(y') = ft(?0, ft^y) = Ä(y) and (nß)yly' = ityJy'.
We know now that üß is a prolongation of C,ß, and we proceed to prove that

it is an admissible prolongation.

(28/?) For every y eXß the index (Tß(y) : v(Kß)) is finite (where v = vjQ, v=p(y)).

Indeed, from the exact diagram (8) we deduce:

(10) (r(y) : *(*)) = (r„(y) : v(Kß)) ■ (T(ß) : w(X))
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and the finiteness of (r^(y) : »(X^)) comes from the hypothesis which implies

that (r(y):r(X))is finite.

(29/?) For every yeXß, y # ß, the extension Rf(y)\(Kßjv) is of finite degree

(where v= p(y), v = v/Q) and separable.

It is an immediate consequence of the hypothesis, noticing that Rß(y) = Si(y)

and Kßjv = Kit.

(30J?) For each y^ß, let %ß(y) = {y'e%ß\y ■£ y', y' maximal in 2,};

let y' = y" in %ß(y) whenever pß(y') — pß(y"). We want to show that for

every y e 2^, y # ß, and for every equivalence class <&ß in $ß(y) we have

(11) [Rß(y) :(X>)] =  I    (W) : »'(*,)) . [Rß(yl) . (^/(F)]
»"«•/,     (I>(y) :<*,))

This will follow from the hypothesis, if we observe successively that Rß(y)

= Ä(y), «> = */», Ä/yO = Ä(y). V»' - */»'> by «sing the relation (10)
and finally by remarking that 5^(y) = 5(y) an^ also each equivalence class <£ß

coincides with an equivalence class (E, because p(y) = p(y') if and only if pß(y)

=Pß(y').

(31/?) Let (¿ß, <&ß be two equivalence classes in $ß(ß) = 5(/?); we have then:

(12) I   (Tß(y):h-(Kß))-[&ß(y) : X/)/ï]=   I (Tß(y') : v'(Kß))- [&ß(y'): X>'].
ye<iß y'€<iß.

Indeed, by hypothesis 30 and above considerations, we have

(13) W»:W-f5-ggf48 •[«»:««
where (£ is any equivalence class of $(/?) (which coincides with an equivalence

class of ^ß(ß)), hence by the relation (10) and above remarks we deduce that:

(14) [SW : K/w] =   I  (Tß(y) : v(Kß)) ■ [Rß(y) : R,fï\.
yíffi

The left-hand side being independent of (S, and the equivalence classes in (\$ß(ß)

being classes in g(/?) = %ß(ß), we have indeed the desired relation (12).

(32/?) We remark now that the tree %ß of length r — 1 verifies the condition

32 in the hypothesis of the theorem.

Indeed, let h e 2^ have a rank strictly smaller than r — 1; we have u = u/Q

where u e 2, u ^ w = p(ß) and u has rank strictly smaller than r. As 2

satisfies 32, there exists a discrete valuation »' of rank r such that t'a v = u

for every v e 93, v > u ; we conclude that »' ^ w and »' =v'¡Q is a discrete valua-

tion of rank r - 1 of X^, such that »' a v = m for every v = vjQ, veWß, v^ U.
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Hence, by the induction hypothesis, for each ß e 23, there exists a finite extension

Kß | Kß such that :

(33/3) Kß\Kß is separable;

(34/?) there exists an isomorphism Iß of the configuration G/, onto the con-

figuration of Kß generated by the set 23p of valuations of Kß which extend the

valuations of Kß belonging to the set 33/, = {v = v\Q | »e33, v - w = piß)};

moreover, pßiy) is equal to the restriction to Kß of the valuation Iß(y) of Kf ;

(35)3) for each valuation ve%iß we have:

(15) [K, :Kß]= 1 iviKf) : viKß)) ■ [Kß/v : Kt¡v}

(this sum being over the set Iß&ß(v) of valuations v of Kß which extend »).

We now turn to the consideration of the tree of length I X* = {ô} \j 23. We

define a configuration G* = {X*, T*, ft*}.

For this purpose, let T* be the restriction of T to the tree X* and 0^ be the

zero homomorphism of T*(ß), while 0*p, 9*ô are the identity isomorphism of

corresponding groups. Then, T* is clearly a value function of X*.

We define ft*(/3) = Kß for every /? e 23 and we let %*\ß be the trivial place of

Kß. Then ft* is a field function of X* and this shows that G* = {X*, V, ft*} is

indeed a configuration.

We consider now the tree 2* of K generated by the set SB = {we2| w with

rank 1} and we let G* = {2*, w -* w(K), w -* K/w} be the configuration of K

generated by the set SB.

We proceed to prove that G* is a prologation of Œ*.

We remark that p maps X* onto 2* and satisfies obviously the properties

which imply that X* is a prolongation of 2*.

As the mapping T* is the restriction of T to X* and 0^ is also the zero homo-

morphism, then properties 22*, 23* of the definition of prolongation of a con-

figuration are satisfied.

By construction, Kß = ft*(/3) is an extension of Kß = Kjw (where w = p(ß))

and property 25* is also trivially verified.

Finally, G* is an admissible prolongation of G*. Property 28* is trivial, pro-

perty 29* is satisfied by construction, as Kß | Kß is a separable extension of finite

degree; and property 30* is also trivial.

We now prove property 31*: if G*, G*' are equivalence classes in 3*(<5) = 23

we have:

I   (T(ß): wiK)) ■ [ft*03):KM =     I   (T(ß') -w'(K)) ■ [ft*(/?) : Kjw']
ptg» ß'e S*'

where p(ß) = w for every ße G*, piß') = w' for every /?' e G*'.

We remark that G* = Gi(w) and similarly G*' = G^w'): as &*(ß) = Kß> Klw

= Kß, we have to compute [Kß : Kß].
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We have already seen at the relation (15) that for every valuation » = v¡Q,

v — w, of Kß :

[Kß : Kß] =   I (v(Kß) : Ï(K„)) ■ \Kfß : *„/»],

sum over the set i/,Gp-(») of valuations v of Kß which extend ».

By the isomorphism Ifi of the configuration G/, onto the configuration of Kß

generated by the set 23 p of valuations of Kß which extend those in 33/,, we deduce

that y e G(t>) ng(/3) (that is p(y) = v, ß <; y in X) if and only if Iß(y) = ve//,G/,(»)

because » is equal to the restriction pßiy) of Ißiy) if and only if p(y) = », ß — y.

If Ißiy) = íe23/, we have v~iKß) = Tßiy), by 13, hence

iviKß) :v(Kß)) = iTßiy): viKß)).

Similarly, if Ißiy) = y e23/¡ we have ft/y) = Kß/v (by (14)) hence [Kßlv: Kßß]

= [ft/,(y) : Kßlv].
This shows that

\_Kß : Kß]  =   I (r,(y) : »(X,)) • [ft/,(y) : Kß(i]

y   jrjy)  : vjK)) .
-   L   (r(/0 : wiK))    t-^)-K/pJ

(sum over the set G(») n g(/3)), because of relation (10) and ftp(y) = ft(y),

Kßlv = K/v. So,

I    (r(/3) : W(/i)) • [ft*(/?) : K/m»]
/itŒ*

-      Z I (r(y) : »(K)) • [ft(y) : K/v]
ß£<tt(w)      j «««) ni(/i)

=      I      (T(y) : viK)) ■ [ft(y) : K¡v],
ytŒ(»)

by 27. But, by hypothesis 31, this last sum is in fact independent of the equival-

ence class G(»), which shows that G* satisfies property 31*.

We remark now that 2* satisfies the condition 32* in the hypothesis of the

theorem. We have to prove that there exists a discrete valuation w' of rank 1

in K such that w' £ 30. By hypothesis 32, given the trivial valuation of K, there

exists a discrete valuation »' of rank r such that »' a » is the trivial valuation

for every »e33. We let w' be the unique valuation of rank 1, coarser than »';

w' is discrete and  w'^SB.

Hence, the theorem being true for the configuration G* of length 1, there

exists a finite extension K\ K such that:

(33*) K| K is separable;

(34*) there exists an isomorphism /* of the configuration G* onto the con-

figuration of K generated by the set 2ß of valuations of K which extend the
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valuations of SB, in such a way that p(y) is equal to the restriction to X of the

valuation I*(y) of X ;

(35*) for every valuation we SB:

[X: X] =   I (w(K): w(X)) • [X/w: X/w]

(this sum being over the set /*(£*( w) of valuations w of X which extend w).

We now want to conclude the proof of the theorem by putting together

the partial results already obtained.

For that purpose, we define an isomorphism I of the configuration G onto the

configuration of X generated by the set 93 of valuations which extend the valu-

tions of 93.

We let 1(0) be the trivial valuation of X, I(ß) = I*(ß) = w for every ß e 93

and finally, if y e 2, y ^ /?, we let I(y) be the unique valuation v of X, v ^ w = /*(/?)

such that if w = vQ then v\Q = Iß(y).

The mapping f:2->2(93) (tree generated by the set 93 of valuations of X

extending the valuations of 93) so defined is one-to-one and preserves the order.

It is also onto 2(93), because if re2(93) there exists a unique valuation w of

rank 1, w ̂  v, of X; let ße 93 be such that I*(ß) = I(ß) = w, then X/w = Si*(ß)

= Kß; let v be the valuation of X/w corresponding uniquely to v and let yed^

be such that Iß(y) = v; then v = I(y).

It is also true that for every y e 2, p(y) is the restriction to X of the valuation

I(y) of X ; this is trivial for ô and for each ß e 93 ; if y e 2, y g ß, as pß(y) is the

restriction of v = v\Q = lß(y) to K/p(ß) = X^, and v is the unique valuation of X

corresponding to v, p(y) is the unique valuation of X corresponding to pß(y),

it follows that p(y) is the restriction of I(y) to X.

We must finally prove that for every valuation »e93 we have:

[X: X] =      I     (v(K): »(X)) • [K/v: X/»].
B < /<f(l>)

To obtain this relation, we make use of the relations already obtained:

(35*) [K:K]= I      (w(X):w(X))-[X/w:X/w];

noticing  that   (£*(w) = &x(w), X/w = Kf,  X/w = Kß  (where w = I(ß)) and

that we have

(35ß)

[Kß:Kß-]    =       I      (v(Kß):v(Kß))-[Kßlv:Kßl¥]
vf ißeßG)

»<%)ns(.)    (w(X)):w(X))
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we conclude by 27 that

[K:K]=       I I iviK):viK)) ■ [K¡v: K/v]

I      (KK):»(K))-[K/»:Jf/»].

This finishes the proof of the theorem.

3. Comments on the theorem.

(36) There is no loss of generality supposing that the given set of valuations

(of finite rank) of K is such that every valuation has the same rank, provided

we make a reasonable assumption on the existence of sufficiently many valu-

tions of given rank in the field.

In fact, in any case, let » e S3 be of maximal rank r and suppose that for every

»i e 33 having rank strictly smaller than r there exists a valuation ut of K, of

rank r, such that ut >vl. The set 33i of valuations of rank r so obtained is

such that 2(33) S 2(33i) ; moreover, we assume that a modified hypothesis 32

is satisfied for 33i. Then, the theorem is true for 33i, implying its modified va-

lidity for 33.

(37) The significance of the theorem may be roughly expressed in the fol-

lowing way: apart from the already known properties and relations satisfied

by the residue class fields, value groups, inertial degrees and ramification in-

dices of the prolongations of a discrete valuation of finite rank to a finite separable

extension, no other property or relation may be expected to hold in general;

furthermore, given a tree generated by a finite set of valuations of K, the tree

generated by their prolongations may be given at will, provided the necessary

conditions are satisfied.

In other words, no simplification in the general theory of prolongation of

Krull valuations should be expected.

(38) About the hypothesis 32, we recall a result by F. K. Schmidt [13], for

valuations of rank 1, which we have generalized for valuations of finite rank

(cf. [7]):

Let K be a field, complete with respect to a discrete valuation » of finite rank r,

if »' is a discrete valuation of K of rank r, then »' =» (up to equivalence);

similarly, if K is complete with respect to a valuation w' of rank r, then w' = »

(up to equivalence).

Hence, if hypothesis 32 is satisfied, then K is not complete with respect to

any valuation » e 33.

Thus, if K is complete with respect to a discrete valuation » of rank r, the

only case still left out of consideration gives rise to the following result:

Theorem.   Let K be a field, complete with respect to a discrete valuation v
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of rank r; denote by 0 cP, cP2 c ... <= Pr_x erPr=Ai the prime ideals

of the valuation ring A of ».

Let us give, for every P¡ # 0, an integer ei ^ 1 so that if i <j then e¡ divides e¡.

Let us give, for every P¡ # 0, a finite separable extension Xf of K¡ = K¡vP¡,

having degree f¡, and assume that for 0 # P¡ c P} we have:

(17) /.-*"//■

Then, there exists a field X, which is a separable extension of X, of

finite degree n = er- fr such that if v is the unique extension of v to X then

(vPi(K) : vP.(K)) = e¡ and K/vP¡=K¡ (i = l,...,r), where P¡ is the only ideal

of the valuation ring A of v corresponding to P¡.

Proof.   The theorem is true for a discrete valuation » of rank 1, as was shown

by Krull [5] C).

We suppose that the theorem has already been proved for a valuation of rank

at most r — 1.

Let w = vPi, hence K is complete with respect to w, and X = X/w is complete

with respect to v = v/Px (see [7]). Now, »is discrete of rank r — 1, for each

prime ideal Pj=PjjPx # 0 in the valuation ring of », we have vPj = vPJPx,

Kjvp-j = K/vpj, hence, for Px^P¡cz Pj we have

[Xi:X/»Jr(] = ^-[X,:X/»-JrJ

because of relation (17). Thus, by induction, there exists a field X, which is a

separable extension of X of finite degree, [X: X] = (erjex) • fr and such that if

v is the only extension of iTto X then (vft(K): vft(K)) = (eje,), K/vPi = X¡ (for

i = 2,..., r) where P¡ is the only prime ideal of the valuation ring A of v corres-

ponding to P¡.

Consider now the discrete valuation of rank 1 w of K, for which K is complete.

Given the integer ex and the separable extension X| X of degree (er¡ex) ■/„ by

the validity of the theorem for valuations of rank 1, we deduce the existence of

a field X, separable extension of X, of degree ex • (er¡ex) • fr => er • fr such that

if w is the only extension of w to X then (w(X):w(X)) = ex, X/w = X.

Let v be the unique valuation of X corresponding to v, that is, finer than w

and such that if w = vP¡ then v = vjPx. Then, v is the only prolongation of u

to X, because v is the only prolongation of » to X. Moreover K¡vPi = KjvPi

where Pf is the prime ideal of the valuation ring A of v, corresponding to P(,

P; = PJPX ; as P¡ corresponds to P¡/Px = P¡ then P¡ extends P~ and Kfif, = X¡.

(') In case the residue class field K/v=K is a perfect field, then the theorem might as well

be deduced from Hasse-Schmidt-Witt theory of fields, complete with a discrete rank 1 valuation

having perfect residue class field (Hasse [3]).
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Finally, (»¿(K): vPl(K)) = (vf^Ky.v^K)) ■ (w(K):m-(K)) = («,/«,) • e, = et.

This finishes the proof of the theorem.

Bibliography

1. I. S. Cohen and O. Zariski, A fundamental inequality in the theory of extensions of valu-

ations, Illinois J. Math. 1 (1957), 1-8.

2. H. Hasse, Zwei Existenztheoreme über algebraische Zahlkörper, Math. Ann. 95 (1925)

229-238.

3.-, Zahlentheorie, Akademie Verlag, Berlin, 1949.

4. W. Krull,   Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932),  160-196.

5. -,    Über eine Existenzsatz der Bewertungstheorie, Abh. Math. Sem. Hamburg 23

(1959), 29-35.
6. P. Ribenboim, Le théorème d'approximation pour les valutations de Krull, Math. Z. 68

(1957), 1-18.
7. -, Corps maximaux et complets par des valuations de Krull, Math.  Z. 69 (1958)

466-479.
8. -, Remarques sur le prolongement des valuations de Krull, Rend. Cire. Mat. Palermo

(2) 8 (1959), 152-159.
9. -, Sobre a teoria das valorizaçôes de Krull, Bol. Soc. Mat. Sào Paulo 11 (1956), 1-106.

10. -, Sur la théorie du prolongement des valuations de Krull,  Math. Z. 75 (1961),

449-466.

11. P.Roquette, On the prolongation of valuations, Trans. Amer. Math. Soc. 88(1958), 42-56.

12. O. F. G. Schilling, Valuation theory, Math. Surveys No. 4, Amer. Math. Soc, Provi-

dence, R. I., 1950.

13. F. K. Schmidt, Mehrfach perfekte Körper, Math. Ann. 108 (1933), 1-25.
14. O. Zariski and P. Samuel, Commutative algebra, Vol. 2, Van Nostrand, Princeton, 1960.

University of Illinois,

Urbana, Illinois


