
UNIQUE SUBDIRECT SUMS OF PRIME RINGS(i)
BY

LAWRENCE LEVY

1. Introduction. The purpose of this paper is to introduce a type of sub-

direct sum which possesses strong uniqueness properties. Intuitively speaking,

a subdirect sum is irredundant if none of the summands can be omitted (without

producing a proper homomorphism). This definition is made more precise in §2.

In §3, the first main result characterizes all irredundant subdirect sums of

prime rings as those semi-prime rings jR in which every annihilator (2-sided)

ideal (^R) is contained in a maximal annihilator ideal. It is shown that the

kernels of the projections R->RX are uniquely determined ideals of R. This not

only implies uniqueness, up to isomorphism, of the components Ra, but also

of the structure of the subdirect sum combining them. We next consider the

question of decomposing an K-module M (R as above) into a subdirect sum

of modules M„ over the component rings Ra. We show that this is not always

possible, and then we identify a class of modules for which the decomposition

exists and is unique. By-products of the investigation are the result that the

lattice of annihilator ideals of R is isomorphic to the lattice of subsets of the

index set {a}, and a characterization of all subdirect sums of a finite number of

prime rings.

In §4 we show that the injective envelope of m (m, R as above) is completely

determined by the components {Mx} and {Rx} and is therefore independent of

the two subdirect sums involved. We also show that the maximal ring of right

quotients of R is the (complete) direct product of the maximal rings of right

quotients of the component rings Ra.

In §5 we consider analogues, for subdirect sums, of the so-called "square root"

(if A ® A £ B © B, is A £ B?) and "cancellation" (if A © C £ B ® c, is A £ £?)

problems.

In the last section we consider the preservation of the existence of a classical

quotient ring under subdirect sums and decompositions, and we prove that a

ring has a right quotient ring which is semi-simple with minimum condition if
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and only if it is an irredundant subdirect sum of a finite number of rings which

have simple (with minimum condition) right quotient rings, the kernels of the

projections again being unique.

2. Irredundant subdirect sums. Let a set of rings {Rx : aeA} be given. A ring

R is a subdirect sum of {Rx} if there is an isomorphism h of i? into the (complete)

direct product Y\XRX such that each of the induced projections r -» h(r)x maps R

onto Rx. The subdirect sum is irredundant if for each ßeA, the kernel of the

map h(ß): r -> {h(r)x: a # ß] of R into n**/>^« is nonzero. We adopt the con-

vention that the direct product of the empty set of rings is 0.

The definition of irredundance implies that Rx i= 0 for each a e A, that each

nonzero ring is an irredundant subdirect sum of itself, and that 0 is an irredundant

subdirect sum of the empty set of rings.

If we identify R and h(R) (which we will do without explicit mention), then a

subdirect sum R of the rings {Rx} is irredundant if and only if R n Rß ^ 0 for

each ß: for R C\Rß = ker h(ß).

Finally, we observe that R is an irredundant subdirect sum of the set of rings

{Rx} if and only if there exists a set of ideals {Px} of R such that Rx s R/Px,

ftxPx = 0, and for each ß, f)x*ß Px * 0.

An example of an irredundant subdirect sum is R = {(a,b): a,beZ, a-be2Z}

where Z is the ring of integers. Then R n (Z,0) = (2Z,0) and R O (0,Z) = (0,2Z),

so that the sum is irredundant but not direct.

An obvious modification of the above discussion holds for subdirect sums of

modules over a given ring.

3. Main decomposition theorems. A ring is prime if AB = 0 for (2-sided)

ideals A,B implies that A or B = 0. A ring is semi-prime if it has no nonzero

nilpotent ideals.

Let R be a ring and MR a right Ä-module. For each (2-sided) ideal J in R,

set annM J={meM: mJ=0}, and call every submodule of the form annM J

an annihilator submodule. Similarly, define annRiV for NR £ M. The annihilator

submodules of RR will be (2-sided) ideals and we will call these the annihilator

ideals of R. A maximal (resp. minimal) annihilator submodule of M is a maximal

(resp. minimal) element of the set of annihilator submodules of M different from

M (resp. different from 0).

If J is an ideal in a semi-prime ring R, then the left and right annihilators of

J, in R, have zero intersection with J (the squares of these intersections are zero),

and hence they coincide. Therefore we do not have to distinguish between annK JR

and annRR J, and we will write merely ann^ J. Because of this symmetry we will

state the theorems of this section for "modules" but only carry out the proofs

for right modules.

3.1. Lemma. Let Jf be the set of annihilator ideals of a semi-prime ring R.

The correspondence N^annRN is 1-1 and inclusion reversing of onto
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Jf, and is its own inverse. If A and B are arbitrary ideals of R such that Az B,

then annR^4 2 annRB.

We omit the straightforward proof and now state the first main theorem.

3.2. Theorem. A ring R is an irredundant subdirect sum of prime rings

{Rx: txeA} if and only if

(1) R is semi-prime; and

(2) every annihilator ideal of R, except R itself, is contained in a maximal

annihilator ideal.

When the above conditions are satisfied the set of kernels of the projections

R-+Rx coincides with the set of maximal annihilator ideals of R. Hence, the

Rxs are determined up to isomorphism by R.

Proof that the decomposition exists: Assume (1) and (2). Since R is semi-prime

0 = annR R so that R has annihilator ideals different from R (except if R = 0

in which case the theorem is trivial). Hence, by (2) the set {Px} of maximal an-

nihilator ideals is nonempty. Let Lx = ann^Pj,. Then by Lemma 3.1, {Lx} is the

set of minimal annihilator ideals and La j= Lß for a # ß. If a # ß, then

ann,, (Pa + Pß) = 0, for annR (Px + Pß) => 0 would imply

Pa <= Px + Pß c annÄ annÄ(Pa + Pß)c:R

contradicting the maximality of Px. Now, (Px + Pß) (Lx n Lß) = 0, and therefore

(*) L,nL, = 0 (a#/J).

We now show that {R/Px} is the required set of prime rings. First,

f")a^ct = P)«annÄL„ = annR HXLX. By Lemma 3.1 and condition (2) of this

theorem, every nonzero annihilator ideal of R contains a minimal annihilator

ideal. Hence if P^P^O, Lß £ annÄ Z„Lx for some ß. But then, by (*),

0 = Lß Lx = L%, which is impossible since R is semi-prime. Hence f\aPx = 0.

Let ß be given. Then f]x?ßPx = annR Lx^Lß # 0 so that R is an irredund-

ant subdirect sum of {R/Px}.

To see that R/Px is a prime ring, suppose that AB £ Px for ideals A,B in R.

Then A(BLa) = 0. If BLX = 0, then B £ annR Lx = Px. If BLX # 0, then since

BLxzLx, we have, by Lemma 3.1, that Px = annR Lx Q annR (BLX)<=R. Since

Px is a maximal annihilator ideal, Px = a.nnR(BLx) and so A s annR (BLX) = Px.

Thus R/Px is a prime ring and we have shown that the decomposition exists.

We will establish the remaining assertions of the theorem in §3.10, after de-

riving some more general results about modules.

3.3. Let a homomorphism / of a ring R onto S be given. We will say that an

P-module MR is canonically an S-module if M(ker/) = 0. This condition is

satisfied if and only if M becomes an S-module when multiplication is defined

by mf(x) ~ mx (xeR,me M).

If R is the direct sum of a finite number of rings Rx with identity element ex,
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then every unitary Ä-module MR is a direct sum of canonically i?a-modules:

M = Z„ © Mea and the decomposition is unique. This statement is not true if

direct is replaced by subdirect, as the following example shows:

Let Z be the ring of integers, and R = {(x,y): x,yeZ, and x — ye2Z}. Then R

is a subdirect sum of two copies of Z. Let M = {(ä,B): ä,beZ/AZ}. Then M

becomes an i?-module if we define (ä,b)(x,y) = (äx,by). Let JV = {(Ö,Ö),(2,2)}.

Then JV is an .R-submodule of M. If NR<=QR£ MR, a simple computation shows

that (2,0) e Q. This shows that every nonzero submodule of M/N contains (2,0) + JV

so that M/N is subdirectly irreducible. Since M/N is not itself canonically (Z,0)-

or (0,Z)-module it follows that M/N cannot be written as a subdirect sum of

canonically (Z,0)- and (0,Z)-modules.

On the other hand, JV is canonically both a (Z,0)- and (0,Z)-module, and there-

fore any decomposition of JV©JV©JV as a direct (or subdirect) sum of two modules

will be a decomposition into canonically (Z,0)- and (0,Z)-modules.

Now we introduce a condition which will guarantee the existence and unique-

ness of canonical decompositions.

3.4. A right .R-module M is I-torsion-free if NJ = 0, for some JVR(^0) £ M

and some ideal J, implies that KJ = 0 for some nonzero ideal K. For semi-prime

rings this can be restated: if annR J = 0 then annM J = 0 (if R is not semi-prime,

the notation annR J may be ambiguous). If R is a prime ring, this requires that

every nonzero submodule of M be faithful, and if R is a commutative integral

domain this definition coincides with the ordinary definition of torsion-free.

3.5. Lemma. Let R be an irredundant subdirect sum of prime rings(2)

{Rt} and let J be an ideal in R. Then annRJ = 0 if and only if Ja # 0 for all a.

Proof. Suppose Jx # 0 for all a and Jx = 0. Then for all a, Jxxx = 0. Since

Rx is a prime ring, x„ = 0 for all a, i.e., x = 0. Conversely, if J„ = 0, then

J(RnRa) = 0.

3.6. Lemma. Let R be an irredundant subdirect sum of prime rings {Ra}

and let MR be canonically an Rß-module for some ß. Then M is I-torsion-free

as an R-module if and only if it is I-torsion-free as an Rß-module.

Proof. Let J be an ideal in R such that annR 7 = 0. If NJ - 0 for some

NR £ M, then NJß = 0. If M is i^-i-torsion-free, then since Jß^0 (by 3.5)

and Rß is a prime ring, JV = 0 and M is Ä-/-torsion-free. Conversely, suppose

M is R-i-torsion-free, let Jß be a nonzero ideal of Rp, and JV a submodule of M

such that NJß = 0. Then Jß(R nRß)^=0 since Rß is a prime ring, and

(2) Such a ring is obviously semi-prime, for if A" =0 for some ideal A, then A"=0 for all <X,

and hence A = 0.
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Since M is P-J-torsion-free, Lemma 3.5 now implies that N = 0, so that M is

Rfl-J-torsion-free.

3.7. Because of the above lemma there is no ambiguity in referring to the

components Mx in the following theorem as canonically I-torsion-free Rx-

modules.

Theorem. Let R be an irredundant subdirect sum of prime rings {Rx: aeA}

and let M be an I-torsion-free R-module. Then M is a subdirect sum of canoni-

cally I-torsion-free Rx-modules Mx (ae.4).

Proof. Let(3) Nx = annM (R n Rx). Then f\xNx = pa *nnM (R

= annM HX(R n Rx). By Lemma 3.5, annÄ T,X(R n Rx) = 0. Since M is /-torsion-

free, this implies that (*\XNX = 0. Thus M is a subdirect sum of {Mx = M/Nx}.

Let Px = {x e R : xx = 0}, so that Px is the kernel of the projection R -* Rx. Then

(MPX)(R r\Rx) = 0 so that MPX sann M (P n Ra) — Nx. Hence M/Nx is can-

onically an Pa-module.

To see that Mx is /-torsion-free, suppose mxJ=0 where annÄ J = 0. Let meM

have its ath projection equal to mx (M is a subdirect sum of {Ma}). Then

m(R O J?a)J £ mx J = 0. Since M is J-torsion-free m(i? n R^ = 0, so that

m e annM(P n Ra) = Nx, i.e., ma = 0. Hence annM J = 0 and Mx is /-torsion-free.

3.8. Proposition(4). Let R be an irredundant subdirect sum of prime rings

{Rx: oteA}, let MR be a subdirect sum of canonically I-torsion-free Rx-modules,

Mx(aeA), and set A' = {<xeA: Mx = 0}. Then MR is I-torsion-free and for

every ideal J of R and submodule H of M:

(1) annMJ = {meM: mx = 0 whenever Jx ^ 0},

(2) annjjH = {x e R: xx =0 whenever Hx ^ 0},

(3) The correspondence ZM: B -> {meM: mß = 0for all ßeB] is 1-1 and

inclusion reversing between the subsets B of A-A' and the annihilator sub-

modules of M.

Proof. If for some meM, mJ = 0, then mx Jx=0 for each a. Hence Jx # 0

implies mx = 0. Obviously mJ = 0 if mx = 0 whenever Jx # 0. Thus (1) is estab-

lished.

If Hx = 0 for some x, then Hxxx = 0 for each a. Since Rx is prime, every non-

zero submodule of the i?„-module Hx is faithful. Hence Hx^0 implies xa = 0.

If xx = 0 whenever Hx = 0, then Hx = 0 and (2) is established.

(1) shows that ZM is onto. To see that it is 1-1, let B and C be subsets of A-A'

such that B contains an element ß not in C. Then M(R n Rß) ̂  0 since ß $ A'.

Hence M(R n Rß) $ ZM(ß) but M(i? n J?p) £ ZM(C) so that ZM{B) ̂  ZM(C).

(3) In discussions involving subdirect sums, subscripts will be restricted to projections or

the kernels of projections. Here Nx will be a kernel.

(4) This proposition is due to the referee.
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To see that M is /-torsion-free suppose annR J = 0 for some ideal J. Then

by Lemma 3.5, Jx ^ 0 for all a, and by (1) above annM J = 0.

Each Rx is a canonically /-torsion-free .Ra-module. Hence taking M = R we

obtain:

3.9. Corollary. Let i? be as above. Then B -> ZÄ(ß) is a 1-1 inclusion

reversing correspondence between the subsets B of A and the annihilator ideals

ofR.

3.10. The completion of the proof of Theorem 3.2 is an immediate con-

sequence of 3.9, for the kernel of the projection R -* Rx is ZR({<x]) and the min-

imal subsets of the index set A are precisely the single-element subsets of A. (R is

semi-prime by the footnote to 3.5.) More generally, by applying this reasoning

to Proposition 3.8, we obtain the following uniqueness property for modules:

Theorem. Let M be decomposed as in Theorem 3.7 (M,Ma I-torsion-free).

Then M is an irredundant subdirect sum of those Mxs which are not zero,

and the kernels of the projections M -> Ma (Ma # 0) are the maximal annihilator

submodules of M.

Proof. The kernels are characterized as above. To establish irredundance,

note that if Ma # 0, ol$A' {A' is defined in Proposition 3.8) so that M C\Ma

= ZM{A-A' — {a}) which is not zero since ZM is 1-1 and ZM(A-A') = 0.

3.11. If, in Theorem 3.10, we drop the hypothesis that each Mx be /-torsion-

free, then the decomposition is no longer unique. For we may take R = {(x,y):

x,yeZ,x-ye 2Z} (Z the integers), M = R, Mt = {(a,b): a e Z, b e Z/4Z}, M2 = Z

(with m2(x,y) = m2y). Then M is an irredundant subdirect sum of Mj and M2 '■

For (a,b)eM, let f(a,b) = (a,b;b). Therefore, for modules we need a stronger

condition than irredundance to establish complete uniqueness.

Proposition. Let M be decomposed as in Theorem 3.7. Then each nonzero

submodule of each Ma has nonzero intersection with M. Conversely, if M (which

is I-torsion-free) is decomposed into a subdirect sum of canonically Rx-modules

Hx (aeA) having this intersection property, each Ha is I-torsion-free (and we

may use Theorem 3.10).

Proof. Suppose 0 # Tß £ Mß for some ß, in the decomposition of Theorem

3.7. Then if M n 7^=0 we have Q=(MnM„)r\Tp. By Proposition 3.8, MnMß

= annM Z^CR ^Rx). Hence ^(Et#(i(J{nÄä))^0. But this is impossible

since Mß is canonically an J?p-module. Hence MfiT^O.

Conversely, suppose M is decomposed into the Hx's described above. Let Tß

be a submodule of some Hß, and let J be an ideal of R such that annR J = 0.

Then if Tß J=0, (T„ nM)J = 0. Since M is /-torsion-free, this implies TßnM = 0

so that Tß = 0. Hence Hß is /-torsion-free.
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3.12. For general subdirect decompositions the components Rx of R are not

necessarily contained in R (when R is considered as a subring of Y\a Rx). Hence

the strongest uniqueness property of such decompositions is uniqueness of the

kernels of the projections R -»Ra. However, for those subdirect sums of prime

rings which contain all of their components we can prove that the projections

R-+Ra are unique endomorphisms of R.

We will call R an intermediate direct product of a set of its ideals {Lx} if there

is an isomorphism h of R into the direct product of the rings {Lx} such that for

x 6 Lx, h(x)x = x and h(x)ß = 0 (ß # a). We will write rx for h(r)x (r e R).

Theorem. Let R be an intermediate direct product of a set of nonzero ideals

{Lx: a 6/1} which are prime rings. Then {Lx} is the set of minimal annihilator

ideals of R and for each reR and each a, ra = (r + annR Lx) nL,.

Proof(5). La = ZR(A - {a}) so that by Corollary 3.9, {La} is the set of minimal

annihilator ideals of R. Let reR and a be given. Since the kernel of the pro-

jection R ->Rx is ZR({a}), rxer + ZR({a}) and rx is then characterized by the

further requirement (rx)p = 0 (ß # a), i.e., rx = r + ZR({oc}) O Lx. By Propo-

sition 3.8 (with M ■= R), ann^L^ = ZR({a}), and this completes the proof.

3.13. The results of this section enable us to characterize all finite subdirect

sums of prime rings.

Theorem.   The following conditions are equivalent:

(1) R is a subdirect sum of a finite number of prime rings.

(2) R is an irredundant subdirect sum of a finite number of prime rings.

(3) R is a semi-prime with the maximum condition for annihilator ideals.

Proof. (1) and (2) are equivalent for arbitrary (not necessarily prime) rings,

for if R is a subdirect sum of a finite number of rings Rt (i = 1,n) and if the

sum is not irredundant, then for some j, the map r-» {r,: i # 7} is 1-1. R is now

expressed as a subdirect sum of n-1 rings, and if this sum is not irredundant

we can repeat the process until we obtain one which is.

If (2) holds then R is semi-prime by Theorem 3.2. By Corollary 3.9, R has only

a finite number of annihilator ideals. Therefore (3) holds.

On the other hand, if (3) holds, then by Theorem 3.2, R is an irredundant

subdirect sum of prime rings [Rx: <zeA}, and by Corollary 3.9, the index set A

satisfies the minimum condition for subsets. Since this is equivalent to the de-

scending chain condition for subsets, A is a finite set.

3.14. Example. We close this section by observing that not every semi-prime

ring satisfies the condition every annihilator ideal {different from the ring) is

contained in a maximal annihilator ideal: The set of annihilator ideals of

(5) This proof is due to the referee.
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the ring R of continuous, real-valued functions on [0,1] is in 1-1 inclusion-

preserving correspondence with the interiors of closed subsets of [0,1] (see Lambek

[4], last paragraph in §6, and Example 7.5). Hence R has no maximal annihilator

ideals.

4. Injective envelopes and maximal quotient rings. Let M be a right R-module.

We will denote by M* an injective envelope of M, that is, a minimal injective

module containing M. R. E. Johnson [3, Theorem 7.1] has shown the existence

and uniqueness, up to isomorphism over (6) M, of M* for rings without identity.

An injective module T* containing M is an injective envelope of M if for every

nonzero submodule 77 of T*, HnM^O.

4.1. Let R be an irredundant subdirect sum of prime rings {Rx: aeA}, and

let M be an /-torsion-free right R-module. Then M is an irredundant subdirect

sum of canonically 7-torsion-free Ra-modules Mx (oce.4) by Theorem 3.7.

Proposition. Let M* be an injective envelope of the Rx-module Mx. Then

Proof.  We carry out the proof in three parts.

(1) M* is 7-torsion-free: If 77 is a submodule of M* and J an ideal of R

such that annRJ = 0, then if HJ = 0, (77 C\M)J = 0. Since M is 7-torsion-free

H n M = 0 so that H = 0.

(2) M* is an injective envelope of the R-module Mx: Let T* be an injective

envelope of the R-module Mx. Let Px = {xeR: xa = 0}. If T*PX # 0, then

(T*PX) But then {T*PX nMx) (R OR„) = T*Pa(R nRJ = 0 contra-

dicting the fact that Ma is an 7-torsion-free Ra-module. Hence T*Pa = 0 and T*

is canonically an R^^R/PJ-module. It now follows easily that T* is an injective

envelope of the Ra-module Ma. (R-injective implies Ra-injective. Then use the

intersection property of injective envelopes.) The desired conclusion follows from

the uniqueness of injective envelopes.

(3) Let T* = Y\x M*. There is a natural embedding of M in T* since for each

a, Mt £ M*. We show that T* = M* (isomorphism over M): Since a product

of injective modules is injective [1, Chapter 1] (the proof remains unchanged for

rings without identity), (2) implies that T* is injective. Each M* is canonically

7-torsion-free by (1) and Lemma 3.6. Hence T* is 7-torsion-free (Proposition

3.8). Let H be a nonzero submodule of T*. Then annfi T,X(R n Rx) = 0 (Lemma

3.5) so that 77 Za(R n RJ ^ 0 since T* is 7-torsion-free. Hence for some a,

0 # 77(R nRJ = M* so that 7/(R nRJ Then by Proposition 3.11,

77(R nRx) r\MxnM 1=0, so that ffnM^O. Hence T* is an injective en-

velope of M.

4.2. Let {Rx} be a set of rings with zero left annihilator, and let Sx be a maximal

(6) Two modules H and K containing M are isomorphic over M if the identity map on M

can be extended to an isomorphism of H onto K.
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ring of right quotients of Rx. Utumi [5, 2.1] has shown that Y\zSx is a maximal

ring of right quotients of £©#«. Lambek [4, Proposition 7.2] has proved the

two-sided analogue of this by assuming, in addition, that each Rx has zero right

annihilator. We now show that if the Rx's are prime rings, both of these results

can be considerably strengthened.

Proposition. Let Sx be a maximal ring of right (resp. right and left) quotients

of the prime ring Rx (oceA) and let R be an irredundant subdirect sum of

{Rx: aeA). Then Y[x is a maximal ring of right (resp. right and left)

quotients of R.

Proof. For the one-sided version we adopt the terminology and notation of

Utumi [5]. Since annR I,(RnJ?a) = 0 and ann^ (R n Rx) = 0 (Lemma 3.5),

we have

(1) R ^ Ia(PnPJ,
(2) Rx^Rr\Rx for each a.

By (2), Rx is a maximal ring of right quotients of R n Rx [5, 1.14], so that Y[ x Rx

is a maximal ring of right quotients of Sa(J?nR,)= Z„©(PnPa). Then

by (1), R a ]\XRX.

For the two-sided version, we note that parts (1) and (3) of Lambek's proof

[4, Proposition 7.2] apply to our case without change. Hence it is sufficient to

show that if Tx is a ring of right quotients of Rx, and T = J] XTX, then R ^ T(TR).

Let t' (^0) and t e Tbe given. Then for some a, t'x # 0 and since Tx is a ring of

right quotients of Rx there is an xxeR* such that t'xx = txxx ^ 0 and txx

= txxx e Rx. Since Tx is a rational extension of Rx, it is an essential extension,

and we show as in part (1) of Proposition 4.1 that Tx is /-torsion-free as an Rx-

module. Hence t'xxx(R C\RX) # 0 and for some yeRC\Rx we have xxyeR,

t'(xxy)=£0, and t(xxy)eR, giving the desired result.

5. Square roots and cancellation.

5.1 Proposition. If A and B are prime rings such that an irredundant

subdirect sum of some (possibly infinite) set of copies of A is isomorphic to an

irredundant subdirect sum of some set of copies of B, then A^B.

Proof. Let R be the irredundant subdirect sum of copies of A which is also

an irredundant subdirect sum of copies of B, and then use the uniqueness part

of Theorem 3.2.

The "cancellation" theorem, if A, B, and C are prime rings such that an

irredundant subdirect sum of {A,C} is isomorphic to an irredundant subdirect

sum of {B,C}, then A^B, also follows immediately from Theorem 3.2. A less

trivial cancellation result is the following:

5.2. Proposition. Let C be a semi-prime ring satisfying the maximum
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condition for two-sided ideals. If A and B are prime rings such that an irre-

dundant sub direct sum of {A,C\ is isomorphic to an irredundant subdirect sum

of {B,C}, then A^B.

The proof will require two lemmas.

5.3. Lemma. Let R be an irredundant subdirect sum of the rings A and C

where C is an irredundant subdirect sum of prime rings Cu...,Cn. Then the

Cj's can be renumbered so that for some s^n the map h(a,ct,c2, ...,c„)

= (a,cu ...,cs) expresses R as an irredundant subdirect sum of {A,Clf ...,CS}.

If s < n, then for each m such that s < m = n, h-1 induces a homomorphism

fm: A onto Cm and ker/m # 0.

Proof. Let C0 = A. If R is not already expressed as an irredundant subdirect

sum of {C0,...,C„}, then for some j the map h(J): r-* {rt: i=£j} of R into n^y^i

is 1-1. By irredundance of the sum {A,C} there is an element r = (c0,c)

=(c0,ci,c2, ...,c„)eR such that c0 =£ 0 but cf = 0 for i > 0. Then h(0)(c0) = 0 so

that /z(0) is not 1-1 and hence j =fi 0. Now we interchange Cj and C„ so that h(n)

expresses Rasa subdirect sum of {C0,(?,,_!}. If this sum is not irredundant

we can repeat the process until we obtain one which is.

It is sufficient to prove the remainder of the lemma for the case m = n. Now,

n_1 followed by the projection of R onto its nth component gives a homomor-

phism/of R' = h(R) onto C„. Let P; = {xeR': x( = 0}. Then P0Pt ...Ps = 0 so

that f(P0) •••/(Ps) = 0. Since C„ is a prime ring, this implies that f(Pj) = 0 for

some j. Since Pj is the kernel of the projection of R' onto its j'th component,

/ induces a homomorphism /„ of Cj onto C„. Since C is an irredundant sub-

direct sum of {CU...,C„} there is an element c = (O^Oj, ...,0n-uc^eC with

c„ # 0. Since R is a subdirect sum of {C0,C}, there is a c0 e C0 such that

(c0,c) = (cqA, ...,0n-ucn)eR. Then j # 0 would imply f„(0j) = cn ? 0, which is

impossible. Hence j = 0 and /„ maps C0 = A onto C„. Since R is an irredundant

subdirect sum of {A,C} there is an element (r0,0ls ...,0n)eR with r0 -AO. Thus

/„(r0) = 0 and ker/„ ¥= 0.

5.4. Lemma. Let R be a ring satisfying the ascending chain condition for

two-sided ideals. Then every (ring) homomorphism of R onto itself is 1-1.

Proof. Let / be a homomorphism of R onto R. If / were not 1-1 we would

have the strictly ascending chain of ideals 0 c/-1(0) <=f~2(0) <=... contradicting

the ascending chain condition.

Proof of Proposition 5.2. Let R be the irredundant subdirect sum of A and C

which is also an irredundant subdirect sum of B and C. By Theorem 3.13, C is

an irredundant subdirect sum of a finite number of prime rings Ct (i = 1,2, ...,n).

To simplify the following discussion we suppose all of the rings A,B,Ct,C„

to be distinct from each other (they still might be isomorphic to each other).
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By Lemma 5.3 we can renumber the C,'s so that R is an irredundant subdirect

sum of St = {A} U {Cx, ...,CS} for some s ^ n. By the same lemma, there is a

subset 32 of {1,2, ...,n} such that P is an irredundant subdirect sum of

S2 = {B}U{Q: ieJ2}.

For each set S of rings let a(S) be the number of rings in S which are isomorphic

to A. Then since the prime components of R are unique up to isomorphism

(Theorem 3.2), a(SJ = a(S2). Suppose, now, that A is not isomorphic to B.

Then for some m>s, A^Cm: for otherwise a(S2) = a({C,: ieJ2, i ;£ s})

^ a({C;: i ^ s}) = a(Sx) — 1, a contradiction. Let g be an isomorphism of Cm

onto /I and let fm be the homomorphism of A onto Cm given by Lemma 5.3.

Then fmg is a homomorphism of Cm onto itself with nonzero kernel. But Cm,

being a homomorphic image of C, satisfies the maximum condition for two-

sided ideals, so that by Lemma 5.4 we cannot have ker fmg ^ 0. Hence A ^ B.

5.5. It might seem, in Proposition 5.2, that the maximum condition could be

replaced by the weaker requirement that C have a finite number of prime com-

ponents. However, this is not the case, as the following example shows:

Let A be a polynomial ring in an infinite number of indeterminates over the

integers, and let B be the same polynomial ring over the rationals. Then there is

a homomorphism / (resp. g) of A (resp. B) onto itself with a nonzero kernel. Let

C = A@B. Then P = {(x;y,z): xeA, (y,z)eC, f(x) = y} is a subdirect sum

of A and C. The sum is irredundant since if k is a nonzero element of ker /,

(fc;0,0)eP and (0;0,z)eP for each nonzero zeB. However, fisC since the

middle component can be omitted. Similarly we can construct an irredundant

subdirect sum of B and C which is isomorphic to C. Since A is not isomorphic

to B, we have the desired example.

6. Classical quotient rings. By a (classical) right quotient ring of a ring R, we

mean a ring S with identity such that 5 2 P, every regular element (i.e., non-zero-

divisor) d of P has a two-sided inverse d~1 in 5, and every element of S has the

form rd~l for r,deR. It is easily seen that if S exists it is unique up to isomor-

phism over R.

Suppose that S exists and is semi-simple with minimum condition. Then by

a result of Goldie [2] P is semi-prime and satisfies the ascending chain condition

for annihilator ideals. Then by Theorem 3.13, R is an irredundant subdirect

sum of a finite number of prime rings {P(}, and it is natural to inquire whether

each P; has a right quotient ring.

If P has a right quotient ring which is semi-simple (resp. simple) with minimum

condition, we will say that R is rqss (resp. rqs).

6.1. Theorem. P is rqss if and only if it is an irredundant subdirect sum of

a finite number of rqs rings {R(}. The kernels of the projections R -> Pf are the

maximal annihilator ideals of P.
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Before beginning the proof we note that if R is rqs, then R is a prime ring

(by [2, Theorem 5.1 and Lemma 5.13] the only annihilator ideals of R are R

and 0).

6.2. Lemma. Every nonzero (two-sided) ideal in an rqs ring contains a

regular element.

Proof. Let J be the given ideal of R. If K is an arbitrary nonzero right ideal,

then / nf(2 KJ =t 0 since a nonzero ideal of a prime ring has zero annihila-

tor. But a theorem of Goldie [2, Theorem 3.9] states that a right ideal J of an

rqs ring R has regular elements if and only if J n K # 0 for every nonzero right

ideal K of R.

6.3. Lemma. Let R be an irredundant subdirect sum of rqs rings {Rt}. If an

element d of R is regular then dt is regular (in Rt) for each i.

Proof. Let d be regular in R and suppose that for some xeR, xtdi = 0.

Then 0 = (R n £,)*;<*; = (Rn Rt)xd. Hence, since d is regular, 0 = (R n Rt)x

= (Rn Ri)xt. By irredundance, R n R, # 0. Hence, since Rt is prime, xt = 0.

Similarly rf; is not a left zero-divisor.

6.4. Lemma. Let S be a simple ring with minimum condition. If de S is not

a left zero-divisor, then d is invertible.

Proof. We may consider S to be the complete ring of linear transformations

of a finite dimensional vector space V (right operators). If Vd =£ V, then for some

x # 0, Vdx = 0. But dx = 0 implies x = 0, a contradiction. Hence Fe/ = F, and

since K is finite dimensional, d is also 1-1. Hence d~1eS.

Proof of Theorem 6.1(7). Let R be rqss and let S be the right quotient ring

of R. If R = 0 then R is an irredundant subdirect sum of the empty set of rqs

rings. From now on suppose R # 0. Let S = £"= x © Sf where each S; is a simple

ring, and let e; be the identity of Sf. For seS, let s( = sej, and let Rt = Ret. Then

R is a subdirect sum of the set of rings {Rj. The sum is irredundant since

e; = xd-1 (x,deR) so that 0 =A det = xeR nRt. To complete the proof of the

existence of the decomposition we show that St is a right quotient ring of Rt.

Let dt e R{ be regular (in Rt) and suppose djSj = 0 for sf e S(. Then sf = xc~1

(x,c e R) so that 0 = dtx = dp^ Since dl is regular in Rh x; = 0 so that s, = 0.

Hence di is not a left zero-divisor in Sf, and by Lemma 6.4, dt is invertible in St.

If SjeSj is given, then S; = xd_1 =xjdf1 (x,deR, df1 being the inverse of d,-

in Sf) and Sf is a right quotient ring of Rt.

Conversely, suppose that R is an irredundant subdirect sum of rqs rings R;

(i = 1, ...,n). Let S, be a right quotient ring of R{ and set S = S;. Let deR

be regular. Then by Lemma 6.3 each dt is regular in Rt and hence invertible in

(7) The author is indebted to the referee for several improvements in this proof.
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S;, showing that d is invertible in S. Let s e S. Then for each i, s; = Xidt~1

(xhdi e R;). By Lemma 6.2, each RC\Rt contains a regular element c; of i?f.

Then s = (x^ + ... + x„c^)(dlc1 + ... + dnc^)~l where ExfCf and Ed,c, both

belong to R. Hence the semi-simple ring S is a right quotient ring of R.

Uniqueness follows from Theorem 3.2. We have actually obtained a charac-

terization of the Rt's in terms of S:

6.5. Corollary. Let R be rqss with right quotient ring S, and write S= Z©S;

where each S( is a simple ring with identity element et. Then the rqs components

of R are given by Rt = Ret. Hence S depends only on the components Rt and not

on the irredundant subdirect sum which combines them.

6.6. Remarks. If, in the above corollary, S is a two-sided (i.e., left and right)

quotient ring of R, then each St is a two-sided quotient ring of Rh for Rt = Ret

= etR and the proof of Theorem 6.1 can be repeated interchanging left and right.

We may note the similarity between the last assertion of Corollary 6.5 and the

results of §4. The results are formally related in the following way: Let R be rqss

with right quotient ring S. Then every homomorphism / of a right ideal J of R

into S is given by left multiplication x -»• ax by some a e S (extend/to an S-homo-

morphism /* of JS into S by f*(xs) = f(x)s and then to S by the fact that JS

is a direct summand of S). Hence, ifR is rqss, its right quotient ring is a maximal

ring of right quotients of R (in the sense of §4). It also follows from this that

SR is injective so that both of the results of §4 apply to R and S. It would therefore

be interesting to know whether or not Theorem 6.1 also holds for maximal quotient

rings. It is not clear, however, whether semi-simplicity of the maximal ring of

right quotients of R implies that R is semi-prime. Another hypothesis may be

needed.
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