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OF EXPONENTIAL TYPE

BY

RICHARD F. DeMAR(I)

1. Introduction. Let K be the linear space of all entire functions of exponential

type, and let S be the linear space of all sequences {b„} of complex numbers satis-

fying lim sup|b„\iln< oo. Let T:X-»S be a linear transformation. Then these

two problems are of interest.

1. The uniqueness problem: To find a subspace C £ K on which Tis one-

to-one. Such a subspace is called a uniqueness class for T.

2. The interpolation problem: To determine for a given subspace CsX

the image Sc of C under the transformation T. If a sequence y e Sc, then y is said

to be admissible for the transformation Tand the class C. A function / such that

T(f) = y said to interpolate y relative to the transformation T.

In this paper, the method of associated functions [3] is used to establish a

theorem which gives, for a general class of linear transformations T, a necessary

and sufficient condition that a sequence y be admissible for Tand a corresponding

uniqueness class C £ K. This theorem is then applied to a number of specific

transformations T. In some cases, other transformations, to which this theorem

does not apply, yield admissibility results by the same method. Two such examples

are given in §5. The question of convergence or summability of a series Zi>„p„(z)

for a sequence {p„(z)} of polynomials satisfying a certain generating relation is

discussed in §6.

2. Background and notation. Let /(z) = la//"! belong to K. The Borel

transform of /is the function F(w) defined by Zfl„w~"-1 and its analytic con-

tinuation. The convex hull of the set of singularities of F is called the conjugate

indicator diagram of/and is denoted by D(f). The growth function of/in K is

given by

h(6J) = limSUplog/(reÍ9).

The supporting function of a closed set G in the plane is defined by fc(0,G)

= max^eG^(ze"íl,) (finite or infinite). If G is convex, then a closed set Gx iscon-
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tained in G if and only if fc(0,Gj) ̂  k(9,G) for all 9. Pólya [7] proved the important

result that for / in K, h(8,f) = fe( — 0,D(/)). For any connected set G in the plane,

let X[G] denote the set of all functions / in K such that D(f) £ G. In case G

is a rectangle {x + iy\ \x\ S a, \y\ ^ c}, we denote K\G\ by K[a,c\.

The linear transformations T :K-*S dealt with will be those given by sequences

{:£?„} of linear functional having a representation

(2.1) XJJ) = —JMFiOdC

for some sequence {g„}, g„eK, where F is the Borel transform of/and T is a

simple contour enclosing D(f). The functions gn are called generating functions.

If/(z) = ez\ then ¿if„(f) = #„(0 [2]. Our main concern will be with transform-

ations T for which the generating functions have the form [W(0]n for some

function W(C) such that W(0) = 0 and W'(0) # 0, in which case 2.1 becomes

(2.2) *jtfl-^jimoTnoK-

Many sequences of linear functionals which have been studied are of this form ;

e.g., the Taylor functionals (W(Ç) = Ç) and the Newton functionals (W(Ç) = é — Y).

Certain sets associated with the function W(Q will be used. Let W be regular

and univalent on an open, connected set Î2Ç containing the origin. Let the image

of Qç under w = W{Ç) be Qw and let Q* be the star of Qw; i.e., £î* = {w\Xw s Qw

for all À such that 0^ X ̂  1}. Let Q* s fic be the image of Q* under £ = #(w),

the inverse of W((). The largest disk, |w|<p0, contained in Í2W will be denoted

by Aw and its image under Ç = g(w) by A{. Associated with a sequence {b„} in S

is a function defined by Hb„z" and its analytic continuation. This will be

denoted by b(z). A' will denote the complement of A, and Í/A the image of A

under the map S = 1/í. This notation follows that of Boas and Buck [1].

Summations without limits shown indicate sums from 0 to oo.

3. Main theorem. For a linear transformation T given by a sequence of

linear functionals {=Sf„} having a representation 2.2, Buck [3] gave a necessary

condition for a sequence {b„} to be admissible for Tand a class K[CJ £ £[p*]

of functions. The main theorem of this paper is that if Cç is a convex set con-

taining the origin, then the condition is also sufficient.

Theorem 3.1. Let T = {-£?„} have a representation 2.2. Let Cj be an

open convex subset o/Qç containing the origin. Then a necessary and sufficient

condition that a sequence {b„} in S be admissible for the transformation T

and the class K[C¿] is that b(z) be regular on 1/C¿ where Cw is the image

of Cr under the map w = W(Ç).
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Proof.   For necessity, see Buck [3]. For sufficiency, let {b„} in S be such that

b(z) is analytic on 1/C¿. Let / be defined by

*> - ¿J,^*
where g(w) is the inverse of W{Q and £ is a simple contour contained in the

region of regularity of b(t) and enclosing the closed set 1/C^. Then by the con-

tinuity and linearity of the functionals JS?„,

&n(f) = ¿J£T^9(1/°di-

But ¿?„(ezC) = [W(OY; so <£„{eZ9(Vt)) = [W(g(l/t))Y = 1/i". Thus, since E en-

closes the origin,

1   f   6(i)      o(B)(0)
*nU)     2nijEf+i »! ""•

Also, since £ encloses 1/C^,, ££l/Cw; so its image T in the £-plane under

C = 0(1/0 is contained in Cç. Then from the definition of/, for any z = re'8,

|/(z)|   ámM^t»¿f|M||¿í|

= M max|ez?|

so that
Cer

/(reie) ^ Mmax|erei9<|
(er

g Mexp[r maxá?(Cei9)].
{er

Thus, taking principal values of logarithms,

log|/(rei9)| g r max^(Cei9) + logM;
Cet

so

Hm sup log/(r<?' )   ^ maxáf(C«").

or ä(0,/) ^ /c(-ö,r). Therefore k(6,D(f)) ^ K6,T); so D(/) is contained in the

convex hull of T which is contained in Cç since C{ is convex. Therefore/e X[CJ.

Q.E.D.

Corollary 3.2. //, /or i/ie transformation T of Theorem 3.1, r/ie set Ac

is convex, i/ien a sequence {b„} is admissible for T and K[AC] if and only if

lim sup |»„I1'" < p0.
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4. Application to specific transformations. In this section, the main theorem

is applied to the linear transformations given by the sequences of generalized

difference functionals, Abel functionals, and generalized Newton functionals.

A. Generalized difference functionals. These functionals are given by

-£?„(/) = A"/(y?/j)= T,nk=o(-iy+kCn,J(ßn + k). The generating functions are

g„(Q = eíní(ec-1)"; so W(Q = é^ié — 1). Uniqueness results have been given only

for ß ^ 0 and ß = —1/2; so we shall give admissibility results only for these

values of ß. Results for other values will be given in a later paper. For ß > 0,

Buck [2] showed that fiç can be taken as the region containing the origin and

bounded by the curve x = log (sin ßy) — log(sin(/? 4- l)y) where £ = x + iy. The

set £2W is the w plane cut from w0 = -ßß(ß + 1)_(P+1) to — oo along the negative

real axis. From Theorem 3.1, we have

Corollary 4.1. Let ¿C„(f) = A"f(ßn), ß>0, and let ftç be the set given above.

A sequence {b„} is admissible for T = {jSf„} and X[QJ if and only if b(z) is

regular on the interval —(ß + l)ß+1ß~ß ^ x ^ 0 of the real axis.

For example, if ß = 1/2, this interval is approximately [—1.60,0]; if ß = 1, it

is [-4,0].

If ß =0, the functionals are the familiar Newton functionals A"/(0). Then Q{

can be taken as the strip {x + iy\ \y\ < n} and fiw is then the w-plane cut from

— 1 to — oo along the negative real axis [2].

Corollary 4.2. A sequence {b„} in S is admissible for the Newton functionals

and K[a,c], c <n, if and only if b(z) is regular on the interval [—1,0] of the

real axis.

This result was obtained earlier by Buck [4].

For these functionals, the set Aç is the set containing the origin and bounded

by the curve x = log (2cosy) and Aw is the disk |w| < 1 [2]. Using the result that

the interpolation series ZCZ „ A"/(0), where Cz n = z(z — 1) ••• (z — n + l)/n!,

converges to/for any/eK[Aç] and Corollary 3.2, we obtain

Corollary 4.3. The series HbnCz¡n converges to a function f in -K[AJ if

and only if limsup|i)B|1/B < 1.

If ß = —1/2, the functionals are called Stirling functionals. In this case, i!?

can again be taken as the strip |y| < n and then Qw is the w-plane cut from 2i

to /oo and from — 2i to —ico along the imaginary axis. Then A{ is the region

consisting of all Ç satisfying |sinh£/2| < 1[2].

Corollary 4.4. A sequence {bn} in S is admissible for the Stirling functionals

and K[a,c], c <n if and only ifb(z) is regular on the interval [ —(l/2)i, (l/2)i]

of the imaginary axis.
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Corollary 4.5. A sequence {bn} in S is admissible for the Stirling functionals

and X[Af] if and only if lim sup |bn|1/n < 2.

B. Generalized Newton functionals. Given a complex number A, the

generalized Newton functionals relative to A are given by

#t(f) = (-eAy Ícn¡k(-eAykf(k).
k = 0

For these, W{Ç) = el — eA. If A = 0, they are the ordinary Newton functionals.

We take A to be a positive real number. For/in K, let/0(z) = e~Azf{z); then

D(/0) is the set D(f) translated a distance A to the left; i.e., z e £>(/) if and only

if (z - A) e D(f0) [1, p. 14]. Also ¿?A(f) = eAnAnf0(0).

Theorem 4.6. A sequence {£>„} in, S is admissible for a sequence of generalized

Newton functionals {^A(f)}, A a positive real number, and K[a,c], c<n, if

and only if b(z) is regular on the interval [ —c_i4>0] of the real axis.

Proof. Let/eK[a,c], c <it, and let/0(z) = e~Azf(z). Since/0 e K\a',c\,c< it,

£ A"/0(0)zn is regular on the interval [ — 1,0] by Corollary 4.2. Thus, since

A"/o(0) = e~An&A(f), £ e-An#A{f)zn is regular on [-<TX,0].

Conversely, let b(z) = Sb„z" be regular on [-e"^,0]. Then zZe~Anb„zn is

regular on [-1,0], so by Corollary 4.2, there exists f0eK\_a',c], c < it, such that

A"/o(0) = e~Anbn; n = 0,1,2, •••. Let/(z) = eAzf0{z). Then feK[a,c\, c<it, and

&A(f) = bn; n = 0,1,2, •••. Q.E.D.

Corollary 4.7. For any sequence {b„} in S, there exists a real number A

such that {b„} is admissible for T= {&A} and K\_a,c], c <n.

In a similar way, using Corollary 4.3, it can be proved that for A sufficiently

large, {bn} is admissible for T = {^A} and K\a,c\,c < n/2.

C. Abel functionals. These functionals are' given by .£?„(/) =/(n)(n);

so W(Q = I.e. The set fi? can be taken as the region containing the origin and

bounded by the curve p = {n — |</>|) csc|<£| where £ = pe1'1' [2]. This curve opens

to the right, cuts the real axis at —1, and has the lines y= ±it, as asymptotes.

Then Q.w is the w-plane cut from — e_1 to -co. The set Aw is the disk \w\ < e~l

and At is the convex set determined by |£e1+i| < 1.

Corollary 4.8. A sequence {bn} in S is admissible for T = {f(n\n)} and

K[Q¿] if and only if b(z) is regular on the interval [ — e,0] of the real axis.

Corollary 4.9. A sequence {£>„} in S is admissible for T = {/(n)(n)} and

K[Aç] if and only if lim sup \bn\lln < c_1.

From Corollary 4.2 and Corollary 4.9, we obtain

Corollary 4.10. A sequence {b„} in S is admissible for the Newton functionals

and K\_a,c], c <n, if and only if the sequence {e~"b„} is admissible for the Abel

functionals and the corresponding uniqueness class K[iiJ.
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This implies that if fe K [£2J for the Abel functionals, then there exists a

function/* eK[a,c], c<n, such that/(B)(n) = A"/*(0); n = 0,1,2, •••.

5. Further admissibility results. The proof of the main theorem depended

on the fact that the generating functions g„ of the functionals were of the form

W for some function W. In certain cases, the generating functions of a trans-

formation may not be of this form but the present methods still apply. We give

two examples—the Newton-Gauss transformation given by &2n{f) = A2"/(—n)

and y2n+i(f) = A2"+1/( — n), and the Lidstone transformation given by £?2n(f)

=/(2n)(0)and^'2n+1(/)=/(2")(l). The method used follows that of Buck

[2; 5].
For the Newton-Gauss functionals, g2„(0 = (eU2 — e c/2)2" and g2n+no

= ec/2(ec/2_ec/2)2n+i   l^  W(Q = eU2 -e-U2 so that g2n(Q = [W{Qfn and

02n+i(O = ec/2[W(0]2n+1. Let fic and £iw be the same as for the Stirling func-

tionals.

Theorem 5.1. A sequence {b„} in S is admissible for the Newton-Gauss

functionals and K[a,c], c <n, if and only if b(z) is regular on the interval

[—(l/2)i, (l/2)i] of the imaginary axis.

Proof.    Given fe K[a,c], c <n, define a function b(z) by

... If   1  + <P2W(Ozwrsjr
fc(z) = 2^Jrr-[^(o]2z2^^

where F is any simple contour in Qc that encloses D(f) and the origin. Then

w=¿Lc^)]2"F(0dc=^m

t(2"+1)(0)

(2n + l)!
= ¿ j^'2W(02n+1F(0dC = S?2n+1(f),

so that b(z) ~ H&„{f)zn in some neighborhood of the origin. From its integral

representation, b is regular at least for all z such that for all £ on T, z2 ^ [W(0]-2 ;

i.e., z # ±[W(£)]_1. Since Q; is symmetric with respect to the origin, T can be

taken symmetric with respect to the origin. Then E, the image of T under

t = [Pf(C)]_1, is symmetric with respect to the origin since Wis an odd function.

Thus, b is regular for all z not lying on E, since z i= [ W(QT1 implies z # ± [ W(0]~ '

Since T £ Í2C and encloses the origin, its image under w = W(Q is con-

tained in Qw and encloses the origin, so that E encloses 1/íi^, which is the interval

[-(l/2)i,(l/2)i]. Therefore b is regular on this interval.

Conversely, let {b„} in S be such that b(z) is regular on [-(l/2)i,(l/2)i]. Let

{pn{z)} be the sequence of polynomials determined by the formal relation,
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Letting

H¿z,Q =   2>2„(z)[IF(£)]2\

H2(z,0 =   lp2n+x(z)ÍW(OYn+1,

define a function / by

/(z) = éíS^ÍHliz'9(í/t))+HÁZ'g(imdt

where g is the inverse of the function W, and £ is a simple contour symmetric

with respect to the origin enclosing [-(l/2)/,(l/2)i] and contained in the region

of regularity of b. Then, by the orthonormality of {p„(z)} with respect to {^n},

we have

W) = ¿ j ^&.lH¿z,g{l/t)) + H2(z,g(í/t))-]dt,

_ *   f  WK     &(n)(0)_, B   n1,
-2^J£Í^Tííí--^r==&'- n = 0,1,2,-,

It remains to show £)(/) £ £2C. From the evenness of H1 and the oddness of

H2, one obtains

cosh[(z - l/2)£] sinh  z£

and

cosh(1/2)£ 2V '*'  cosh(l/2)£

ffzï = _L f W) cosh[(z - l/2)g(l/0] + sinh[zg(l/Q]
/lJ      27ti J E í cosh(1/2)^(1/0

\f(z)\<om max 1 COSh[(z - WWW + sinh[zg(l/Q]
cosh(l/2)0(l/O-

Let T be the image of £ under £ = #(1/0- Then

I cosh (z - 1/2) £ + sinh z£
|/(z)| ^ 0(1) max

Çe r cosh (1/2)£

= 0(1) max | cosh(z - l/2)£ + sinhz£ |

= 0(1)max | e2?e_c/2 + e_*ce{/2 + ezl - e~zC j

= 0(l)max|e*{|.
±çer

But £ is symmetric with respect to the origin, and 0(1/0 = 2 sinh-1 (1/20 is an

odd   function;  so   T  is  symmetric   with  respect  to   the   origin.   Therefore

max±4er|ezÇ| = maxÇ6r|ezC|; so just as in the proof of Theorem 3.1, £)(/)£ i^.

Thus {b„} is admissible for {■&„} and K[a,c], c < it. Q.E.D.

For the Lidstone functionals, g2n(0 =£2" and 02n+i(O = ßCC2"j if £2C is taken
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as the £ plane cut from in to ¿oo and from — in to — ¿oo along the imaginary axis,

then -K[£2J is a uniqueness class for this transformation [2].

Theorem 5.2. // {£?„} is the sequence of Lidstone functionals, and fiç is

the set given above, then for fe K[Q.¿], the function b(z) = £ J^(/)z"

is regular at the origin and can be continued to the interval [—(l/n)i, (l/n)1']

of the imaginary axis.

Proof.   Let

--Í -
2ni]r 1

+ zê-^ÎÇT FUW

where F is a simple contour contained in Î2Ç and enclosing D(f). Then, as in the

proof of Theorem 5.1,

f^(0) - ^ and f™(l) - f>(2"+1)(0)-
J     (0) - läÖT        ^     () ~   (2n + l)!*

so b(z) = zZ^„(f)z" in some neighborhood of the origin. From its definition,

b is regular for every z such that for all £ on T, =£ z ± l/£. Since Qç is symmetric

with respect to the origin, T can be taken symmetric with respect to the origin,

so that if for all £ on T, z / l/£, then for all £ on T, z # + l/£. Thus b is regular

on the set enclosed by the image of T in the l/£-plane. In particular, this includes

the interval [—(1/71)1,(1/71)1] of the imaginary axis. Q.E.D.

Because of the nonconvexity of £2Ç for the Lidstone functionals, we were able

to give only a necessary condition that a sequence {b„} be admissible for {^C„}

and K[Í2J. To give a necessary and sufficient condition, the class of functions

X[CC] must be restricted to convex sets Cç which are symmetric with respect to

the origin. We take Cç to be a strip whose boundary consists of two parallel

lines of slope m passing through ni and —ni, respectively.

Theorem 5.3. Let {-£?„} be the sequence of Lidstone functionals, and let

C{ = {£ = x + iy I mx — n < y < mx + n) for some real number m. A sequence

{b„} in S is admissible for {-£?„} and X[CJ if and only if b(z) is regular on the

set 1/Cj consisting of the closed disks D1 and D2 having centers at(l/2n)( — m + i)

and (l/2n)(m — i), respectively, and radii (l/2n)(m2 + 1)1/2.

Proof. We omit the proof of "only if" since it is almost identical with the

proof of Theorem 5.2, and we state the proof of "if" briefly. Let {bn} be such

that b(z) is regular on 1/C¿. Let

„ ,   .     sinh [(1 - z)l/t]      . __ .   .     1 sinh z/t

sinh 1/í ¿ t sinh 1/r

Define a function / by

m = ¿ jïQ ih&a + //2(z,o] dt
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where £ is a simple contour symmetric with respect to the origin which encloses

1/C'ç and is contained in the region of regularity of b. Even derivatives of Ht

and H2 with respect to z at z = 0 and z = 1 are H[2n)(0,t) = t~2" and H[2n\l,t)

= 0; H22n)(0,0 = 0 and ff(22n)(l,0 = T2"-1 ; so

«m_    1    f    Kt) _fc(B)(0),

In the same manner as in the proof of Theorem 5.1, we obtain

|/(z)| = 0(l)max|^|
±Cer

where T is the image of £ under £ = 1/f, and using the symmetry of 1/CÇ' about

the origin,

|/(z)| = 0(l)max|ezî|,

so that D(f) is contained in the convex hull of T. Again, since Cç is convex, the

convex hull of T is contained in Cc, so that D(/) £ Cc, or/eK[Cc].Q.E.D.

6. Convergence and summability of series. Certain cases of convergence or

summability of a series Hb„p„(z) can be studied by the methods of this paper.

If for a given sequence {áC„} of linear functionals having a representation 2.2,

there is an associated interpolation series Ti-¡C„(f)p„(z), Gelfond [6] showed

that if/e X[AÇ], then its interpolation series converges for all z, and Buck [2]

showed that if /eK[û*], the series is Mittag-Leffler summable for all z. If for

a given sequence {pn} of functions, and a given class C £ K of functions, Eb„pn(z)

is summable by some specified method for all z to a function / in C, then {b„}

will be said to be admissible for {pn} and C. The question of admissibility de-

fined in this way is complicated by the fact that there may be multiple expansions

of a function. That is, there may be a sequence {h„} with not all h„ = 0 such

that Hhnp„(z) = 0. Then if /(z) = Jlb„p„(z), it is also true that /(z) =

Z(fc„+M/i„)^„(z) for every complex number M. Thus, there are infinitely many

sequences {c„} all of which are admissible for {p„(z)} and the one function /.

We shall restrict the sequences {p„(z)} to be sequences of polynomials which

satisfy a formal generating relation

(6.1) A(w)ezaM =  f Pn(z)wn
n = 0

where A(w) and g(w) are entire with A(0) ^ 0, g(0) = 0, and g'(0) + 0. Then the

polynomials pn(z) are called Sheffer polynomials by Boas and Buck [1]. For

example, the polynomial sequences associated with the generalized difference

functionals are Sheffer polynomials with A(w) = 1.

Let £2W be an open, simply connected set containing the origin on which A(w)

is regular and has only finitely many zeros, and g(w) is regular and univalent.



368 R. F. DeMAR [December

Let Q; be the image of Slw under £ = g(w) and let W(£) be the inverse of g{w)

defined on Qç. Let SI* be the star of Slw and Si* the image of Si* under the map g.

Let Aw and Aç be defined as before with p0 denoting the radius of Aw. These sets

and functions play the same role as they did previously.

If A(ct) = 0 for some a(# 0) in Aw, then from 6.1, Zp„(z)an = 0 is a nontrivial

representation of zero. If a is a zero of A(w) of multiplicity m, then Y,hnp„{z) = 0

for any sequence {h„} such that
tn~ 1

(6.2) h„ = Z M¿n{n - 1) - (n -j + i)a."-J
1 = 0

for each n, where the M¡ are any complex numbers [1, p. 25].

Let {p„(z)} be a sequence of polynomials with a generating relation 6.1. Let

Cw be an open subset of Aw containing the origin whose image Cç under £ = g(w)

is convex. Let aua.2, ••• ,aN be all of the zeros of A(w) in Cw, ak being a zero of

multiplicity rk.

Theorem 6.3. Under the above conditions, if {b„} in S is such that b(z) is

regular on 1/C'W, except possibly for poles of order at most rk at (a*)-1,

k = l,2,.-.,iV, then there is a function /eK[Cj such that f(z)= ¿Zb„p„(z)

convergent for all z.

Proof.   Define a function / by

*» - wtiMy.*
where £ is a simple contour contained in the region of regularity of b(z) which

encloses 1¡C'W, but does not enclose nor pass through any zero of ^4(1/0 not con-

tained in 1/C^. Then since £ is a compact subset of 1/CW and Cw £ Aw,

¿(i)^=Ipfl(z)l

uniformly on E; so

For any n, the coefficient (27ci)_1 ¡Et"~1b(t)dt is the sum of the residues of

t~"~lb(t) at the poles 0, l/au l/a2, •••, l/aw. Since b(z) = Y,b„f in a neighborhood

of the origin, the residue at the origin is b„. We shall show that the residue at

(at)_1 is a linear combination of numbers h„ such that Hh„p„(z) =0. Let the

order of the pole of t~n~lb{t) at (a*)-1 be m ^ rt. Then for some sequence

{Bn>m+7}jïï_m of complex numbers,
OO

(6.4) r"-1fc(0=    I i?n>m+J.(i-(iK))J'
j=~m
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in some neighborhood of (oik) l. Then the residue at (ak) i is £„>m_t. This number

will be expressed in terms of B0i;i=0,1, •••, m-1. Let <¡>„(t) = [t-(ixky~í~\mt~''~1b(t);

so that B„>m_1 = [(m-l)!]LV(m_1) ((a*)"1)- In 6.4, for n = 0, í_1 6(i)

= Ij°=-,A m+zC'-K)"1]7'; so we have ^(í) = í""I;=0£0J[í - («*)"7- Then

^m"1)(0

Evaluating this at (a*)-1, we obtain

= so1(-i)K-y-i (n+j_1)«rj' ;

so £B,m_! = ¿Zj'=o<Ij(n)(Xk+J where each ^ is a polynomial of degree at most

m — 1. We show that for each ;', h„ = <Zj(n)oc".+J have the form 6.2. Since the poly-

nomials u0(z) = 1, u¡(z) = z(z — l)-.(z — i + 1); i = l,2,...,m — 1, span the

space of all polynomials of degree at most m-1, there exist numbers Q¡ such that

qj(nM+J = «y'IïJjQMn); so

m—1 m—1

4>K+y = I Qd+\{n)zrl = ÏMi/(n-l)...(«-i + lK-i .
¡=o ¡=o

Thus Ziy(n)«n+7PB(z) = 0 for each; and k. Therefore/(z) = 2ZbHpn(z).

The proof that/eX[Cc] is the same as the proof of this in Theorem 3.1. Q.E.D.

If Si* is used instead of Aw, the series is Mittag-Leffler summable to a function

/eK[Cj by the same proof with convergence replaced by Mittag-Leffler summa-

bility throughout.

It would be possible to prove a converse of this theorem if we knew that all

nontrivial representations of zero arise from zeros of A(w). However, Boas and

Buck [1, p. 25] have shown that they may also arise from the nonunivalence of

g(w), but whether they may also arise in still other ways is unknown. They did

show that if Z^h„p„(z) = 0 for a sequence {h„} such that h„ = 0(R") for some

R < \w0\ where w0 is the point of Si*' nearest the origin, then the h„ have the

form 6.2 [1, p. 26]. Then, for the special case in which A(w) is entire, and g(w)

is entire and is univalent in the whole plane, Qw is the whole plane; so all non-

trivial representations of zero arise from the zeros of A(w) in [£)(/)]'. In this

case, we give a necessary and sufficient condition for admissibility.

Let {p„(z)} be a sequence of Sheffer polynomials for which A(w) is entire and

g(w) is entire and is univalent in the whole plane and let a.ua.2, ■•-,% be all of

the zeros of A(w), ctk being a zero of multiplicity rk. Let C{ be an open convex
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subset of the £-plane containing the origin with image Cw in the w-plane, and

suppose aj.ocj, •••,aM are all of the zeros of A(w) in Cw.

Theorem 6.5. Under the above conditions, a necessary and sufficient con-

dition that a sequence {bn} be admissible for {p„(z)} and X[CJ is that b(z) be

regularon Í/C'w except possibly for poles at the points (a*)-1 of order at most

rk; k = \,2,--,M.

Proof. Sufficiency follows from Theorem 6.3. To prove necessity, let £(£)

= A(W(0). Let/(z)= Ebnp„(z) for all z, where feK[C¿]. Define a function

¿0) by t ^
C(Z) =  2ÍÍJ  [1 - ff (£)z] B(£) dC

where T is a simple contour contained in C; enclosing £>(/), the origin, and all

zeros of B(£) contained in Cç. Then

w(0)_ 1   f [W(£)]B

«!       27tijr
£(£)<*£

B(0

which shall be denoted by c„, so that c(z) = Ec„z" in some neighborhood of the

origin. Since Í2C is the whole plane, by a theorem of Boas and Buck [1, p. 22],

Y,cnpn(z) converges to/(z) for all z. From its definition, c(z) is regular for all z

such that for all £ on T, z # [W(£)]_1- Therefore, just as in the proof of Theorem

3.1, c(z) is regular on 1/C^. Thus, if bn = c„ for all n, the conclusion of the

theorem holds. Otherwise zZ(b„ — cn)p„(z) is a nontrivial representation of zero,

and since all of these arise from the zeros al,ct2,---,<xM. of A(w) in [£>(/)]', we have

M-    rk-l

=   Z    I    MkJn(n-i)-(n-j+iyk-J.
*=1   j=0

Then, for h(z) = I/i„z",

Ai'

(6.6)

/i(z) =111 MkJn(n - 1) • • • (n - j + 1)4'Jz"
n=0   t=l j=0

M'     rk-l <x>

=   I    E Mtj- In(n-l)-(n-j + lK-'zn

AÍ'    rk-l 7/   /    oo \

=       11 Afy-M     I     CÍZ")
4=1 J"0        daJk\ "=°       '

=  |   'g1 MwJi !^_

*=i y=o (1 - wY

Thus b(z) = c{z) + h(z) where c{z) is regular on 1/C« and h(z) is rational with

poles of order at most rk at l/ak, fe = 1,2, -".M', so fe(z) is regular on 1/C¿ ex-

cept possibly for poles of order at most rk at (a*)-1 ; k = 1,2, •••, M. Q. E. D.
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If the polynomials p„(z) satisfy

A{w)e™ = I Pn(z)wn
B = 0

where A(w) is a polynomial, then the ordinary linear differential equation

where feK, has solutions y(z) = Hcnz"/n\ for every sequence {c„} such that

/(z) = Zc„p„(z) [1, p. 68]. Theorem 6.5 then implies that the conjugate indicator

diagram D{y) for any solution y(z) is contained in the convex hull of the union

of D{f) with the zeros at,<x2, ••-,aM of A{w) in [!>(/)]'. Actually, since b(z)

= c{z) + h(z) where h(z) is given by 6.6, the solutions are given by

co A4"    rk-l jj      I  œ \

y(z) = I cBz"/n! +  S     I   M,,^-     I «jjz-/«!
„=o t-i   ,=0 daj \n=o /

oo AÍ'    r)t-l jí

= Ic„z7n! +    I    S   MkJ — e'kZ

AÍ'    rt-l

= y*(z) +11  M^z-,ea"z

where £)(>;*) = D(/).
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