SOME CALCULATIONS OF HOMOTOPY GROUPS OF SYMMETRIC SPACES

BY
BRUNO HARRIS(${ }^{1}$)

Introduction. We calculate the first few unstable homotopy groups of the symmetric spaces $\Gamma_{n}=S O_{2 n} / U_{n}$ and $X_{n}=U_{2 n} / S p_{n}$ and of $S p_{n}$. The homotopy groups of Γ_{n} are needed in studying the existence of almost complex structures and knowledge of the first unstable group $\pi_{2 n-1}\left(\Gamma_{n}\right)$ is used in a paper of W. S. Massey [6]; in fact it was Professor Massey who first suggested to us the calculation of $\pi_{2 n-1}\left(\Gamma_{n}\right)$ for $n \equiv 0(\bmod 4)$ (the other three parities of n are worked out by him), and suggested to us the use of some fibrations involving Γ_{n}, or X_{n}, and spheres. Similarly, X_{n} is connected with "almost quaternion" structures. We rely heavily on Kervaire's calculations [4].

The space X_{n} possesses an involution σ, induced by the involutory automorphism of $U_{2 n}$ leaving $S p_{n}$ fixed. This automorphism of $U_{2 n}$ extends to an inner automorphism of $\mathrm{SO}_{4 n}$ and so induces a map σ of period two on $\Gamma_{2 n}$. We also study the effect of σ on homotopy groups; this is useful information, as shown in $[2 ; 3]$.

The results are summarized in the following tables (the precise definition of σ and other notation will be given following the tables):

The groups $\pi_{2 n+r}\left(\Gamma_{n}\right)$:

$r n^{n}$	$4 k$	$4 k+1$	$4 k+2$	$4 k+3$	$(k>0$
-1	$Z+Z_{2}$	$Z_{(n-1)!}$	Z	$Z_{(n-1)!/ 2}$	
0	$Z_{2}+Z_{2}$	0	Z_{2}	0	
1	$Z_{n!}+Z_{2}$	Z	$Z_{n!}$ or $Z_{n!/ 2}+Z_{2}$	$Z+Z_{2}$	
3	Z				

If $n=4 k$ or $4 k+2$, then σ is the identity except for the cases $r=1, n=4 k$ or $4 k+2$. The effect of σ on some of the other cases is also determined.

The groups $\pi_{4 n+r}\left(X_{n}\right)$:

$r \chi^{n}$	$2 k$	$2 k+1$
0	$\mathrm{Z}_{(2 n)!}$	$\mathrm{Z}_{(2 n)!/ 2}$
1	Z_{2}	
5		Z_{2}

$\sigma=-1$ in all cases (i.e., $\sigma(x)=-x$).
Received by the editors December 14, 1961.
${ }^{(1)}$ This research was supported by the United States Air Force Contract No. AF49(638)919. Reproduction in whole or in part is permitted for any purpose of the United States Government.

The groups $\pi_{4 n+r}\left(S p_{n}\right)$:

$r n^{n}$	$2 k$	$2 k+1$	$(k>0)$
2	$Z_{(2 n+1)!}$	$Z_{2[(2 n+1)!]}$	
3	Z_{2}	Z_{2}	
4		Z_{2}	

Notations. U_{n} is imbedded in $\mathrm{SO}_{2 n}$ as the subset of matrices consisting of 2×2 blocks

$$
\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)
$$

Let $K_{2 n}$ denote the $2 n \times 2 n$ matrix having alternately +1 , -1 , down the main diagonal, and zeros elsewhere. $K_{2 n}$ belongs to $\mathrm{SO}_{2 n}$ if and only if n is even. Conjugation by $K_{2 n}$ induces an automorphism σ in $\mathrm{SO}_{2 n}$, and induces the complex conjugation map in U_{n} (if the 2×2 block represents the complex number $a+i b)$. The induced map in $\mathrm{SO}_{2 n} / U_{n}=\Gamma_{n}$ is also written $\sigma . \mathrm{SO}_{2 n}$ is imbedded in $\mathrm{SO}_{2 n+r}$ as the upper left hand block. Conjugation by $\mathrm{K}_{2 n+2}$ in $\mathrm{SO}_{2 n+2}$ maps $U_{n}, U_{n+1}, \mathrm{SO}_{2 n}, \mathrm{SO}_{2 n+1}$ into themselves and induces σ in $U_{n}, \mathrm{SO}_{2 n}$. Denote by σ again the induced map of $\mathrm{SO}_{2 n+1}$. The induced map σ in $\mathrm{SO}_{2 n} / U_{n}=\Gamma_{n}, S O_{2 n+1} / U_{n}$, $\mathrm{SO}_{2 n+2} / U_{n+1}=\Gamma_{n+1}$ is compatible with the natural maps

$$
\Gamma_{n} \subset S O_{2 n+1} / U_{n} \rightarrow \Gamma_{n+1}
$$

The natural map $S O_{2 n+1} / U_{n} \rightarrow S O_{2 n+2} / U_{n+1}=\Gamma_{n+1}$ is $1-1$ and onto (the two manifolds having the same dimension) and will be used to identify these spaces. The fibration

$$
\mathrm{SO}_{2 n} / U_{n} \rightarrow \mathrm{SO}_{2 n+1} / U_{n} \rightarrow \mathrm{~S}^{2 n}
$$

can then be written as $\Gamma_{n} \rightarrow \Gamma_{n+1} \rightarrow S^{2 n}$. The induced map σ on $S^{2 n}$ is of degree $(-1)^{n}$.
$S p_{m}$ is the subset of $U_{2 m}$ of fixed points of the automorphism $\tau: A \rightarrow J^{-1} A J$ where \bar{A} denotes the complex conjugate matrix, and J is the $2 m \times 2 m$ matrix with blocks

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

down the main diagonal and zeros elsewhere. Since $J \in U_{2 m}$, this automorphism is homotopic to the complex conjugation automorphism σ. Extend τ to $U_{2 m+1}$ by the formula

$$
B \rightarrow J_{1}^{-1} \bar{B} J_{1} \text { where } J_{1} \text { is the }(2 m+1) \times(2 m+1)
$$

matrix consisting of J in the upper left hand block, 1 in the lower right hand corner, zeros elsewhere.

If τ is defined on $U_{2 m+2}$ by the same formula as on $U_{2 m}$, and $U_{2 m} \rightarrow^{i} U_{2 m+1}$ $\rightarrow{ }^{j} U_{2 m+2}$ denote inclusions, then $\tau i=i \tau$ and τj is homotopic to $j \tau$.

Finally, τ induces involutions on $X_{m}=U_{2 m} / S p_{m}, X_{m+1}=U_{2 m+2} / S p_{m+1}$, and $U_{2 m+1} / S p_{m}$, and the natural maps between these spaces commute with τ up to homotopy. Just as for Γ_{n}, we have a natural homeomorphism $U_{2 m+1} / S p_{m} \rightarrow X_{m+1}$, and a fibration

$$
X_{m} \rightarrow X_{m+1} \rightarrow S^{4 m+1}
$$

The induced map τ on $S^{4 m+1}$ has degree (-1). In the future we shall not distinguish the various homotopic maps defined by τ.

Calculations of the groups $\pi_{i}\left(\Gamma_{n}\right)$. The first unstable homotopy group of Γ_{n} is $\pi_{2 n-1}\left(\Gamma_{n}\right)$. For $i<2 n-1, \pi_{i}\left(\Gamma_{n}\right) \approx \pi_{i+1}(S O(l))$ (l large).

For convenience, we will assume always that $n \equiv 0(\bmod 4), n \neq 0$, and calculate the homotopy groups of $\Gamma_{n+r}, \quad 0 \leqq r \leqq 3$.

The only difficult calculation is the following:
THEOREM. $\pi_{2 n-1}\left(\mathrm{SO}_{2 n} / U_{n}\right)=\mathrm{Z}+\mathrm{Z}_{2}$, with $\sigma=$ identity $(n \equiv 0(\bmod 4), n \neq 0)$.
Proof. We need the following lemma (compare [5]):
Lemma. Let $j: U_{n} \rightarrow S O_{2 n}$ be the inclusion described above, and $k: S O_{2 n} \rightarrow U_{2 n}$ the natural inclusion. Under the composite map kj, a generator of the group $\pi_{2 n-1}\left(U_{n}\right)=Z$ goes into twice a generator of $\pi_{2 n-1}\left(U_{2 n}\right)=Z$.

Proof of lemma. We will show that if A is an $n \times n$ matrix in U_{n}, then $k j(A)$ is conjugate to the $2 n \times 2 n$ matrix

$$
\left(\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right) .
$$

Recall that the map j consists of replacing the entries $a_{i j}=b_{i j}+(-1)^{1 / 2} c_{i j}$ of A by 2×2 blocks. If M denotes the matrix with entries

$$
\begin{aligned}
M_{i j} & =\delta_{2 i-1, j} & & \text { for } 1 \leqq i \leqq n, \\
& =\delta_{2(i-n), j} & & \text { for } n<i \leqq 2 n,
\end{aligned}
$$

and N the matrix

$$
\frac{1}{2^{1 / 2}}\left(\begin{array}{cr}
I_{n} & -(-1)^{1 / 2} I_{n} \\
-(-1)^{1 / 2} I_{n} & I_{n}
\end{array}\right)
$$

(both are in $U_{2 n}$) then

$$
N M(k j(A)) M^{-1} N^{-1}=\left(\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right) \in U_{2 n} .
$$

If i is the usual inclusion of U_{n} in $U_{2 n}$,

$$
i(A)=\left(\begin{array}{ll}
A & 0 \\
0 & I_{n}
\end{array}\right)
$$

and

$$
i^{\prime}(A)=\left(\begin{array}{ll}
I_{n} & 0 \\
0 & A
\end{array}\right)
$$

so that i^{\prime} is homotopic to i, then $k j(A)$ is homotopic to $i(A) \overline{i^{\prime}(A)}$ or to $i(A) \overline{i(A)}$. Thus if $x \in \pi_{2 n-1}\left(U_{n}\right)$ then

$$
k j(x)=i(x)+\sigma i(x) .
$$

But $\sigma i(x)=i(x)$, and $k j(x)=2 i(x)$, since $\pi_{2 n-1}\left(U_{2 n}\right) \rightarrow \pi_{2 n-1}\left(\mathrm{SO}_{4 n}\right)$ is a monomorphism $\left(\pi_{2 n}\left(\mathrm{SO}_{4 n} / U_{2 n}\right)=\mathrm{Z}_{2}\right.$ for $\left.n \equiv 0(\bmod 4)\right)$, and σ is inner in $\mathrm{SO}_{4 n}$.

Finally, $i: \pi_{2 n-1}\left(U_{n}\right) \rightarrow \pi_{2 n-1}\left(U_{2 n}\right)$ is an isomorphism, and the conclusion of the lemma follows. Q.E.D. for the lemma.

Next we consider the exact sequence

$$
\pi_{2 n-1}\left(\mathrm{SO}_{2 n-1}\right) \xrightarrow{i} \pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right) \xrightarrow{P} \pi_{2 n-1}\left(\mathrm{~S}^{2 n-1}\right) \rightarrow \pi_{2 n-2}\left(\mathrm{SO}_{2 n-1}\right)=\mathrm{Z}_{2},
$$

namely (see [4]),

$$
0 \rightarrow Z \xrightarrow{i} Z+Z \xrightarrow{P} Z \rightarrow Z_{2} \rightarrow 0 .
$$

Let x generate $\pi_{2 n-1}\left(\mathrm{SO}_{2 n-1}\right), y$ and z generate $Z+Z=\pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right)$ and $\iota_{2 n-1}$ generate $\pi_{2 n-1}\left(S^{2 n-1}\right)=Z$.
Let $T: S^{2 n-1} \rightarrow \mathrm{SO}_{2 n}$ be the characteristic map [7, §23], and R the automorphism of period 2 in $\mathrm{SO}_{2 n}$ leaving $\mathrm{SO}_{2 n-1}$ pointwise fixed and inducing a map R of degree -1 in $S^{2 n-1}$. If $s \in S^{2 n-1}, s=p(A)$ for $A \in S O_{2 n}$, then $T(s)$ $=A R(A)^{-1}$. Hence $R T(s)=T(s)^{-1}$ and $R T\left(\iota_{2 n-1}\right)=-T\left(\iota_{2 n-1}\right)$.
Also $p T\left(\iota_{2 n-1}\right)=2 T\left(\iota_{2 n-1}\right)$ generates the image of p in $\pi_{2 n-1}\left(S^{2 n-1}\right)$. Thus $\pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right)$ is the direct sum of Image i and the subgroup generated by $T\left(t_{2 n-1}\right)$, so we may take $y=i(x), z=T\left(\iota_{2 n-1}\right)$ and so $R(z)=-z, R(y)=y$. We note that under $k: S O_{2 n} \rightarrow U_{2 n}, z$ maps into zero, since R becomes inner in $U_{2 n}$, and $\pi_{2 n-1}\left(U_{2 n}\right)=Z$, (for, $k(z)=R k(z)=k R(z)=-k(z)$).

Now consider the (commutative) diagram

$$
\begin{gathered}
\pi_{2 n-1}\left(U_{n}\right) \stackrel{j}{\rightarrow} \pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right) \\
\swarrow_{p} \\
\boldsymbol{p}^{\prime} \\
\pi_{2 n-1}\left(S^{2 n-1}\right) .
\end{gathered}
$$

We may choose the generator x of $\pi_{2 n-1}\left(U_{n}\right)$ so that $p^{\prime}(x)=(n-1)!\iota_{2 n-1}$ (since $\left.\pi_{2 n-2}\left(U_{n-1}\right)=Z_{(n-1)!}\right)$, and, if $j(x)=r y+s z$ then $s=(n-1)!/ 2$, (since $\left.p(z)=2 \iota_{2 n-1}\right), p(y)=0, p j=p^{\prime}$.

Next we show that $r=2$; for, under

$$
\pi_{2 n-1}\left(U_{n}\right) \stackrel{j}{\rightarrow} \pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right) \xrightarrow{k} \pi_{2 n-1}\left(U_{2 n}\right)
$$

$k j(x)=k(r y+(n-1)!/ 2 z)=r k(y)=$ twice a generator of $\pi_{2 n-1}\left(U_{2 n}\right)$; how-
ever $k(y)$ is a generator, and k is onto (since k followed by the isomorphism $\pi_{2 n-1}\left(U_{2 n}\right) \rightarrow \pi_{2 n-1}\left(U_{2 n+1}\right) \quad$ equals the composition of $\pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right) \rightarrow$ $\pi_{2 n-1}\left(\mathrm{SO}_{2 n+1}\right)$, which is an epimorphism, and $\pi_{2 n-1}\left(\mathrm{SO}_{2 n+1}\right) \rightarrow \pi_{2 n-1}\left(U_{2 n+1}\right)$, which is also an epimorphism since the stable group $\pi_{2 n-1}\left(U_{2 n+1} / S O_{2 n+1}\right)$ is zero) so that $r=2$.

Thus the cokernel of j is isomorphic to $Z+Z_{2}$. However $\pi_{2 n-1}\left(\mathrm{SO}_{2 n}\right) \rightarrow$ $\pi_{2 n-1}\left(\Gamma_{n}\right)$ is onto, since $\pi_{2 n-2}\left(U_{n}\right)$ is zero. Thus $\pi_{2 n-1}\left(\Gamma_{n}\right)$ is isomorphic to the cokernel of j; further, $\sigma=$ identity on it, since $\sigma=$ identity on $\pi_{i}\left(\mathrm{SO}_{2 n}\right)$ for even n. This concludes the proof.

The values for $\pi_{2 n+1}\left(\Gamma_{n+1}\right), \pi_{2 n+3}\left(\Gamma_{n+2}\right), \pi_{2 n+5}\left(\Gamma_{n+3}\right)$ are computed in [6], and it only remains to determine the value of σ on these groups (we do not settle the case $\left.\pi_{2 n+1}\left(\Gamma_{n+1}\right)\right)$.

For any integer e, we have an exact sequence

$$
\pi_{2 e-1}\left(\mathrm{SO}_{2 e}\right) \rightarrow \pi_{2 e-1}\left(\Gamma_{e}\right) \rightarrow \pi_{2 e-2}\left(U_{e}\right)=0
$$

Hence it suffices to determine σ on $\pi_{2 e-1}\left(\mathrm{SO}_{2 e}\right)$. If e is even, $\sigma=$ identity. If $e=n+3$, the exact sequence

$$
\pi_{2 n+5}\left(\mathrm{SO}_{2 n+6}\right) \xrightarrow{P} \pi_{2 n+5}\left(\mathrm{~S}^{2 n+5}\right) \rightarrow \pi_{2 n+4}\left(\mathrm{SO}_{2 n+5}\right)
$$

or,

$$
0 \rightarrow Z \xrightarrow{P} Z \rightarrow Z_{2} \rightarrow 0
$$

and the fact that σ on $S^{2 n+5}$ has degree -1 , shows that $\sigma=-1$ on $\pi_{2 n+5}\left(\mathrm{SO}_{2 n+6}\right)$ and also on $\pi_{2 n+5}\left(\Gamma_{n+3}\right)$.

If $e=n+1, \pi_{2 n+1}\left(\mathrm{SO}_{2 n+2}\right)$ is $Z+Z_{2}$ and σ sends the generator of Z into its negative or its negative + the element of order two.

We note for future use that $\sigma=-1$ on $\pi_{4 k}\left(U_{2 k}\right)$ and $\pi_{4 k}\left(U_{2 k-1}\right)$, and $\sigma=+1$ on $\pi_{4 k+2}\left(U_{2 k+1}\right)$: for the exact sequence

$$
\pi_{4 k+1}\left(S^{4 k+1}\right) \rightarrow \pi_{4 k}\left(U_{2 k}\right) \rightarrow \pi_{4 k}\left(U_{2 k+1}\right)=0
$$

and the fact that σ has degree -1 on $S^{4 k+1}$, shows that $\sigma=-1$ on $\pi_{4 k}\left(U_{2 k}\right)$. Also, under inclusion $\pi_{4 k}\left(U_{2 k-1}\right)$ maps monomorphically into $\pi_{4 k}\left(U_{2 k}\right)$. Since $\sigma=+1$ on $S^{4 k+3}, \sigma=+1$ on $\pi_{4 k+2}\left(U_{2 k+1}\right)$.

The rest of the groups $\pi_{i}\left(\Gamma_{n}\right)$ now follow; we denote by n always a positive integer $\equiv 0 \bmod 4$.

1. $\pi_{2 n}(\Gamma)=Z_{2}+Z_{2}, \sigma=$ identity.

Proof. The exact sequence

$$
\pi_{2 n+1}\left(S^{2 n}\right) \rightarrow \pi_{2 n}\left(\Gamma_{n}\right) \rightarrow \pi_{2 n}\left(\Gamma_{n+1}\right) \rightarrow \pi_{2 n}\left(S^{2 n}\right)
$$

or

$$
Z_{2} \rightarrow \pi_{2 n}\left(\Gamma_{n}\right) \rightarrow Z_{2} \rightarrow Z
$$

shows that $\pi_{2 n}\left(\Gamma_{n}\right)$ has order 2 or 4 . In the exact sequence

$$
\begin{gathered}
\pi_{2 n}\left(U_{n}\right) \xrightarrow{h} \pi_{2 n}\left(\mathrm{SO}_{2 n}\right) \xrightarrow{P} \pi_{2 n}\left(\Gamma_{n}\right) \xrightarrow{\partial} \pi_{2 n-1}\left(U_{n}\right) \\
\mathrm{Z}_{n!} \xrightarrow{i} \mathrm{Z}_{2}+\mathrm{Z}_{2}+\mathrm{Z}_{2} \xrightarrow{P} \pi_{2 n}\left(\Gamma_{n}\right) \xrightarrow{\partial} \mathrm{Z}
\end{gathered}
$$

the image of i is cyclic, hence 0 or Z_{2}. But ∂ is zero, hence $\pi_{2 n}\left(\Gamma_{n}\right)$ has order 4 or 8. Finally $\pi_{2 n}\left(\Gamma_{n}\right)=Z_{2}+Z_{2}$, and $\sigma=+1$ (since $\sigma=+1$ on $\pi_{2 n}\left(\mathrm{SO}_{2 n}\right)$).

We note also that since i has image $Z_{2}, \partial: \pi_{2 n+1}\left(\Gamma_{n}\right) \rightarrow \pi_{2 n}\left(U_{n}\right)$ has cokernel Z_{2}, i.e., image of ∂ is $2 Z_{n!}$.
2. $\pi_{2 n+1}\left(\Gamma_{n}\right)=Z_{n!}+Z_{2}$.

Proof. From the exact sequence

$$
\begin{gathered}
\pi_{2 n+2}\left(S^{2 n}\right) \rightarrow \pi_{2 n+1}\left(\Gamma_{n}\right) \rightarrow \pi_{2 n+1}\left(\Gamma_{n+1}\right) \rightarrow \pi_{2 n+1}\left(S^{2 n}\right) \\
Z_{2} \rightarrow \pi_{2 n+1}\left(\Gamma_{n}\right) \rightarrow Z_{n!} \rightarrow Z_{2}
\end{gathered}
$$

we see that $\pi_{2 n+1}\left(\Gamma_{n}\right)$ has order $\leqq 2(n!)$.
From the exact sequence

$$
\pi_{2 n+1}\left(U_{n}\right) \rightarrow \pi_{2 n+1}\left(\mathrm{SO}_{2 n}\right) \xrightarrow{P} \pi_{2 n+1}\left(\Gamma_{n}\right) \xrightarrow{\partial} \pi_{2 n}\left(U_{n}\right)
$$

and the remark at the end of 1 , we get

$$
Z_{2} \rightarrow Z_{2}+Z_{2}+Z_{2} \xrightarrow{P} \pi_{2 n+1}\left(\Gamma_{n}\right) \rightarrow 2 Z_{n!} \rightarrow 0 .
$$

Thus $\pi_{2 n+1}\left(\Gamma_{n}\right)$ has order at least $2(n!)$, therefore exactly $2(n!)$. Furthermore it is not a cyclic group since image of $P=Z_{2}+Z_{2}$ is not cyclic. Thus $\pi_{2 n+1}\left(\Gamma_{n}\right)$ $=Z_{n!}+Z_{2}$. Since $\sigma=-1$ on $\pi_{2 n}\left(U_{n}\right) \sigma$ is, at least, different from the identity on $\pi_{2 n+1}\left(\Gamma_{n}\right)$.
3. $\pi_{2 n+2}\left(\Gamma_{n+1}\right)=0=\pi_{2 n+6}\left(\Gamma_{n+3}\right)$.

Proof. Let $m=n+1$ or $n+3$. The exact sequence

$$
\pi_{2 m+1}\left(\mathrm{~S}^{2 m}\right) \rightarrow \pi_{2 m}\left(\mathrm{SO}_{2 m}\right) \stackrel{j}{\rightarrow} \pi_{2 m}\left(\mathrm{SO}_{2 m+1}\right) \rightarrow \pi_{2 m}\left(\mathrm{~S}^{2 m}\right)
$$

reduces to

$$
Z_{2} \rightarrow Z_{4} \xrightarrow{j} Z_{2} \rightarrow 0 .
$$

Consider next

$$
\begin{gathered}
\pi_{2 m+1}\left(S^{2 m+1}\right) \stackrel{\partial}{\rightarrow} \pi_{2 m}\left(U_{m}\right)=Z_{m!} \\
\left.\mathrm{Z}_{4}=\pi_{2 m}\left(\mathrm{SO}_{2 m}\right) \xrightarrow{\dot{j} \partial^{\prime} \pi_{2 m}\left(\mathrm{SO}_{2 m+1}\right.}\right)=\mathrm{Z}_{2}
\end{gathered}
$$

Here ∂^{\prime} is onto, since $\pi_{2 m}\left(\mathrm{SO}_{2 m+2}\right)=0$ for $2 m \equiv 2$ or $6 \bmod 8$; hence k is onto. However k factors:

$k=e j$. Since $\pi_{2 m}\left(\mathrm{SO}_{2 m}\right)=\mathrm{Z}_{4}, \pi_{2 m}\left(\mathrm{SO}_{2 m+1}\right)=\mathrm{Z}_{2}$ and j is onto, the fact that k is onto implies that e is also onto. Finally,
gives

$$
\pi_{2 m}\left(U_{m}\right) \xrightarrow{e} \pi_{2 m}\left(\mathrm{SO}_{2 m}\right) \rightarrow \pi_{2 m}\left(\Gamma_{m}\right) \rightarrow \pi_{2 m-1}\left(U_{m}\right) \rightarrow \pi_{2 m-1}\left(\mathrm{SO}_{2 m}\right)
$$

$$
0 \rightarrow \pi_{2 m}\left(\Gamma_{m}\right) \rightarrow Z=\pi_{2 m-1}\left(U_{m}\right) \rightarrow \pi_{2 m-1}\left(\mathrm{SO}_{2 m}\right)
$$

However $\pi_{2 m-1}\left(U_{m}\right)=Z \rightarrow \pi_{2 m-1}\left(\mathrm{SO}_{2 m}\right)=Z$ or $Z+Z_{2}$ is a monomorphism, since $\pi_{2 m-1}\left(\Gamma_{m}\right)$ is finite for $m \equiv 1$ or $3 \bmod 4$. Hence $\pi_{2 m}\left(\Gamma_{m}\right)=0$ if $m=n+1$ or $n+3$.
4. $\pi_{2 n+4}\left(\Gamma_{n+2}\right)=Z_{2}$.

Proof. From the exact sequence

$$
\pi_{2 n+5}\left(S^{2 n+4}\right)=Z_{2} \rightarrow \pi_{2 n+4}\left(\Gamma_{n+2}\right) \rightarrow \pi_{2 n+4}\left(\Gamma_{n+3}\right)
$$

and $\pi_{2 n+4}\left(\Gamma_{n+3}\right)=\pi_{2 n+5}(S O)=0$, we see that $\pi_{2 n+4}\left(\Gamma_{n+2}\right)=Z_{2}$ or 0 . From

$$
\begin{gathered}
\pi_{2 n+4}\left(U_{n+2}\right) \rightarrow \pi_{2 n+4}\left(\mathrm{SO}_{2 n+4}\right) \rightarrow \pi_{2 n+4}\left(\Gamma_{n+2}\right) \\
Z_{(n+2)!} \rightarrow Z_{2}+Z_{2} \rightarrow \pi_{2 n+4}\left(\Gamma_{n+2}\right)
\end{gathered}
$$

we see that $\pi_{2 n+4}\left(\Gamma_{n+2}\right)$ is not zero, hence is Z_{2}.
5. $\pi_{2 n+3}\left(\Gamma_{n+1}\right)=Z, \pi_{2 n+3}\left(\Gamma_{n}\right)=Z$, with $\sigma=$ identity on both.

Proof. In the exact sequence

$$
\pi_{2 n+4}\left(\mathrm{SO}_{2 n+2}\right) \stackrel{i}{\rightarrow} \pi_{2 n+4}\left(\mathrm{SO}_{2 n+3}\right) \rightarrow \pi_{2 n+4}\left(\mathrm{~S}^{2 n+2}\right) \xrightarrow{\partial} \pi_{2 n+3}\left(\mathrm{SO}_{2 n+2}\right)
$$

namely,

$$
\mathrm{Z}_{12} \xrightarrow{i} \mathrm{Z}_{2} \rightarrow \mathrm{Z}_{2} \xrightarrow{\partial} \mathrm{Z}
$$

∂ is zero, hence i is zero. Thus the composite map

$$
j: \pi_{2 n+4}\left(\mathrm{SO}_{2 n+2}\right) \xrightarrow{i} \pi_{2 n+4}\left(\mathrm{SO}_{2 n+3}\right) \rightarrow \pi_{2 n+4}\left(\mathrm{SO}_{2 n+4}\right)
$$

is also zero.
Next consider the commutative diagram

Image of $k=$ Image of $k p$ (since p is onto) but $k p=p^{\prime} j=0$, so $k=0$. Finally, the exact sequence

$$
\begin{aligned}
\pi_{2 n+4}\left(\Gamma_{n+1}\right) \stackrel{k}{\rightarrow} \pi_{2 n+4}\left(\Gamma_{n+2}\right) & \rightarrow \pi_{2 n+4}\left(S^{2 n+2}\right) \\
& \rightarrow \pi_{2 n+3}\left(\Gamma_{n+1}\right) \rightarrow \pi_{2 n+3}\left(\Gamma_{n+2}\right) \rightarrow \pi_{2 n+3}\left(S^{2 n+2}\right)
\end{aligned}
$$

becomes

$$
0 \rightarrow Z_{2} \rightarrow Z_{2} \rightarrow \pi_{2 n+3}\left(\Gamma_{n+1}\right) \rightarrow \pi_{2 n+3}\left(\Gamma_{n+2}\right) \rightarrow Z_{2} .
$$

Thus $\pi_{2 n+3}\left(\Gamma_{n+1}\right)$ is a subgroup of $\pi_{2 n+3}\left(\Gamma_{n+2}\right)=Z$, of index two. Since $\sigma=+1$ on $\pi_{2 n+3}\left(\Gamma_{n+2}\right), \sigma=+1$ also on $\pi_{2 n+3}\left(\Gamma_{n+1}\right)$. The exact sequence $\pi_{2 n+4}\left(S^{2 n}\right)=0$ $\rightarrow \pi_{2 n+3}\left(\Gamma_{n}\right) \rightarrow \pi_{2 n+3}\left(\Gamma_{n+1}\right) \rightarrow \pi_{2 n+3}\left(S^{2 n}\right)$ shows that $\pi_{2 n+3}\left(\Gamma_{n}\right)=Z$ with $\sigma=+1$.
6. $\pi_{2 n+7}\left(\Gamma_{n+3}\right)=Z+Z_{2}, \sigma=$ identity.

Proof. In the exact sequence

$$
\pi_{2 n+7}\left(\mathrm{SO}_{2 n+6}\right)=\mathrm{Z} \xrightarrow{i} \pi_{2 n+7}\left(\mathrm{SO}_{2 n+7}\right)=\mathrm{Z} \xrightarrow{p} \pi_{2 n+7}\left(\mathrm{~S}^{2 n+6}\right)
$$

p is zero [4, Theorem 1], so i is an isomorphism.
Writing $\Gamma_{n+4}=S O_{2 n+7} / U_{n+3}, \Gamma_{n+3}=S O_{2 n+6} / U_{n+3}$, we have a commutative diagram

p_{1}, p^{\prime} are monomorphisms, since $\pi_{2 n+3}\left(U_{n+1}\right)=0$, and i is an isomorphism, thus j is a monomorphism. Since $\pi_{2 n+7}\left(\Gamma_{n+4}\right)=Z+Z_{2}$, the subgroup $\pi_{2 n+7}\left(\Gamma_{n+3}\right)$ is either Z or $Z+Z_{2}$.

From the exact sequence

$$
\begin{aligned}
\pi_{2 n+7}\left(\mathrm{SO}_{2 n+7}\right) & \xrightarrow{p^{\prime}} \pi_{2 n+7}\left(\Gamma_{n+4}\right) \xrightarrow{\partial^{\prime}} \pi_{2 n+6}\left(U_{n+3}\right) \\
& \rightarrow \pi_{2 n+6}\left(\mathrm{SO}_{2 n+7}\right)=Z_{2} \rightarrow \pi_{2 n+6}\left(\Gamma_{n+4}\right)=Z
\end{aligned}
$$

and the fact that image of $\partial^{\prime}=2 Z_{(n+3)!}$, we see that under p^{\prime}, a generator u of $\pi_{2 n+7}\left(\mathrm{SO}_{2 n+7}\right)$ maps into $((n+3)!/ 2) x+y$, where x, y generate Z, Z_{2} in $\pi_{2 n+7}\left(\Gamma_{n+4}\right)=Z+Z_{2}$. From the diagram

where $p=0$ (as remarked at the beginning of the proof) we have $q p^{\prime}(u)=p(u)=0$, but

$$
q p^{\prime}(u)=q((n+3)!/ 2 x+y)=q(y)
$$

(since $(n+3)!/ 2$ is even), so finally $q(y)=0$ and the element y of order 2 is in the image of $j: \pi_{2 n+7}\left(\Gamma_{n+3}\right) \rightarrow \pi_{2 n+7}\left(\Gamma_{n+4}\right)$. Thus $\pi_{2 n+7}\left(\Gamma_{n+3}\right)$ has an element of order 2, and must be $Z+Z_{2} . \sigma=+1$ on it since $\sigma=+1$ on $\pi_{2 n+7}\left(\Gamma_{n+4}\right)$. This concludes the proof of 6 .
7. $\pi_{2 n+5}\left(\Gamma_{n+2}\right)=Z_{(n+2)!}$ or $Z_{(n+2)!/ 2}+Z_{2}$.

Proof. From the exact sequence

$$
\begin{aligned}
\pi_{2 n+6}\left(\Gamma_{n+3}\right) & \rightarrow \pi_{2 n+6}\left(S^{2 n+4}\right) \rightarrow \pi_{2 n+5}\left(\Gamma_{n+2}\right) \rightarrow \pi_{2 n+5}\left(\Gamma_{n+3}\right) \\
& \rightarrow \pi_{2 n+5}\left(S^{2 n+4}\right) \rightarrow \pi_{2 n+4}\left(\Gamma_{n+2}\right) \rightarrow \pi_{2 n+4}\left(\Gamma_{n+3}\right)
\end{aligned}
$$

and $\pi_{2 n+6}\left(\Gamma_{n+3}\right)=0=\pi_{2 n+4}\left(\Gamma_{n+3}\right), \pi_{2 n+4}\left(\Gamma_{n+2}\right)=Z_{2}$ we get

$$
0 \rightarrow Z_{2} \rightarrow \pi_{2 n+5}\left(\Gamma_{n+2}\right) \rightarrow \pi_{2 n+5}\left(\Gamma_{n+3}\right)=Z_{(n+2)!/ 2} \rightarrow 0 ;
$$

further, $\sigma=-1$ on $\pi_{2 n+5}\left(\Gamma_{n+3}\right)$, so $\sigma \neq 1$ on $\pi_{2 n+5}\left(\Gamma_{n+2}\right)$.
The groups $\pi_{i}\left(X_{m}\right)$ and $\pi_{i}\left(S p_{m}\right)$. For $i<4 k, \pi_{i}\left(X_{k}\right)=\pi_{i+2}\left(S O_{l}\right), l$ large.
m will denote an even integer, $\geqq 2$. The involution τ described above will be denoted by σ here.

1. $\pi_{4 m}\left(X_{m}\right)=Z_{(2 m)!}$, with $\sigma=-1 . \quad \pi_{4 m+1}\left(X_{m}\right)=Z_{2}$.

Proof. From the exact sequence

$$
\begin{gathered}
\pi_{4 m-1}\left(S p_{m}\right) \xrightarrow{i} \pi_{4 m-1}\left(U_{2 m}\right) \rightarrow \pi_{4 m-1}\left(X_{m}\right) \\
\mathrm{Z} \xrightarrow{i} \mathrm{Z} \rightarrow \mathrm{Z}_{2}
\end{gathered}
$$

i is a monomorphism.
Hence the sequence

$$
\pi_{4 m}\left(S p_{m}\right) \rightarrow \pi_{4 m}\left(U_{2 m}\right) \rightarrow \pi_{4 m}\left(X_{m}\right) \rightarrow \pi_{4 m-1}\left(S p_{m}\right) \xrightarrow{i}
$$

becomes $0 \rightarrow Z_{(2 m)!} \rightarrow \pi_{4 m}\left(X_{m}\right) \rightarrow 0$. Thus $\pi_{4 m}\left(X_{m}\right)=Z_{(2 m)!}$, and $\sigma=-1$ on it, since $\sigma=-1$ on $\pi_{4 m}\left(U_{2 m}\right)$.

The exact sequence

$$
\begin{aligned}
\pi_{4 m+1}\left(S p_{m}\right) \rightarrow & \pi_{4 m+1}\left(U_{2 m}\right) \rightarrow \pi_{4 m+1}\left(X_{m}\right) \rightarrow \pi_{4 m}\left(S p_{m}\right) \\
& 0 \rightarrow Z_{2} \rightarrow \pi_{4 m+1}\left(X_{m}\right) \rightarrow 0
\end{aligned}
$$

shows $\pi_{4 m+1}\left(X_{m}\right)=Z_{2}$.
2. $\pi_{4 m+4}\left(X_{m+1}\right)=Z_{[2(m+1)]!/ 2}$, with $\sigma=-1$.

Proof. From the fibrations

$$
\begin{aligned}
& U_{2 m+2} \rightarrow U_{2 m+3} \rightarrow S^{4 m+5} \\
& X_{m+1} \rightarrow X_{m+2} \rightarrow S^{4 m+5}
\end{aligned}
$$

we get the diagram

$$
\begin{aligned}
& \pi_{4 m+5}\left(U_{2 m+3}\right)=Z \stackrel{p}{\rightarrow} \pi_{4 m+5}\left(S^{4 m+5}\right) \\
& \downarrow p_{1} \stackrel{\partial}{\rightarrow} \pi_{4 m+4}\left(U_{2 m+2}\right) \\
& \downarrow \\
& \pi_{4 m+5}\left(X_{m+2}\right)=Z \stackrel{p^{\prime}}{\rightarrow} \pi_{4 m+5}\left(S^{4 m+5}\right) \stackrel{\partial^{\prime}}{\rightarrow} \pi_{4 m+4}\left(X_{m+1}\right) \\
& \downarrow \partial_{1} \\
& \pi_{4 m+4}\left(S p_{m+1}\right)=Z_{2} .
\end{aligned}
$$

$\partial, \partial^{\prime}$ are onto since $\pi_{4 m+4}\left(U_{2 m+3}\right)=0=\pi_{4 m+4}\left(X_{m+2}\right), \partial_{1}$ is onto since $\pi_{4 m+4}\left(U_{2 m+3}\right)=0$, so that if u generates $\pi_{4 m+5}\left(U_{2 m+3}\right), p_{1}(u)=2 v$, where v generates $\pi_{4 m+5}\left(X_{m+2}\right)$. If w is a generator of $\pi_{4 m+5}\left(S^{4 m+5}\right)$ then

$$
p^{\prime} p_{1}(u)=p(u)=(2 m+2)!w
$$

so $2 p^{\prime}(v)=(2 m+2)!w$ or $p^{\prime}(v)=[(2 m+2)!/ 2] w$, and it is clear that $\pi_{4 m+4}\left(U_{2 m+2}\right) \rightarrow \pi_{4 m+4}\left(X_{m+1}\right)$ is onto, with kernel Z_{2}.

Since $\sigma=-1$ on $\pi_{4 m+4}\left(U_{2 m+2}\right), \sigma=-1$ on $\pi_{4 m+4}\left(X_{m+1}\right)$ also.
3. $\pi_{4 m+6}\left(S p_{m+1}\right)=Z_{2[(2 m+3)!]}, \pi_{4 m+2}\left(S p_{m}\right)=Z_{(2 m+1)!} \cdot$

Proof. Consider the fibrations $S p_{m+2} / S p_{m+1}=S^{4 m+7}=U_{2 m+4} / U_{2 m+3}$ and associated diagram

$$
\begin{gathered}
\pi_{4 m+7}\left(S p_{m+2}\right) \xrightarrow{p} \pi_{4 m+7}\left(S^{4 m+7}\right) \xrightarrow{\partial} \pi_{4 m+6}\left(S p_{m+1}\right) \\
i \downarrow \\
\pi_{4 m+7}\left(U_{2 m+4}\right) \xrightarrow{p^{\prime}} \pi_{4 m+7}\left(S^{4 m+7}\right) \xrightarrow{\partial^{\prime}} \pi_{4 m+6}\left(U_{2 m+3}\right) .
\end{gathered}
$$

∂, ∂^{\prime} are onto since $\pi_{4 m+6}\left(S p_{m+2}\right)=0=\pi_{4 m+6}\left(U_{2 m+4}\right)$. The groups $\pi_{4 m+7}\left(S p_{m+2}\right), \pi_{4 m+7}\left(U_{2 m+4}\right), \pi_{4 m+7}\left(S^{4 m+7}\right)$ are all Z, with generators x, y, z. From

$$
\begin{aligned}
\pi_{4 m+7}\left(S p_{m+2}\right) \xrightarrow{i} \pi_{4 m+7}\left(U_{2 m+4}\right) & \rightarrow \pi_{4 m+7}\left(X_{m+2}\right)=Z_{2} \\
& \rightarrow \pi_{4 m+6}\left(S p_{m+2}\right)=0
\end{aligned}
$$

we see that $i(x)=2 y$, so that $p^{\prime} i(x)=p(x)=2 p^{\prime}(y)=2[(2 m+3)!] z$. Hence $\pi_{4 m+6}\left(S p_{m+1}\right)=Z_{2[(2 m+3)!]}$ and

$$
0 \rightarrow Z_{2} \rightarrow \pi_{4 m+6}\left(S p_{m+1}\right) \rightarrow \pi_{4 m+6}\left(U_{2 m+3}\right) \rightarrow 0
$$

is an exact sequence.
For $\pi_{4 m+2}\left(S p_{m}\right)$ we use the diagram

$$
\begin{gathered}
\pi_{4 m+3}\left(S p_{m+1}\right) \rightarrow \pi_{4 m+3}\left(S^{4 m+3}\right) \underset{\partial}{\downarrow} \|_{4 m+2}\left(S p_{m}\right) \\
\downarrow i \\
\pi_{4 m+3}\left(U_{2 m+2}\right) \rightarrow \pi_{4 m+3}\left(S^{4 m+3}\right) \stackrel{\partial^{\prime}}{\rightarrow} \boldsymbol{\pi}_{4 m+2}\left(U_{2 m+1}\right) .
\end{gathered}
$$

Again $\partial, \partial^{\prime}$ are epimorphisms since $\pi_{4 m+2}\left(S p_{m+1}\right)=0=\pi_{4 m+2}\left(U_{2 m+2}\right)$. i is actually an isomorphism since $\pi_{4 m+3}\left(X_{m+1}\right)=0$, so j is also an isomorphism.
4. $\pi_{4 m+7}\left(S p_{m+1}\right)=Z_{2}=\pi_{4 m+8}\left(S p_{m+1}\right)$.

Proof. Consider the diagram

$$
\begin{gathered}
\pi_{4 m+8}\left(U_{2 m+3}\right) \xrightarrow{p} \pi_{4 m+8}\left(X_{m+2}\right) \xrightarrow{\partial} \pi_{4 m+7}\left(S p_{m+1}\right) \\
\quad i \downarrow{ }^{\prime}{p^{\prime}}^{\prime} \\
\quad \pi_{4 m+8}\left(U_{2 m+4}\right) .
\end{gathered}
$$

∂ is onto since $\pi_{4 m+7}\left(U_{2 m+3}\right)=0$, and p^{\prime} is an isomorphism, by $1 . i$ is a mono-
morphism with cokernel $Z_{2}[4, p$ 164], so p is a monomorphism with cokernel $Z_{2}=\pi_{4 m+7}\left(S p_{m+1}\right)$.

From the exact sequence

$$
\pi_{4 m+9}\left(S p_{m+2}\right) \rightarrow \pi_{4 m+9}\left(S^{4 m+7}\right) \xrightarrow{\partial} \pi_{4 m+8}\left(S p_{m+1}\right) \rightarrow \pi_{4 m+8}\left(S p_{m+2}\right)
$$

and the (stable) values $\pi_{4 m+9}\left(S p_{m+2}\right)=0=\pi_{4 m+8}\left(S p_{m+2}\right)$ we see that

$$
\partial: \pi_{4 m+9}\left(S^{4 m+7}\right)=Z_{2} \stackrel{\approx}{\rightarrow} \pi_{4 m+8}\left(S p_{m+1}\right)
$$

5. $\pi_{4 m+9}\left(X_{m+1}\right)=Z_{2}$.

Proof. In the homotopy sequence of the fibration $X_{m+2} / X_{m+1}=S^{4 m+5}$, we have $\pi_{4 m+9}\left(S^{4 m+5}\right)=0=\pi_{4 m+10}\left(S^{4 m+5}\right)$ and $\pi_{4 m+9}\left(X_{m+2}\right)=Z_{2}$ (from 1).
6. $\pi_{4 m+3}\left(S p_{m}\right)=Z_{2}$.

Proof. We have the commutative diagram

$$
\begin{gathered}
\pi_{4 m+4}\left(U_{2 m+1}\right) \xrightarrow{p} \pi_{4 m+4}\left(X_{m+1}\right) \xrightarrow{\partial} \pi_{4 m+3}\left(S p_{m}\right) \\
\downarrow \downarrow \\
\pi_{4 m+4}\left(U_{2 m+2}\right)
\end{gathered} \stackrel{\downarrow}{p^{\prime}} \pi_{4 m+4}\left(X_{m+1}\right) \rightarrow \pi_{4 m+3}\left(S p_{m+1}\right)=Z . ~ \$.
$$

Since $\pi_{4 m+4}\left(X_{m+1}\right)=Z_{(2 m+2)!/ 2}$ is finite, p^{\prime} is an epimorphism; i is a monomorphism with cokernel Z_{2}, hence $p=p^{\prime} i$ has cokernel Z_{2}. But ∂ is an epimorphism since $\pi_{4 m+3}\left(U_{2 m+1}\right)=0$, so $\pi_{4 m+3}\left(S p_{m}\right)=Z_{2}$.

Bibliography

1. R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
2. B. Harris, On the homotopy groups of the classical groups, Ann. of Math. (2) 74 (1961), 407-413.
3. -_, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. 76 (1962).
4. M. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
5. (1958), 280-283.
6. W. S. Massey, Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc. 67 (1961), 559-564.
7. N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.

Brown University,
Providence, Rhode Island

