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0. Introduction. It is the authors' purpose in this paper to initiate the study of

ring extensions for completely N primary noncommutative rings which satisfy the

ascending chain condition for right ideals (A.C.C.). We begin here by showing

that every completely N primary ring R with A.C.C. is properly contained in

just such a ring. This is accomplished by first showing that R[x~\, x an indeterminate

where ax = xa for all aeR,isN primary and then constructing the right quotient

ring QCR[x]). The details of these results appear in §§1,7 and 8. The correspond-

ing results for the commutative case are given by E. Snapper in [7] and [8].

If Re: A, where A is completely JV primary with A.C.C. then,from the discussion

in the preceding paragraph, it would seem natural to examine the structure of

R(o) when oeA and ao = era for all aER in the cases where a is algebraic or

transcendental over R. These structures are determined in §§ 6 and 8 of the present

paper.

The definitions and notations given in [2] will be used throughout this paper.

As in [2], for a ring R, JV or N(R) denotes the union of nilpotent ideals^) of R,

P or P(R) denotes the set of nilpotent elements of R and J or J(R) the Jacobson

radical of R. The letter H is used for the natural homomorphism from R to

R/N = R. If B is a subset of R then B denotes the image of B under H.lf JV = P

in R and if R' is a ring contained in R then JV(R') = NnR' and R' = R'/N(R').

Thus we consider the contraction of JJ on R' as the natural homomorphism

from R' onto R'/N(R').

Unlike the commutative case, the results of this paper will at times depend on

the three conditions (i), (ii) and (iii) of [2, § 3]. Therefore, we make the following

definition.

Definition 0.1. A ring R with identity is called an extendable ring if it satisfies

the three conditions :

(i)     P(q) is an ideal when q is a right P primary ideal(2).

(ii)    P(R) = N(R).
(iii)   The nontrivial completely prime ideals of R/N are maximal right ideals.

Received by the editors February 2, 1960 and, in revised form, September 11, 1961 and

October 26, 1961.

(!) Ideal shall always mean two-sided ideal.

(2) See [2, §1] for the meaning of P(q).
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The authors wish to thank the referee for many pertinent and constructive

comments.

1. Properties of R[x]. In [2] we defined a ring R to be N primary if ab = 0,

a^O implies beN and b=£0 implies aeN. A ring R with identity is completely

N primary if R/N is a division ring. Note that if R is N primary or completely

N primary then Af is a completely prime ideal and N=P. For the rings considered

in this paper N and P shall always be equal.

Theorem 1.1. IfR is N primary then, in the polynomial ring R\x], A/[x]=P[x]

= N(R[x])=P(R\_x])=J(R{x]).

Proof. We may write R[x]/N[x]^(R/N)[x] where JV[x] £ J(R[x]). Since R/N

is an integral domain it contains no nonzero nil ideals and hence, from Theorem

4 of [6, p. 12], R[x]/N[x] is semisimple. Thus J(R\_x]) = JV[x].

Certainly JV[x]=P[x]çP(P[x]). We now show that P(P[x])sP[x]. If

/e P(P[x]) then /"=0 for some positive integer n. Hence in K[x]/P[x] =(K/P)[x]

we have (/)" = 0(3). Since(P/P)[x] has no divisors of zero it follows that/e P[x].

Next we show that 7V(P[x])=JV[x]. Clearly JV(P[x])çP(K[x]) = JV[x]. If

fe JV[x] then /= a„x" + ... + axx + a0 for a¡eq¡ where q¡ is an ideal of R and

q¡' = 0 for positive integers t„ i = 0, 1, ..., n. Thus / is contained in the ideal

k = 0o W + 0i M 4- ... + 0„[x] and k'0+,i+"+'"+1 = 0. Hence feN(R[x]).

This completes the proof.

As a consequence of this theorem we have, for an N primary ring R, that

R[x]/N(R[x]) = P[x]/JV[x] S (R/N)[x]. Thus we can consider (R[x])~ as

R[x]. In this case, the natural homomorphism H from P[x] onto P[x] maps

the polynomial £a¡x' on E^x'.

Theorem 1.2. Let R be an N primary ring. Then /= a„xn + ... + a0 is a

unit of R[x] if and only if a0 is a unit of R and a1;..., a„e N.

Proof. If/ is of this form then /is a unit of P.[x]. Hence by 2a of [2] / is a

unit of P[x].

Conversely, if/= a„x" + ... + a0 is a unit of P[x] then /= ä„x" + ... + ä0

is a unit of R[x]. But since R is an integral domain it follows that/= ä0 is a unit

of R and ât = ... = û„ = Ö. Thus a0 is a unit of R and a1,...,a„eN(R).

Theorem 1.3. If R is completely N primary and Nn = 0for some positive

integer n, then R[x] is N[x] primary.

Proof. This proof will be by induction on the smallest integer n such that

JV" = 0. If n = 1 obviously R[x] is JV(P[x]) primary. By Theorem 1.1 JV(P[x])

= JV[x] and thus P.[x] is JV[x] primary.

(3) Here the symbol ~ denotes the coset modulo P[x].
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Suppose the theorem is true for all rings R where JV" = 0, JV"-1 #0. Let R

satisfy the conditions of the theorem and JVn+1 = 0, JV" # 0. Consider the ring

R/N". The radical of this ring is N/N" and (N/N")n is the zero coset. In addition

since (R/N")/(N/N")^R/N we have that R/N" is completely N/N" primary.

Hence, by the induction hypothesis (P»/JV")[x] is (JV/JV")[x] primary.

Suppose in R[x~\ we have fg = 0, g ¿0 and f$ JV[x]. Since (R/N)[x~\ is an

integral domain ge JV[x]. If g $ JV"[x],then/g = 0 in (jR/A")[x] and from above

/e(JV/JV")[x]. Thus/eJV[x], a contradiction. Suppose geJV"[x]. Let a¡ be the

coefficient of the highest power of x in / which is not in N. Since N"+1 =0 and

fg = 0, we have aibs = 0 where g = i»sxs +... + b0, bs # 0. Since R is complete-

ly A primary a, e N. Thus in any case the assumption that/g = 0, g ?¿ 0,/^ JV[x]

leads to a contradiction. Hence if g # 0 we can only conclude that /eJV[x].

Similarly if gf = 0 and/ # 0 then g e JV[x]. Therefore, R[x] is JV[x] primary and

the proof by induction is complete.

2. Extensions of rings. A ring A is an extension of a ring R if R £ .4. In the

remainder of this paper, unless otherwise stated, we assume that if A is an ex-

tension of R then R and A have the same identity element. If R £ A then A can

be considered as an R module(4) with submodule R. Thus, in order to develop

a theory for extensions of a ring, it is convenient to discuss some notions con-

cerning modules.

Let R be a ring with identity and M a unital R module. If Rx and Mx are

nonempty subsets of R and M respectively, then RXMX denotes the set of all

finite sums £r-j)»j where r¡eR¡ and mieMx. A subset 5 of M is called a gene-

rating system of a submodule Q of M if Q=RS. If S contains a finite number

of elements then Q is said to be finitely generated. A finite generating system S

of Q is called a basis of Q if Q does not have a generating system containing

fewer elements than S. If Q is finitely generated then the rank p(Q) of Q is the

number of elements in a basis of Q.

The following theorem was proved in [7, p. 685] for commutative rings. The

proof carries over immediately to the noncommutative case.

Theorem 2.1. Let M be an R module and Q a submodule of M such that

M — Q is finitely generated. If q is any J ideal of R and Q' any submodule of

M let S denote the image of the subset S of M under the natural homomorphism

from M onto M - qQ'. Then M = Q + RS if and only if M = Q + RS. Con-

sequently p(M - Q) = P(M - Q) and if M = Q then M = Q.

If a ring A has finite rank as a module over a subring R we call the rank the

degree [A : R~\ of the ring extension and say that A is a finite extension of R.

(4) R module shall always mean left R module. For a discussion of left R modules read Chapter

I of [6].
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Theorem 2.2. Let R and A be rings where R £ A and suppose every right

unit of A is a left unit. Then R = A if and only if [A :R] = 1.

Proof. If R = A then the identity element of A is a basis of A and hence \_A : R]

= 1. Conversely if [/I :R] = 1, let z be a basis of A. Then since le4 we have

az = 1 for some a e R. Thus z is a right and left unit of A and certainly regular.

Then for z2eA we have bz = z2 for some beR which implies that b = zeR.

Thus R = A.

By statements 1.1 and 1.2 of [2] it follows that the conditions of Theorem 2.2

are satisfied when A is a J primary ring. In addition, if R and A have the same

identity element and A/N is a principal ideal domain, then by the discussion in

§5 of [2] we know that Theorem 2.2 is valid.

If R and A are rings where R £ A, the contraction q+ of an ideal q of A is

defined as the largest ideal of R which is contained in q, i.e., q+ = q C\R. The

extension q* of an ideal q of R in A is defined as the smallest ideal of A which

contains q, i.e., q = AqA, the set of all sums Ea¡0¡&¡ where q¡eq and a¡, b¡eA.

Thus, by definition, N(R)* = AN(R)A. Of particular importance to us is the case

when N(R)* = N(R)A and in addition JV(P)* = N(A). We make the following

Definition 2.1. A ring A is called a principal extension of a subring R if

JV(vi) = N(R)* = N(R)A.

If R is JV primary then, by Theorem 1.1, the ring P[x] is a principal extension

ofi?.

Theorem 2.3. Let A be a finite principal extension of R. If S is a subset of A

then A = RS if and only if A = RS. Hence [A : R] = [A : R] and if R = A then
R = A.

Proof. If A is a principal extension of R then JV(yl) = NiR)A. Consider A

as an R module with JV(P) £ JiR). The first part of the theorem then follows

from Theorem 2.1 by setting A = ß' = M, ß = 0 and q = JV(Ä). If in Theorem

2.1 we let A = ß' = M, ß = R and 0 = JV(P) it follows that i? = À implies P = /I.

Theorem 2.4. Let P = .40£.41 £ ... =An, where A¡ is a finite principal

extension of A^^ of degree \Ai:Ai-i] = rifor i = 1,2, ...,n. Then, if all the

rings R,Al,...,A„-l are completely JV primary, [An:R] = rtr2...rn.

Proof. Since JV(^„) = NiR)A1A2 ...A„ = NiR)A„ it follows that An is a finite

principal extension of R. Hence [A„ :R] = [Â„ :R]. Since A¡ is a finite principal

extension of A¡_i, r¡ = [A¡ :At-¡]. Consequently, since R,Ä1,...,Än.l are

division rings we have [A„ :R] = rir2 ... r„.

3.   Degrees of ideals.

Definition 3.1. Let R and A be rings where R £ A. An ideal p of 4 has finite

degree deg(p) if the ring A/p is a finite extension of R/p*. If p has finite degree

thendeg(p) = [>4/p:P/p«].
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Definition 3.1 is equivalent to saying that if the rank of the R module A — p

is finite then deg(p) = p(A - p).

Theorem 3.1. Let A be a principal extension of R and p an ideal of A of

finite degree. If S is a subset of A then A = p + RS if and only if Ä = p + S.S.

Hence deg(p) = deg(p).

Proof.  Apply Theorem 2.1 with M = Q' = A, Q = p and q = N(R).

The following two results are proved in [7] for commutative rings. Using

the definitions and results listed above the proofs now carry over, without essen-

tial modification, to the noncommutative case.

Statement 3.1. An ideal p of R[x~\ has finite degree if and only if p contains

a monic polynomial^).

Theorem 3.2. IfRisN primary, then an ideal p of R[x~] has finite degree if

and only if p has finite degree in R[x\ In this case ifB is a subset of R[x] then

Pv[x] = RB + p if and only if R[x~] = RB + p. Consequently deg(p) = deg(p).

Notice that if R is a division ring then ^[x] is a principal ideal domain and if

/?=(/) then degp=D(/). (The symbol D(f) denotes the degree of the polynomial/.)

Definition 3.2. The order of a regular polynomial / of P[x] is the minimal

degree of the nonzero polynomials of /R[x], The order of/ is denoted by 0(f).

Note that 0(f) = D(f) when R is an integral domain.

Lemma 3.1. If R is completely N primary and N" = 0/or a positive integer

n, then 0(f) is equal to the exponent of the highest power of x in f whose coeffi-

cient is a unit of R.

Proof. Let/= a¡x' + ... + amxm + ■■■ + a0 where a,,..., am+xeN and am$N.

Certainly 0(f) ^ m. If N = 0, the theorem is obviously true. Assume inductively

that the theorem is true for rings R where Nr = 0, r ^n. We shall show that

the theorem is true for rings R where JV" j= 0 and JVB+1 = 0. Suppose D(fg) < m

where g = bsxs + ... + b0, bs # 0. Since (.R/JV)[x] is an integral domain, we

have geN[x~¡. Since R is completely N primary, R/N" is completely N/N"

primary. Also, by Theorem 1.3, the coset of/is regular in R/JV"[x]. If geN[x~\

but g $ JV"[x] then, by the induction hypothesis, D(fg) is not less than m. If,

on the other hand, g e JV"[x] and D(fg) < m then amb, = 0 which is impossible

because am is a unit of R. Thus, in any case, the assumption D(fg) < m leads to a

contradiction. Consequently 0(f) = m.

Theorem 3.3. Let R be a completely JV primary ring with JV = 0 for some

positive integer n. If, for feR[x], the principal ideal (/) =/R[x] = R[x]f

then (/) is generated by a monic polynomial of degree m if an only if f= a;x'

+ ... + amxm + ... + a0 where a„...,am+xeN and am is a unit of R.

(5) A nonzero polynomial of R[x] is called monic if its leading coefficient is a unit element

of*.
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Proof. If/ is of this form let B denote the set of elements xm_1, ...,x, 1 of P[x].

Then we may write P[x] = RB + (/). From Theorem 3.2 it follows that R[x]

= RB + (f). Thus xm = - A,„_1xm-1- ... - b0 +fi where /, e(f) and b¡eR,

i = 0,1,...,m - 1. Hence g = xm + bm_íxm~1 + ... + b0e(f). Now there exist

polynomials A and fe such that/= hg + k where fe = 0 or D(k) < m. By Lemma

3.1, 0(f) = m and hence fe = 0. Thus P[x]0 = (/). Similarly 0P[x] = (/). Thus

(g) = (/) where g is monic.

Conversely, let (/) = (0) where g is monic of degree m. Then 0(f) = 0(g)

(by the definition of 0( )), while 0(g) = m by Lemma 3.1 (because g is monic).

Thus 0(f) = m, which means again by Lemma 3.1 that/is of the required form.

4.   Primary ideals in R, where R/N is a principal ideal domain. If R is a

principal ideal domain then the A.C.C. holds for right ideals and hence P(q) is an

ideal when q is a right P primary ideal of R. Moreover, in this case P = JV = 0

and the completely prime ideals of R/N are maximal right ideals. Hence, by

Definition 0.1, a principal ideal domain is an extendable ring.

If 0 is a P primary ideal then P(q) = N(q) since Piq) is a completely prime

ideal. Thus Piq) is also a maximal left ideal.

Theorem 4.1. If R is a principal ideal domain and q = (a) is a P primary

ideal in R with Piq) = (b) then b is irreducible and a = vb" = b"u where u and

v are units of R.

Proof. If b = cd then c or d must be in (b). Suppose de(b), say d = eA(6).

Then b = ceb and c is a unit of R. If c e (A), say c = be, then b = bed and d is a

unit of R. Hence b is irreducible.

For the second part of the proof we have (a) £ (b) where b is irreducible.

Let a = bc where ceR. If b$(a) then c"e(a) since (a) is P primary. Hence

c e P((a)) = (A). Thus c = bd and a = A2d\ This process continues until a = A"d'

where A"6(a) and A"-1£(a). Consequently, b" = ae and a = aed'. Thus d" is

a unit and a = b"v = ub" where w and v are units of R.

Lemma 4.1. If R/N is a principal ideal domain and q is an ideal of R, then

there is an element a in q such that q = aR 4- JV' = Ra 4- JV' where JV' = q (~\N.

Proof. Let JV' = q n JV. Since P is a principal ideal domain <? = (a) = äP = Pä

for some âeR. Let a be any element of 0 such that aH=ä. Obviously aR + N'^q.

Moreover, if b eq then bH = äf where feR. Thus b = ar + n where reR and

neJV. Since n = A — ar, n is also in q and therefore neN'. Hence q = aR + JV'.

Similarly q = Ra + N'.

Theorem 4.2. Let R be an extendable ring such that R/N is a principal

ideal domain. If q is a P primary, not nil, nontrivial ideal of R then

q = (vnk + n)R + JV' = P(t>7t" + n) 4- N'

(«) Note that if b is any element of a principal ideal domain R such that bR is a left,

whence two-sided ideal, then from [5, p. 37] bR = Rb, which one may denote by (¿>).
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where v is a unit of R, n e N, n is an irreducible element of R and N' = N nq.

Moreover, P(q) = nR + N and R/P(q) is a division ring.

Proof. By Lemma 4.1, q = aR + JV' = Ra + N' where aeq. From 3b of [2]

the not nil ideal aR + N' is P primary in R if and only if the ideal (a) is P primary

in R. From Theorem 4.1 we may write á = vñk= nkü where n is irreducible in R

and ü, v are units of R. Hence a = nku + nx = vnk+ n2 where u and v are units

of R and nj,n2 eJV.

To find P(q), write q = (vñk) = (ik) = nkR. Clearly ñR S P(q). Moreover,

since i is irreducible, the ideal Ä.R is maximal in R and hence P(q) = Í.R. From

2g of [2] we have (P(q))~ =(nR)~ and hence P(q) = nR + N. The fact that

R/P(q) is a division ring is a consequence of statement 3.1 of [2].

Theorem 4.3. If R is a completely N primary ring which satisfies the A.C.C.

for right ideals then R[x] is an extendable ring, R[x] is a principal ideal

domain and R[x~] is JV[x] primary.

Proof. If R satisfies the A.C.C. then JV is nilpotent and, from Theorem 1.3,

Pv[x] is JV[x] primary. Since R is a division ring, R[x~] is a principal ideal do-

main^). It remains to show that F»[x] is an extendable ring. If g is a right P

primary ideal in P[x] then, since K[x] satisfies the A.C.C, P(q) is an ideal of

R[x~\ and, from Theorem 1.1, P(R[x]) = JV(.R[x]). Finally, condition (iii) of

Definition 0.1 holds since P[x]/JV(P[x]) = £[x]/JV[x] = R[x] is a principal

ideal domain.

5. R[x], where R is a completely N primary ring. In this section let R denote

a completely JV primary ring which satisfies the A.C.C. for right ideals. By Theo-

rem 4.3, Fv[x] is an extendable ring, JV(R[x]) = JV[x] and (R/N)[x~\ is a principal

ideal domain. In addition, by [6, p. 199], (JV[x])' = 0 for some integer t.

Certainly the not nil ideals of P[x] are the regular ideals of P[x](8). If q is

a regular ideal in Ä[x] then, by §4, q = (/) in R[x~\ where/is regular in R[x~\.

Hence all the regular ideals of fl[x] are of the form q =fR[x~\ + JV' where /

is regular in P[x] and JV' = q O JV[x]. By §3 we have 0(f) = D(f).

Theorem 5.1. An ideal q ofR[x] has finite degree if and only if q is a regular

ideal. In this case, deg(g) = 0(f) = D(f).

Proof. By Theorem 3.2, q has finite degree if and only if q has finite degree,

i.e., if and only if g $ A[x]. Thus a necessary and sufficient condition that q

have finite degree is that q be regular. Again, by Theorem 3.2, the degree of q

is the same as the degree of q = (/). Since R is a division ring D(f) = 0(f).

(') See [5, Chapter 3].

(8) An ideal q of a ring R is called regular if it contains at least one regular element. Thus

if R is N primary then it contains only regular ideals and nil ideals, for if an ideal q is not regu-

lar then every element of q is a divisor of zero and hence q Çk N.
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If 0 is a regular, nontrivial JV primary ideal of R[x], then by Theorem 4.2,

q = (v(x)p(x)k + n(x))P[x] + JV' where v(x) is a unit of R[x], p(x) is an irredu-

cible polynomial of ^[x], n(x)eJV[x] and JV' = JV[x] n q. The radical N(q)

= p(x)R[x] + JV[x]. Then deg(q) = k deg(p) and R\x]/(p(x)) is a division ring.

Thus R[x]/q is a completely JV primary ring.

6. Simple algebraic extensions. In this section let P £ A where P and v4

are completely JV primary rings which satisfy the A.C.C. If oeA, where aa = aa

for all aeR, the symbol R\p] shall denote the smallest subring of A containing

P and <t. The symbol R(o) shall denote the smallest completely JV primary

ring containing P and a. In the latter case, R(o) is called a simple extension of P.

Certainly P.[cr] £ P(c) and, if x is an indeterminate, R\o] is the homomorphic

image of the polynomial ring P[x] under the homomorphism /(x) ->/(<r). Since

P[tr] is a subring of a completely JV primary ring we know that R[o] is P primary.

The kernel of the homomorphism must then be a P primary ideal q of P[x]

and R\x]/q s P[a]. In addition q* = q (~\R is the zero ideal since q is the set

of polynomials which have a as a root. As in §5, q is either a regular ideal or a

nil ideal.

Definition 6.1. Let R^A and let aeA where ao = oa for all aeR. If o

satisfies at least one regular polynomial of P[x] then a is called central algebraic

with respect to P. If o satisfies only nilpotent polynomials of R\x] then o is called

central transcendental with respect to P(9). The ideal q consisting of the poly-

nomials of -R[x] which have a as a root is called the defining ideal of o.

We call R(o) a simple algebraic extension of P if a is algebraic with respect

to R and a simple transcendental extension of P if ff is transcendental with

respect to P.

Let S = R(o) be a simple algebraic extension of R and let 0 be the defining

ideal of a. Then 0 is a not nil, nontrivial P primary ideal of R[x]. By §§4 and 5

we may write q = (v(x)p(x)k + n(x))R\_x] + JV' where the symbols have the

same meanings as before. Then R[x]/q is a completely JV primary ring whose

residue class ring is isomorphic to ^[x]/(p(x)) and R\x]/q is an extension of

degree kD(p(x)) of R/q* = P. Since R[x]/q s R[o] and #[>] satisfies the A.C.C.

we have

Theorem 6.1. If S = R(o) is a simple algebraic extension of R, the defining

ideal q of o has the form q = (vix)p(x)k+ n(x))R[x] + JV' wAere v(x) is a unit

of R[x], p(x) is irreducible in R\_x], n(x)eJV[x] and JV' = q C\Nlx]. Then

S = P(o-) = P[ct] wAicA satisfies the A.C.C. Moreover, S is a finite extension

of R where [5 : P] = kD(p(x)). The division ring S = R(ö) is obtained from R

by the adjunction of the zero d of the irreducible polynomial p(x)e^[x] and

hence {S :R] = klS:R].

(9) Hereafter we shall refer to central algebraic (central transcendental) elements as algebraic

(transcendental) elements.
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Next we shall prove

Theorem 6.2. Let S = R(o) be a simple algebraic extension of R where

[S : R] = k [S : R]. Then, S is a principal extension of R if and only if k = 1.

For any k, N(S) = p(o)R[cf\ + N[o~\ and hence there exists a positive integer

h such that N(S)h = 0.

Proof. Writing q in the form stated in Theorem 6.1 we have, as in §4, JV(g)

= p(x)#[x] + JV(P[x]). Since R[x~\ is a principal extension of R this can be

written JV(g) = p(x)R[x~\ + N-R[x] = p(x)P[x] + JV[x]. It follows from 2h of

[2] that N(R[x]/q) = N(q)/q = (p(x)R[x] + JV[x])/g. The isomorphism from

R[x]/q onto S = R(o) maps (p(x)R[x~] + N[x])/q onto p(<r)R[>] + JV[<t] and

hence N(S) = p(o)R[d\ + N[o~\. Now N(q)/q is a nil ideal in R[x"]/q and, since

the A.C.C. holds, the ideal N(q) of R is nilpotent modulo q. Thus there is a positive

integer h such that N(S)h = 0. Finally, Sis a principal extension of R if and only if

p(c-)eJV[<x] ; i.e., if and only if p(x)eq', where q' = p(x)kR[x'] + N[x\. If

p(x)eq' then q' contains a regular polynomial of degree D(p(x)). However,

from §3, the minimal degree of the regular polynomials in q ' is D(p(x)k) = kD(p(x)).

Hence kD(p(x)) ^ D(p(xj) and therefore k = 1. Conversely if fc = 1, the extension

is clearly principal.

An element o of a ring A is called principal with respect to a subring R if

R(o) is a principal extension of R. It follows from Theorem 6.2 that an algebraic

element a is principal if and only if it is a root of a nontrivial fundamental irre-

ducible^0) of R[xY

Example 6.1. Let R he a completely N primary ring satisfying the A.C.C.

If x is an indeterminate, the ring R[x\ is N primary. Let g be a regular, non-

trivial N primary ideal of R[x\ such that g* = 0. As above, we have that

q = (v(x)p(x)k + n(x))i?[x] + JV' and R[x]/q is a completely N primary ring which

contains R. Setting a = x, where x is the coset of x in R[x]/q, then a is algebraic

over R with defining ideal equal to q.

Example 6.2. Let D he the division ring of quaternions with coefficients in

the rational numbers and D* the division ring of quaternions with coefficients

in the real numbers. For an indeterminate x, 2?=jD[x]/(x") is completely N

primary and is contained in the completely N primary ring R* = D*[x]/(x").

If a = ^/2, then Rx = R(^/2) = Dx[x]/(x") where Dx is the ring of quaternions

with coefficients in the set of all real numbers of the form a + bJ2 where a and b

are rational numbers. Thus Rx is a simple algebraic extension of R of degree 2.

For an indeterminate y, the ring P[y] is N primary. Then y2 - 2 is a minimal

degree polynominal satisfied by ^2- One can use the division algorithm to show

that the defining ideal of ^/2 is q = (y2 — 2)i?[y]. Then q is JV primary and

R[y]/q = P-i where Rx is an extension of R of degree 2. Similarly, we could adjoin

(10) See [2,2e] for the meaning of this term.
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to Pu the element ^3. Thus P2 = Ri(^3) = ö2[x]/(x") where D2 is the ring of

quaternions with coefficients in the set of all real numbers of the form a + bJ2

+ cJi + dJ(, where a, b, c and d are rational numbers. Then P2 is an extension

of Px of degree 2 and an extension of P of degree 4.

7. Quotient rings. If a ring P has a right quotient ring as described in [5, p. 118]

we shall denote this ring by Q(R). Then Q(R) is a ring containing P such that

every regular element of P has an inverse in ß(P) and any element of Q(R) may

be written in the form ab~x = a/b where a, beR and A is regular. A necessary

and sufficient condition for the existence of ß(P) is that for any pair of elements

a, A in P, A regular, there exists a common right multiple m = abl = bat such

that Ax is regular. We shall use this criterion to establish the following

theorem, which generalizes a result of A. W. Goldie [4, p. 592].

Theorem 7.1. Let R be a ring with identity which satisfies the A.C.C. for right

ideals and suppose the elements not in N(R/Nk) are regular in R/Nk for all

positive integers fe. TAen QiR) exists.

Proof. Since the elements not in JV are regular in P, R/N is an integral domain.

Hence, if JV = 0, then by Theorem 1 of [4], QiR) exists. We proceed by induction

on the smallest integer n such that JV" = 0. Assume that the theorem is true

when Nk = 0 and JV*"1 ̂  0. In P suppose Nk+' = 0 and Nk ± 0. Then the ring

R =R/Nk satisfies the hypothesis of the theorem and, by the induction hypothesis,

Q(R) exists.

Let a # 0 and b$N. If a eJV* we consider the right ideals /„ = aR + baR

+ ... + b"aR, n = 0,1,2,.... By the A.C.C, i"t = It+l for some integer t and we

may write b'+1a = ar0 + bar± + ... + b'ar„ r¡ eP. Since A' + 1a#0and JV*+1 = 0,

not all the r¡ are in JV. Let i = A be the first subscript for which r¡$ JV. It follows

that b'+1-ha = arh+... + b'~hart and hence A(A'~Aa - arh+1 - ... - b'~h~lar1)

= arh where rh is regular. Thus a and A have a common right multiple. If, on the

other hand, a£Nk, then, since Q(R) exists, we have äc = bd in R = P/JV* where

c$N. Thus ac = bd+e with eeNk. If e=0, we stop. Otherwise, as above, write

bf— eg where g$N, whence acg = b(dg +/) with eg regular. Thus QiR) exists.

Theorem 7.2. If R is a completely JV primary ring which satisfies the A.C.C.

for right ideals then R[x] has a right quotient ring ß(P[x]).

Proof. From Theorem 1.3, for any integer n, the divisors of zero of R/JV"[x]

are contained in JV/JV"[x]. Hence P[x] satisfies the hypothesis of Theorem 7.1.

Lemma 7.1. If a ring R has a right quotient ring QiR) and if R satisfies the

A.C.C. for right ideals then QiR) satisfies the A.C.C. for right ideals.

Proof. Let fe and A denote right ideals of Q(R) where fee A. As in the proof of

Lemma 1.3 of [3] it follows that Ic^c/i^ in P. The lemma is now immediate.
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Lemma 7.2. If a ring R with A.C.C. on right ideals has a right quotient ring

Q(R) and if the elements not in JV are regular in R then Q(R) is completely JV

primary.

Proof. Let T = {a/b\a/beQ(R),aeN}. For any elements a/b and c/d of T,

there exist regular elements bx and dx in R such that m = dbx = bdx. Using the

rule for addition in Q(R) we have a/b — c/d = (adx — cbx)/m which is in T since

a and c are in JV. Next, consider any elements a/b of T and c/d of ß(R). Let cx,

bx eR, bx regular, suchthat cbx = bcx. Then (a/b)(c/d) = (acx/dbx) which proves

that TÔ(P) S T. Similarly, one can prove that Q(R)Tçi T. Thus T is an ideal in

Q(R). It is easily seen that for any positive integer n, the product of n elements of T

can be written in the form a/b where a e JV" and b is regular. Since N is nilpotent,

T £ N(Q(R)). Also, the elements of Q(R) which are not in T are units and hence

Q(R)/T is a division ring. Then T is maximal ideal and T=N(Q(R)). Thus

g(i?) is completely N primary.

Lemma 7.3. // a ring R has a right quotient ring Q(R) which is completely N

primary then Q(R) is the smallest completely N primary ring containing R.

Proof. Let J?' be a completely JV' primary ring where JV' = N(R') and suppose

R^R'. If b eR is regular then b $N' and hence b has an inverse b~l in R'. Thus

a,beR, b regular implies ab~leR'; that is, Q(R)^R'.

Theorem 7.3. Let Rbe a completely JV primary ring which satisfies the A.C.C.

for right ideals and let q be a P primary ideal of R[x] with g£JV(R[x]). Then

Q(R[x\/q) exists and is completely JV primary. Moreover, Q(R[x]/q) satisfies the

A.C.C. for right ideals and is the smallest completely N primary ring containing

R[x]/q.

Proof. We know, by Theorem 7.2, that Q(P[x]) exists. Furthermore, as in the

proof of Lemma 1.2 of [3], one can show that q = q*C\R[x], where q* is the

extension of q to Q(R[x]). It follows that the mapping /(x) + g-+/(x) + q*,

f(x) e R[x], is an isomorphism of R[x\/q into Q(R[x])/q*. We shall identify

R[x~\/q with the subring of Q(R[x])/q* which corresponds to R[x]/q under this

isomorphism.

If/(x) + q is regular in R[x\/q then/(x) £ JV[x]. By Theorem 1.3, R[x~] is JV[x]

primary and consequently/(x) is regular in i?[x]. Hence/(x) has an inverse/(x)-1

in ß(P[x]) and we have/(x)_1 + q*=(f(x) + q*)~1. Thus the regular elements of

R[x\/q have inverses in Q(R[xJ)/q*. Now let/(x)g(x)_1 + q* e Q(R[x~\)/q* where

f(x), g(x)eR[x], g(x) regular. Thenf(x)g(x)-1 + q* = (f(x) + q*)(g(x) + q*)'1.

This proves that Q(R[xY)/q* is a right quotient ring for R[x]/q.

The remaining part of the theorem follows from Lemmas 7.1, 7.2 and 7.3.

8. Simple transcendental extensions. In this section, R will always denote a

completely N primary ring which satisfies the A.C.C. for right ideals and A will

denote a completely N primary ring which contains R.
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Let oeA be transcendental over P. Then R\o] is an JV primary ring where

N(R\oX) = NiA)C\R\a]. For an indeterminate x we have the usual homomorphism

6 of P[x] onto P[<t] defined by f(x)9=f(o). The defining ideal q of a is then a nil,

P primary ideal of R\x] and 0* = qC\R = 0. Since R[x] satisfies the A.C.C. for

right ideals, 0 is a nilpotent ideal and q £JV(P[x]) = JV[x] by [2,§1]. By Theorem

7.3, Q(R\x]/q) exists and, since P[<x] s R[x]/q, Q(R[o]) exists. Moreover, Q(R[o])

is the smallest completely JV primary ring containing P and a. Hence ß(R[ff])

= R(o), the simple transcendental extension of P by o. Also, P(<r) satisfies the A.C.C.

for right ideals. This establishes the first part of

Theorem 8.1. 7/ S = R(o) is a simple transcendental extension of R then

R(a) = ß(P[o-]) and R(o) satisfies the A.C.C. for right ideals. The division ring

(R(o))~ = R(d) is obtained by adjoining the transcendental element ö to R. To

every unit of S a unique order can be associated.

To prove the last part of the theorem we observe from above that (#[<?]) ~

= (^W/fl)~ =(-R/JV)[x] = R\x], where R is a division ring. To every nonzero

element f of (jR[<t])_ a unique degree is associated, namely the degree of the

polynomial of R\x] which is the image of f under the isomorphism from (K[o-])_

onto R\x]. If we extend this isomorphism to an isomorphism from ß((F[<r])")

onto R(x) = Q(R[x\) then to every nonzero element of Q((R[o])~) a unique degree

is associated, namely the degree of the corresponding (image) element of R(x).

(The degree of a fraction, by definition, is the maximum of the degrees of the

numerator and denominator.) Since (ß(P[o-]))"^ß((P[V|)~) there is a unique

degree associated with each element of (Q(R[_o]))~ ■ Now the set of not nilpotent

elements of the completely JV primary ring ß(P[a]) = Rio) coincides with the set

of units of ß(P[<r]). We define the order of a unit r of R(o) as the degree of the

element f onto which r is mapped by the natural homomorphism from ß(K[c])

onto (ß(P[ö-]))~. Thus, to each unit of ß(P[o-]) = P(cr) a unique order is associ-

ated(u).

Theorem 8.2. Every completely JV primary ring R which satisfies the A.C.C.

for right ideals is properly contained in just such a ring. Specifically, R <=

ß(P[x]), wAi'cA is a completely JV primary ring satisfying the A.C.C. for

right ideals.

Proof. See Theorem 7.2, Lemma 7.1 and Lemma 7.2.

Lemma 8.1. Let S be a principal extension of R and let N(R) = P(R) and

N(S) = P(S). Let n be an ideal in N(S) and suppose that N(S/n) = N(S)/n.

Then S/n is a principal extension of R/n^, where n^ = n(~\R.

(H) Note that for o algebraic we have R[o] = R(o) and hence in this case it is also true

that ß(Ä[<7]) = R(.o).
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Proof. As in [2, §2], we may assume that R = R/n* Ç S/n where, for any

set B £ S, 3 denotes the image of B under the natural homomorphism from

S to S/n. Let v be an element of S such that v eN(S/n) = N(S)/n. Then veN(S)

and, since S is a principal extension of R we may write v = E^ff; where v¡eN(R)

and o¡eS. Hence v = zZt>iO¡ where vieN(R/n^,) and o¡eS/n. Thus S/n is a

principal extension of P/n*.

Theorem 8.3. If S is a simple transcendental extension of R then S is a prin-

cipal extension of R.

Proof. Let S = R(o) and let n denote the defining ideal of the transcendental

element a. Applying Lemma 8.1 to P[x] and R, and noting that n* = n OP = 0,

we have that F[x]/n is a principal extension of R/n% = JR. Thus P[o-] =P[x]/n

is a principal extension of R. Now Q = Q(P[o-]) is a principal extension of P[cr]

since JV(Q) consists of elements of the form a/b = ab'1 where a eN(R[oJ) and

6-' e6(«H). Hence N(Q) = JV(P[<t]) • ß(Ä[ff]) = N(R) • P|>] • R(o) = JV(P) • P(o-),

i.e., ß(P[<r]) = R(o~) is a principal extension of P.

Example 8.1. Let R be a completely JV primary ring which satisfies the A.C.C.

for right ideals. Let x be an indeterminate and let n be any nil, P primary ideal

of P[x] such that n* = 0. Setting o = x, where x is the coset of x in R[x]/n, then

a is transcendental over R with defining ideal n.

Example 8.2. Let P and R* be as in Example 6.2 and let F be the field of

rational numbers. Then for the transcendental number n we have R(n) = D'[x]/(x")

where D' is the ring of quaternions with coefficients of the form p(n)/q(n) where

p(n) and q(n) are elements of F[7i], q(n) # 0.
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