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Introduction. We calculate the first few unstable homotopy groups of the

symmetric spaces F„ = S02n/U„ and X„ = U2n/Sp„ and of Sp„. The homo-

topy groups of Tn are needed in studying the existence of almost complex

structures and knowledge of the first unstable group n2n-i(r„) is used in a

paper of W. S. Massey [6]; in fact it was Professor Massey who first suggested

to us the calculation of 7r2n-i(rn) for n = 0 (mod 4) (the other three parities of n

are worked out by him), and suggested to us the use of some fibrations involving

r„, or X„, and spheres. Similarly, X„ is connected with "almost quaternion"

structures. We rely heavily on Kervaire's calculations [4].

The space X„ possesses an involution a, induced by the involutory automor-

phism of U2n leaving Spn fixed. This automorphism of U2n extends to an inner

automorphism of S04n and so induces a map a of period two on T2n. We also

study the effect of a on homotopy groups; this is useful information, as shown

in [2; 3].

The results are summarized in the following tables (the precise definition of a

and other notation will be given following the tables):

The groups n2n+r(T„):

rN* 4k        4k + 1    4k + 2 4k + 3    (fc > fr

— 1        Z + Z2    Zjb-di Z Z(B_1)!/2

0 Z2 + Z2        0 Z2 0

1 Z„, + Z2        Z      Z„, or Z„l/2 + Z2    Z + Z2

3 Z

If n = 4k or 4k + 2, then a is the identity except for the cases r = 1, n = 4k or

4k + 2. The effect of a on some of the other cases is also determined.

The groups 7c4n+r(Zn):

r\"        2k        2k + 1 (fc > 0)

0 Z(2n)i Z(2n)1/2

1 z2

5 Z2

<T = — 1 in all cases (i.e., a(x) = - x).
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The groups 7c4„+r(Sp„):

r\? 2k 2k+ 1 (fc> 0)

2 Z(2„+i)i Z2[(2n+1)|]

3 Z2

4 Z2

Notations. Un is imbedded in S02n as the subset of matrices consisting of

2x2 blocks

{-b a).

Let K2„ denote the 2n x 2n matrix having alternately +1, — 1, down the main

diagonal, and zeros elsewhere. K2„ belongs to S02n if and only if n is even.

Conjugation by K2n induces an automorphism a in S02„, and induces the complex

conjugation map in U„ (if the 2 x 2 block represents the complex number

a + ib). The induced map in S02„/Un = T„ is also written a. S02„ is imbedded

in S02n+r as the upper left hand block. Conjugation by K2n+2 in S02n+2 maps

U„, Un+l, S02n, S02„+x into themselves and induces a in U„, S02n. Denote by a again

the induced map of S02n+1. The induced map a in S02„/Un = r„, S02n+1/Un,

S02n+2/Un+l = T„+1 is compatible with the natural maps

r„c:so2n+1/c/„^rn+1.

The natural map S02n+1/Un -»S02n+2/Un+1 = Tn+1 is 1-1 and onto (the

two manifolds having the same dimension) and will be used to identify these

spaces. The fibration

so2n/uK-+so2H+1/u„-+s2m

can then be written as T„ -> Tn+1 -> S2n. The induced map a on S2n is of degree

(- D".
Spm is the subset of U2m of fixed points of the automorphism xiA-* J~lAj

where Ä denotes the complex conjugate matrix, and J is the 2m x 2m matrix with

blocks

(-! i)

down the main diagonal and zeros elsewhere. Since J e U2m, this automorphism

is homotopic to the complex conjugation automorphism a. Extend t to U2m+l

by the formula

B -> J^Sjy where Jt is the (2m + 1) x (2m + 1)

matrix consisting of J in the upper left hand block, 1 in the lower right hand corner,

zeros elsewhere.
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If t is defined on U2mAr2 by the same formula as on U2m, and U2m->'U2m+1

-*J U2m+2 denote inclusions, then xi = ix and xj is homotopic to jx.

Finally, x induces involutions on Xm = U2m/Spm, Xm+1 = Lr2m+2/Spm+1, and

U2m+1/Spm, and the natural maps between these spaces commute with x up to

homotopy. Just as for r„, we have a natural homeomorphism U2m+1/Spm-*Xm+1,

and a fibration

-y        y . o4m +1

The induced map t on s4m+1 has degree (— 1). In the future we shall not dis-

tinguish the various homotopic maps defined by x.

Calculations of the groups nff^). The first unstable homotopy group of Tn

is n2H.^n)- For j < In - 1, nfTj x Jr,+i(SO(Q) (/ large).

For convenience, we will assume always that n = 0 (mod 4), n # 0, and cal-

culate the homotopy groups of Tn+r,  0 ;£ r ^ 3.

The only difficult calculation is the following:

Theorem. 7r2n_1(S02n/l/„) = Z + Z2, wi7/i <r = identity (n = 0 (mod 4), n ^ 0).

Proof. We need the following lemma (compare [5]):

Lemma. Let j:Un^> S02n be the inclusion described above, and k:S02n -» [/2„

f/je natural inclusion. Under the composite map kj, a generator of the group

7t2„_ !({/„) = Z goes into twice a generator of Jt2n-i(Ü"2n) = Z.

Proof of lemma. We will show that if A is an n x n matrix in U„, then kj(A)

is conjugate to the 2n x In matrix

(o %

Recall that the map ; consists of replacing the entries au = bi} + (— l)1/2c,7 of A

by 2 x 2 blocks. If M denotes the matrix with entries

Mtj = <52f_1>7-        for l£i<£n,

= 52(,_B)>i       for n < i ^ 2n,

and N the matrix

1   /   /. _(_!)»/*/ \

(both are in C/2n) then

NM(kj(A))M~1JV~1 = ^      °) e l/2„.

If i is the usual inclusion of U„ in U2n,
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™-(! I)
and

™-(* *)

so that i' is homotopic to i, then kj(A) is homotopic to i(/l)i'(4) or to i(A)i(A).

Thus if x e 7t2n-i(C7n) tften

/y'(x) = i(x) + <t/(x).

But oi(x) = i(x), and kj(x) = 2i(x), since 7c2/i-i(^2n) -* ^n-iC^O^) is a mono-

morphism {n2n(SOAJU2^ = Z2 for n = 0 (mod 4)), and u is inner in S04n.

Finally, i:7t2n_1(LrII)7i2„_1(C/2n) is an isomorphism, and the conclusion of

the lemma follows. Q.E.D. for the lemma.

Next we consider the exact sequence

Jta.-xCSO,,,-!) ± n2n-i(S02n) Ati^S2"-1) - Ku~&Oa^d = 22.

namely (see [4]),

o-»z-^z + z^z-+z2-»o.

Let x generate n2„-i(.S02n-1), y and z generate Z + Z =* 7t2n-i(S02n) and

*a.-i generate 7c2„_1(S2n_1) = Z.

Let T:S2"-1 -*S02n be the characteristic map [7, §23], and R the automor-

phism of period 2 in S02„ leaving S02n_1 pointwise fixed and inducing a map

R of degree-1 in S2""1. If seS2"'1, s = p(A) for AeS02n, then T(s)

= AR(zl)"1. Hence RT(s) = T(s)"1 and RTii^J = - 7K*2»-i)-

Also pT(t2n_1) = 2T(t2n_1) generates the image of p in ^„^(S2"-1). Thus

7r2n_ 1(S02„) is the direct sum of Image i and the subgroup generated by T(t2n_1),

so we may take y = i(x), z = T(t2n_!) and so R(z) = — z, i?(y) = y. We note

that under fc: S02„ -* U2n, z maps into zero, since R becomes inner in U2n, and

n2n-t(U2H) = Z, (for, k(z) = Rk(z) = kR(z) = - fc(z)).

Now consider the (commutative) diagram

»2»-l(tf«)->»2»-l(S02ll)

V' ^
^(S2-1).

We may choose the generator x of n2„-i(U„) so that p'(x) = (n — 1)! i2n_i

(since n2n-2(U„-i) = Z^.j),), and, if j(x) = ry + sz then s = (n - l)!/2, (since

p(z) = 2t2„_1), p(j) = 0, p; = p'.

Next we show that r = 2; for, under

12»- i(t/J ^ «2»- i(S02n)    7t2n_ !(172b) ,

fc/(x) = k(ry + (n - l)!/2z) = rk(y) = twice a generator of n2n_1(C/2n); how-
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ever k(y) is a generator, and k is onto (since k followed by the isomorphism

rc2n-1(^2») ->rc2„_ i(U2n+i) equals the composition of ti2b_1(S02b)-»'

^2n-i(S02n+1), which is an epimorphism, and n2n-1(S02n+1)^n2„_1(U2„+l),

which is also an epimorphism since the stable group n2„-1(U2n+l/S02n+1) is

zero) so that r = 2.

Thus the cokernel of j is isomorphic to Z + Z2. However 7c2n_1(S02„) ̂

7r2„_1(r„) is onto, since n2n_2(U„) is zero. Thus 7c2n_1(r„) is isomorphic to the

cokernel of 7; further, a = identity on it, since a = identity on n/ißO^ for even n.

This concludes the proof.

The values for 7c2n+1(r„+I), n2n+3(rn+2), 7c2n+5(r„+3) are computed in [6],

and it only remains to determine the value of <r on these groups (we do not settle

the case 7t2n+1(rn+1)).

For any integer e, we have an exact sequence

^2e-i(S02e) -> 7t2e_ i(r£) -> Tt2e.2(Ue) = 0.

Hence it suffices to determine a on n2e-i(S02e). If e is even, a = identity. If

e = n + 3, the exact sequence

^2n+5(S'02n + 6)-^7C2n + 5(S2" + 5)-^7t2n + 4(S02n + 5)

or,

o->zAz-»z2^o

and the fact that a on s2n+s   has degree — 1,  shows that  a = — 1 on

*2n+5(S02n + 6) and also on ^+5(^ + 3)-

If e = n + 1, n2n+1(S02„+2) is Z + Z2 and a sends the generator of Z into

its negative or its negative + the element of order two.

We note for future use that 0 = — 1 on n^k{U2k) and n4k(U2k_1), and a = + 1

on 7r4.s+2(L/2k+1): for the exact sequence

n4k + t(S*k+1) -» %(l/2t) - 7i«(tf2,+ 1) = 0

and the fact that a has degree — 1 on S4*+1, shows that a = — 1 on 7t4fc(L/2t).

Also, under inclusion 7t4s(U2k_i) maps monomorphically into n^k(U2k). Since

0- = + 1 on S4*+3, a = + 1 on rc4Ä+2([/2Ä+1).

The rest of the groups n^T^ now follow; we denote by n always a positive

integer = 0 mod 4.

1. 7t2„(r ) = Z2 + Z2, a = identity.

Proof.  The exact sequence

**+ i(S2") - n2n(Tn)    n2„(Tn+1) ^„(S2")

or

z2 -»^„(rj -> z2 -* z



1963] HOMOTOPY GROUPS OF SYMMETRIC SPACES 179

shows that n2„(T„) has order 2 or 4. In the exact sequence

n2n(U„) - n2n{S02n) A 7c2n(r„) £ n2n_ y(U„)

ZnlUZ2 + Z2 + Z2±n2n(rn)^Z

the image of i is cyclic, hence 0 or Z2. But d is zero, hence n2„(T„) has order 4

or 8. Finally 7r2n(r„) = Z2 + Z2, and <r = + 1 (since a = + 1 on n2n(S02nj),

We note also that since i has image Z2, d: n2n+ ̂ T,,) -> B2n(/7n) has cokernel Z2,

i.e., image of d is 2Zn!.

2- t2«+i(r„) = Z„, + Z2.

Proof. From the exact sequence

l2n + 2(S'2n) -> 7t2n+l(r») ~* ^+1(^+1) "» ^2n+l(S2")

Z2 ~» 12«+ l(rn) -* Znl ~* Z2

we see that 7i2„+1(r„) has order ^ 2(n!).

From the exact sequence

^2n+l(U„) -» 7t2n+ t(S02n) 4 7l2n+1(r„) ^ 7C2n([/„)

and the remark at the end of 1, we get

Z2 -> Z2 + Z2 + Z2 A n2n+1(r„) -» 2Z„, -> 0.

Thus 7t2n+1(r„) has order at least 2(n!), therefore exactly 2(n!). Furthermore it is

not a cyclic group since image of P = Z2 + Z2 is not cyclic. Thus B2n+1(r„)

= Z„, 4- Z2. Since a = - 1 on n2n(U„) a is, at least, different from the identity

on 7I2»+i(rii)-

3- 7c2»+2(rn+i) = o = 7r2„+6(r,1+3).

Proof.  Let m = n + l orn4-3. The exact sequence

*2m+ i(S2m) - n2m(S02m) i n2m(S02m+1) -> 7t2m(S2m)

reduces to ^

Consider next

7t2m+l(52m+ X) ̂  7t2m(f/m) = Zm!

Z4 = ^2m(S02m) -» n2m(S02m + 1) = Z2.

Here 3' is onto, since n2m{S02m+2) = 0 for 2m = 2 or 6 mod 8; hence k is onto.

However k factors:

^2m(UJ = Zm,

•/ V
n2m(S02m) -* n2m(S02m + 1),
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k = ej. Since 7t2m(S02lI1) = jr2m(S02m+1) = Z2 and j is onto, the fact that k

is onto implies that e is also onto. Finally,

n2JUm)^n2m(S02m)^7i2m(rm) -» 7i2m^(UJ -» «ta-^SOaJ
gives

0 -*n2»(rj -» Z = 7t2m_1(C/J -> «2»-i(S02J.

However Ji2m-i(^m) = Z-yn2m-i(.S02m) = Z or Z + Z2 is a monomorphism,

since 7i2m-i(rm) is finite for m = 1 or 3 mod 4. Hence 7:2m(rm) = 0 if m = n + l

or n + 3.

4. rc2„+4(rn+2) = z2.

Proof. From the exact sequence

Ä2« + 5(^2" + *) = Z2 -> l2n + 4(r,n + 2) ~* 7c2» + 4(Yb + 3)

and b2n+4(rn+3) = 7r2n+5(S0) = 0, we see that Jr2B+4(r„+2) = Z2 or 0. From

^+4(^+2) -* rc2B+4(so2B+4) -> 7t2n+4(r„+2)

Z(,,+2)i -yZ2 + Z2 -» n2n+4(^+2)

we see that 7i2„+4(rB+2) is not zero, hence is Z2.

5. b2n+3(rn+1) = Z, 7t2n+3(rB) = Z, with o- = identity on both.

Proof. In the exact sequence

K2n + 4.(S02n + 2)      12„ + 4(S02„+3) "» rc2B + 4(S2" + 2) ^ Tt2n +3(SO 2„ +2),

namely,

Z12 -1» Z2 -> Z2 ^> Z.

d is zero, hence i is zero. Thus the composite map

/: rc2i! + 4(S02n + 2) -* n2n + 4.(S02n+3) -» 7C2n + 4(S02„ + 4)

is also zero.

Next consider the commutative diagram

1*2«+4(S02n+2) ^ n2B+4(TB+1) -* 7t2B+3(lrB+i) = 0.

i'    ^ 1"
7t2n + 4(^02n + 4) -» 7t2n + 4(rB + 2)

Image of k = Image of kp (since p is onto) but kp = p'; = 0, so k = 0. Finally,

the exact sequence

n2n+4(r„+i) 7r2n+4(r„+2) -» b2b+4(s2b+2)

~* ^2B + 3(rn+l) ~* n2n+3(T„ + 2) "* ^2b + 3(S2" + 2)

becomes
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o -> z2 -»z2 -* 7t2n+3(rn+1) n2n+3(rn+2) -> z2.

Thus 7t2n+3(r„+1) is a subgroup of 7t2B+3(r,+2) = z, of index two. Since a = + 1

on 7t2n+3(rn+2), a = + 1 also on 7r2„+3(rn+i). The exact sequence 7t2n+4(S ") = 0

^7t2B+3(rn)->Tt2n+3(rn+1)^7t2B+3(S2") shows that 7t2B+3(rn)=Zwith £7= + 1.

6. 7r2n+7(rB+3) = z + z2, a = identity.

Proof. In the exact sequence

"2ii+7(S02b+6) = z   7c2b+7(S02b+7) = z -»7t2n+7(S2"+6)

p is zero [4, Theorem 1], so i is an isomorphism.

Writing TB+4 = S02n+1/Un+3, rn+3 = S02n+6/Un+3, we have a commutative

diagram

7t2»+7(S'02B + 6) -+ 7I2B + 7(r„ + 3) -* 7£2b + 6(Ü"b + 3)

'4      1    l> II
7*2» + 7(s°2n + l) ~* n2n + 1(rn + d ^> n2n + 6(Un+3)

I ' 1
^n+7(s2" + 6)    =7t2b+7(s2" + 6) .

pu p' are monomorphisms, since 7c2B+3(rJ,I+1) = 0, and ' is an isomorphism,

thus j is a monomorphism. Since 7c2n+7(r„+4) = z + z2, the subgroup 7t2n+7(rB+3)

is either z or z + z2.

From the exact sequence

7t2H+7(S02„ + 7)     n2n + l(rn + 4)8-* n2n +       n + 3)

-* tc2B+6(so2b+7) = z2 -»7c2B+6(rB+4) = z

and the fact that image of 8' = 2Z(B+3j|, we see that under p', a generator u of

7c2b+7(S02b+7) maps into ((n + 3)!/2)x + y, where x, y generate z, z2 in

rr2n+7(rB+4) = z + z2. From the diagram

7*2.1 +7(S02b+7)       7C2b + 7(rB + 4)

7*2b + 7(S       ) — z2

where p = 0 (as remarked at the beginning of the proof) we have qp'(u) = p(u) = 0,

but

qp'(u) = «((11 + 3) \/2x + y) = q(y)

(since (n + 3)!/2 is even), so finally q(y) = 0 and the element y of order 2 is in the

image of j: 7t2B+7(r„+3)-+7t2n+7(rB+4). Thus n2n+1(rn+3) has an element of

order 2, and must be z + z2. a = + 1 on it since a = + 1 on 7t2B+7(r„ + 4). This

concludes the proof of 6.
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1 ■  n2n+ 5(1^1 + 2) = Z(n + 2)! 0r Z(n+2)!/2 + Z2.

Proof. From the exact sequence

^2«+e(rn+3) -» "2b+6(s2"+4) -» ^b+s(r„+2) -»n2„+s(rn+3)

rc2n+5(S2n+4) -> 7r2„+4(r„+2) -* ^2b+4(^ + 3)

and 7t2„+6(r„+3) = 0 = 7t2„+4(rn+3), 7t2n+4(rn+2) = Z2 we get

0     Z2 ~* 7t2B+5(rb + 2) ~* 7t2B+s(rb+3) = 2(„ + 2)|/2 -* 0;

further, a = - 1 on 7C2„+5(r„ + 3), so <r # 1 on 7t2ll+5(r„ + 2).

The groups n£X^) and n,(Spm). For i < 4/c, ti^X*) = 3ti+2(SO,), / large,

m will denote an even integer, 2; 2. The involution t described above will be

denoted by a here.

1- rc4m(A:j = Z(2m)!, with a = - 1.  7i4m+1(XJ = Z2.

Proof. From the exact sequence

*4m- l(Spm)      7C4m_ 1(C/2m) -♦ 7t4m_ !(Xm)

z 4 Z Z2

i is a monomorphism.

Hence the sequence

^4m(Spm)      T4m(t/2m) ~* nAm(XJ ~* ^m- l($P J

becomes 0->Z(2m)! -» nAm(Xm) -> 0. Thus 7c4m(XJ = Z(2m)l> and a = - 1 on it,

since <r = - 1 on n4m([/2m).

The exact sequence

^m+lCSPm) ~» rc4m+1(t/2J      7t4m+1(XJ -> 7t4m(SpJ

0^Z2^7t4m+1(XJ^0

shows 7i4m+1(XJ = Z2.

2- 7r4Bi + 4(^m+l) = Z[2(m+l)]!/2> witn O- = - 1.

Proof. From the fibrations

u2m+2-*u2m+3 -+S4m+5

we get the diagram

7J4m+5(l72Bi+3) = Z ^ jr4m+5(S4",+ 5) -> Jt4m + 4(l/2m + 2)

1-, r l4m+s    8, 1
7t4m+5(-^m + 2) = Z _>7r4m+s(^ ™     ) ~* T^m + 4(^111 + l)

7r4m + 4(^Pm+l) = Z2-
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3, d' are onto since 7r4m+4(U~2m+3) = 0 = ^m+4.(Xm+2% si is onto since

"4m+4(t/2m+3) = 0> so that if u generates n4m+s(U2m+3), p^u) = 2v, where v

generates 7t4m+5(Xm+2). If w is a generator of 7c4m+5(S4m+5) then

=      = (2m + 2)!vv

so 2p'(v) = (2m + 2)!w or p'(v) = [(2m + 2)!/2]w, and it is clear that

^m+4(U2m+2) ~> ̂ 4m+4(Xm+i) is onto, with kernel Z2.

Since a = - 1 on 7c4m+4(C/2m+2), <r = - 1 on 7r4m+4(XM+1) also.

3- ^m + öC^Pm+l) = Z2[(2m + 3)!], 7t4m + 2(Spm) = Z(2m + 1)|.

Proof. Consider the fibrations Spm+2/Spm+1 = S4m+7 = U2m+4/U2m+3 and

associated diagram

^+7(^ + 2) ■^•7C4m+7(S4m+7) ^^m + eC^Pm+l)

«i   ,   II 4m+7 8. i
n4m +7(^2« + 4) ->7C4m+7(S' "     )      7t4m + 6(^2»i + 3)-

3, 3' are onto since n4m+6(Spm+2) = 0 = 7i4m+6(l/2m+4). The groups

rc4m+7(Spm+2), 7t4m+7(^2m+4), 7t4m+7(S4m+7) are all Z, with generators x,y,z.

From

^4»! + l(SPm + 2)     7c4m + 7( ̂ 2m + 4) ~* 7c4m +m + 2)   = Z2

->7I4m+6(SPm + 2) = 0

we see that i(x) = 2y, so that p'i(x) = p(x) = 2p'(y) = 2[(2m + 3)!]z. Hence

7C4m + 6(Spm+i) = Z2[(2m+3)!] and

0     Z2 -> 7t4m + 6(Spm+ t) -> 7C4m + 6((/2m + 3) -» 0

is an exact sequence.

For 7t4m+2(Spm) we use the diagram

n4m + 3(SPm + 1) ~* %4m + + 3) ^ 7t4m + 2^Pn)

V II 4m+3\ V
7C4m+3(^2m+2) ~* 7t4m+3(^ "     )~* 7c4m+ 2(^2m+ l)-

Again 3, d' are epimorphisms since 7t4m+2(Spm+1) = 0 = n4m+2(U2m+2). i is

actually an isomorphism since n4m+3(Xm+1) = 0, so ; is also an isomorphism.

4- 7i4m+7(Spm+1) = Z2 = n4m+a(Spm+1).

Proof. Consider the diagram

7C4m + 8(^2m + 3) ~* n4m + 8(-^m+ 2) ~* n4m+ l(SPm + l)

i\

d is onto since ri4m+1(U2m+3) = 0, and p' is an isomorphism, by 1. i is a mono-
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morphism with cokernel Z2[4, p. 164], so p is a monomorphism with cokernel

Z2 = ^4m + 7(Spm+i).

From the exact sequence

n4-m+ 9(^^ + 2) ~* 7t4m + 9(S4m + 7) ~* ^Am + s(^Pm+ l) ~* 7r4m + 8('S'Pm+2)

and the (stable) values 7i4m+g(Spm+2) = 0 = 7r4m+8(Spm+2) we see that

d:rc4m+9(s4m+7) = Z2 z»7r4m+8(Spm+1).

5- 7J4m + 9(-^m+l) = Z2-

Proof. In the homotopy sequence of the fibration Xm+2/Xm+1 = S4m+5,

we have 7t4m+9(S4m+5) = 0 = 7r4m + 10(S4m+5) and 7r4m+9(Xm+2) = Z2 (from 1).

6- n4m+3(Spm) = Z2-

Proof. We have the commutative diagram

l> r II 1
n4m + 4(U2m + 2) -►rc4m + 4(Xm+1)-+7t4m + 3(Spm+1) = Z-

Since rc4m+4(-Xm+i) = Z(2m+2)1/2 is finite, p' is an epimorphism; i is a mono-

morphism with cokernel Z2, hence p = p'i has cokernel Z2. But 3 is an epimor-

phism since n4m+3(U2m+1) = 0, so 7t4m+3(Spm) = Z2.
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