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A locally compact group with compact boundary is a locally compact topolo-

gical semigroup in which an open subgroup is dense and has a compact comple-

ment. These semigroups were studied in a previous paper whose results and

notation are freely used in the present work [2]. The general assumption made in

this study in addition to the hypotheses mentioned is the existence of transitive

group of homeomorphisms on the space of the semigroup. We restrict ourselves

essentially to the connected case although the hypothesis we use actually is that

the component of the identity of G be not compact; the question of totally dis-

connected homogeneous groups with boundary is therefore unsettled.

The first main result which we obtain exhibits the fact that in a connected

locally compact homogeneous group with boundary the influence of the boun-

dary on the topological structure of S is so strong that, if the boundary B is finite

dimensional, all of S is finite dimensional. The method of the proof uses a local

fibering of S with cosets of the subsemigroup K as fiber, where K is the set of all

elements s such that se = e with the identity e of B, and with neighborhoods of B

as bases. A group theoretical lemma which is of some interest in its own right has

to be proved to obtain the theorem mentioned: If a locally compact group has a

neighborhood of the identity whose homotopy groups relative to the identity

vanish for all positive dimensions, then there are arbitrarily small neighborhoods

which are topologically the product of an euclidean cell, a (not necessarily finite

dimensional) solenoid and a totally disconnected compact subset of G; all small

connected subgroups are solenoids. It is obvious what happens, then, if G is in

addition locally connected.

If the boundary B of G in S is not only finite dimensional but also locally

connected, then S is a manifold, i.e. is locally euclidean; hence both G and B

are Lie groups. Theorem II gives a full description of the structure of S in this

case. It is either a direct product of the full multiplicative semigroup of real

numbers with some compact group or else the boundary is contained in an L-

semigroup in the sense of Mostert and Shields whose results we use to dispose
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of this case. Once we have got to the place where S turns out to be a manifold,

we are in a situation which was under more general circumstances studied by

Hudson-Lester [4]; for S is then a semigroup on an n-manifold with an n — 1-

dimensional compact subgroup C; we use, however, in our case essentially group

theoretic methods and obtain specific information concerning the structure of the

groups involved. As a corollary we get a theorem proved by the author [1],

namely the fact that a locally compact connected homogeneous group with zero

is isomorphic to either one of the multiplicative semigroups of the real, the com-

plex or the quaternion field. In the more general case the fiber K of all elements,

for which the identity e of B is a zero has always this structure.

It is an open question whether the hypothesis of local connectedness of the

boundary is actually essential in compiling the necessary information about the

fiber K.

I. Homogeneous locally compact groups with compact finite dimensional boundary.

The first definition is simply a repetition of a definition from [2]:

1.1. Definition. Let S be a topological semigroup satisfying the following

two conditions:

(i) S is locally compact and satisfies the Hausdorff separation axiom.

(ii) S contains an open dense subgroup G such that the complement B = S\G

is compact.

Then G is called a locally compact group with compact boundary (l.c.g.c.b.),

G is called its maximal subgroup, B is called the boundary [2].

We recall that B is a compact topological group with identity e, that x -> xe

is an endomorphism of G onto B and that we denote the set of all s in S which

satisfy se = e with K and its intersection with the unique maximal compact sub-

group C of G with TV. The semigroup K and the subgroup TV will play a very

important role in this section. If 73 = {e}, then S is called a locally compact group

with zero (l.c.g.z.).

1.2. Definition. A l.c.g.c.b. S will be called homogeneous if the space S has

a transitive group of homeomorphisms, i.e. if for any pair, x, y, of points in S

there is a homeomorphism of S mapping x on y.

The following proposition will serve to restrict the possible structure of a l.c.g.c.b.

considerably if we add the hypothesis of homogeneity.

1.3. Proposition Let S be a homogeneous l.c.g.c.b. Then the following state-

ments are equivalent:

(i) G does not contain a compact open subgroup.

(ii) There is a connected subspace containing both 1, the identity of G, and e

the identity of B.

(iii) K is connected.
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(iv) There exists a subsemigroup M0 isomorphic to the nonnegative reals

under multiplication.

(v) K is isomorphic to (M0 x N)/p', where p' is the congruence relation

which identifies all points of {0} x N; i.e. K is a l.c.g.z.

(vi) S is isomorphic to (M0 x C)/p, where p is the congruence relation which

collapses all cosets modulo {0} x N in {0} x C.

(vii) There is an arc joining 1 and e.

Proof. Without the assumption of homogeneity we know that (i) and (ii) are

equivalent (Theorem II [2]), and that (iii)-(vii) are equivalent (2.7 and Theorem

IV [2]). Trivially (vii) implies (ii), so that we have to prove that homogeneity

and (ii) imply (vii), for instance. If S satisfies (ii), then there is a one-parameter

subgroup M in G which is isomorphic to the positive reals under multiplication

(Theorem II), and its closure in S is not compact. Therefore the arc component

of 1 cannot be relatively compact. By homogeneity, there exists a homeomor-

phism of S mapping 1 onto e, and hence mapping the arc component of 1 onto

the arc component of e. Thus the arc component of e cannot be relatively compact

in S, i.e. its closure is not compact. But then this arc component cannot be en-

tirely contained in the compact subspace B. Therefore, there exists an element

g e G and an arc joining e with g. Since x -»xg'1 is a continuous mapping of S

onto itself, and since x-*xe is a continuous mapping of S onto B, we know

that eg'1 and gg-1 = 1 on one hand and e and eg on the other hand are joined

by an arc. But the last connection again implies that eg ~1 and (eg)g ~1 = el = e

are joined by an arc. Hence e and 1 are joined by an arc which finishes the proof.

From now on we confine our attention exclusively to such l.c.g.c.b. which

satisfy any one of the conditions of Proposition 1.3. Also, p will continuously

denote the congruence relation on M0 x C collapsing the cosets modulo {0} x TV

in {0} x C.

1.4. Proposition. Let S be a l.c.g.c.b. isomorphic to (A70 x C)/p. Then the

connected component Se of e is isomorphic to (M0 x C')/p, where C = CYN

with the connected component Ct of 1 in C.

Proof, (a) (M0 x C')/p is connected; for ({0} x C')/p is isomorphic to CtN/N

which is a homeomorphic image of the connected group Ct. Any point p(m,c)

with m # 0, ceC is contained in the connected subspace p(A70 x {c}) inter-

secting ({0} x C')/p = p({0} x C'). (b) Let x be an element not contained in

(M0 x C')/p. Then x = p(m, c), and c is not in C'. Hence p(0, c) is not in

({0}xC')/p. We shall prove that then there is a compact open subgroup C" of C

such that the compact open subgroup ({0} x C)/p does not contain p(0,c);

this holds, for C/C is totally disconnected and compact because C" contains the

component Cx and because C is compact; but then, given any element in C/C

other than the identity, one finds a compact open subgroup in C/C not con-
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taining this element [6, p. 54, 56]. The group (C/N)/(C'/N) is isomorphic to

C/C, and ({0} x C)/({0}xC") is isomorphic to C/C. Hence there is indeed a

normal compact open subgroup C" of C such that ({0} x C")/({0} x C) does not

contain the coset of (0,c) modulo ({0} x C). If p(0,c) is not in ({0} x C)/p

then p(m,c) is not in (M0 x C)/p; but (M0 x C")/p is open and closed in

(M0 x C)/p; for it is closed since p is closed, and if C+ is the complement of C"

in C, then M0 x C+ is closed and, therefore (M0 x C+)/p is closed since p is

closed. But (M0 x C)/p is the disjoint union of (M0 x C)/p and (M0 x C+)/p.

This finishes the argument.

1.5. Definition. Let S be isomorphic to (M0 x C)/p. The endomorphism

x -» xe of S onto B will be denoted by n. The l.c.g.c.b. S is said to admit a local

cross section over b0 e B if there exists a neighborhood U in B of the point b0

and a continuous mapping $ of U into G such that n ° 0 is the identity map of

L/. Thus, whenever </> defines such a local cross section, we have <t>(b)e = b for

all beU.

1.6. Proposition. Lei S be a l.c.g.c.b. isomorphic to (M0 x C)/p. 7/ C was a

local cross section for N, then S admits a local cross section over every beB.

Proof. Suppose that C has a local cross section for N, i.e. there is a neigh-

borhood V of each point in C/N and a continuous mapping <p' of U' into C

such that this mapping followed by the quotient mapping n' of C onto C/JV

is the identity on U'. Let ^ be the obvious isomorphism of C/N onto B. Let

L/ = \ji{U') and <^ = f Since n = \}/°n', we have indeed 7t °0 = «/f °7t'

°</>'oi^-1 = identity on (/.

1.7. Proposition. // S is a l.c.g.c.b. isomorphic to(M0 x C)/p,and if C/N is

finite dimensional, then S admits a local cross section over every beB.

Proof. A theorem of Mostert [7, p. 65] shows that the hypotheses of 1.6 are

satisfied.

1.8. Proposition. Let S be a l.c.g.c.b. isomorphic to (M0 x C)/p. Suppose

that S admits a local cross section over beB. Let <p be the mapping of a neigh-

borhood U of b0 in B into G such that % ° <j) is the identity on U. Then the

mapping (k,b) -* k<p(b) is a homeomorphism of K x U onto S.

Proof. The mapping %: (k,b) -+ k<p(b) is clearly continuous, and so is the

mapping i': s -> (s(j)(se)~1 ,se) of ^>-1(C/) into K x 17; since 7i(s(/)(se)-1 = se(se)-1

= e, this mapping goes indeed into K x U. We show that the mappings % and %'

are inverses of each other which will prove the assertion. x'{x(k,b)) = x'(k^)(b))

{k<p(b)<p(k<t>(b)eT\ k<f>(b)e) = _1,*>) = (Kb) since k<j>(b)e = (ke)4>{b)e
— eb = b by the definition of K and the characteristic property of (p (see 1.5.).

Conversely, x(x'(s)) = x(s<l>(se)~i,se) = s(p(se)~1 <t>(se) = s.
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1.9. Proposition. Let S be a l.c.g.c.b. in which there is an arc joining e and 1.

Suppose that B is n-dimensional. Then e has arbitrarily small neighborhoods

V in B, such that there is an n-cell E in B containing e, and a totally discon-

nected compact subgroup T of B such that V=ET and the mapping (k,x,i)

-* k(j>(xt) is a homeomorphism of K x E x T onto K(j>(V) where </> is a mapping

from V into G such that n°<p is the identity on V; such a mapping exists for

sufficiently small V by 1.7.

Proof. It is sufficient to remember that there are sufficiently small neighbor-

hoods of the identity e in the compact n-dimensional group B which are topo-

logically (and, by the way, algebraically) direct products of some n-cell E and

a totally disconnected subgroup T. (See e.g. [10, p. 93].) Then Proposition 1.8

proves the rest.

1.10. Proposition. Let S satisfy the conditions of Proposition 1.9 and the

additional condition that S is homogeneous. Then every point s in S has arbi-

trarily small neighborhoods U such that n„(U,s) = {0} for n = 1,2,..., i.e. S is

locally homotopically trivial. Moreover, the neighborhoods U are homeo-

morphic to direct products of U0 and T, where U0 is a subset of U homotopically

contractible to s and T is totally disconnected. Furthermore, U0 is first count-

able at s.

Proof. Because of homogeneity it is sufficient to prove the proposition for

s = e. By 1.9, e has neighborhoods K<p(V) homeomorphic to K x E x T(same

notation as in 1.9). Now K is a l.c.g.z. (1.3.v) and the set (S0 US.) n K of all

of its points whose powers either converge to e or form a relatively compact set

(see [2, 1.10]) is a neighborhood of e and a cone with vertex e and compact

base Kn C. Let km be a sequence of elements in K \ {e} converging to e. Then

the sets Wm = km(S0 US()nK form a neighborhood base for e in K [2], 1.4.

Since all mappings x -»kmx of S onto itself are homeomorphisms, all Wm are

cones with vertex e and compact base. Hence n„(Wme) = {0} for n = 1,2,... and

all m. The point e has arbitrarily small neighborhoods of the form Wm<pET

homeomorphic to W„x E x T. Then n„(Wm4>(ET)) is isomorphic to Ttn(W„)

+ nn(E) + nn(T) =0 + 0 + 0 for n = 1,(see [3, p. 144]). If U0 = W„<KE),

then clearly UQ is homotopically contractible to e, and U is homeomorphic to

U0xT. Moreover, U0 is first countable at e, since W is first countable.

1.11. Lemma. Let C be a compact connected group and L a closed Lie group

m C satisfying one or the other of the following conditions:

(i) L is simple,

(ii) L is one-dimensional and normal in C.

Then there is a homomorphism f of C onto a Lie group L' such that the restric-

tion f of f to L is a covering homomorphism, i.e. a local isomorphism.
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Proof. Suppose (i) is satisfied. Because of the well-known structure of com-

pact connected groups we assume that there is a connected compact abelian

group A, a simple simply connected Lie group L0, a direct product P of simple

simply connected Lie groups, and a totally disconnected subgroup D of the

center of A x P x L0 such that

(a) C is equal to (A x P x L0)/D,

(b) L is equal to ({1} x {1} x L0)D/D.

(See [10, pp. 88-93].)

Let F = (A x P x {1})D/D, L = C/F and / the quotient projection. Then the

image of L is isomorphic to L/(L n P) and is obviously all of L'. Since all ele-

ments of (A x P x {1})D commute with all elements of ({1} x {1} x L0), the

group F is in the centralizer of L, therefore the intersection LHF is contained

in the center of the simple group L which is finite. Hence L is a covering group

of L/(L n P) and, therefore, of L.

Suppose (ii) is satisfied. C contains a central compact connected subgroup Z

and a normal subgroup Y which is a projective limit of semisimple Lie groups,

and Z = ZY and ZC\Y is totally disconnected [10, p. 90]. L is contained in Z,

because it is normal and hence central. But then it is a direct factor (see e.g.

[9, p. 52]), i.e. Z = LZ', LnZ' = l. Let now F = Z'Y, L = C/F and/the quotient

projection. The image of Lis all of L' and is isomorphic to L/(LHP). If we can

show that L n F is not all of L, the proof is accomplished, because any proper

closed subgroup of the circle group L is finite. If, however, L were contained in

F=Z'Y, then the circle group LZ'/Z' would be contained in the center of Z'Y/Z'

which is a projective limit of semisimple Lie groups and has, therefore, a totally

disconnected center.

1.12. Lemma. Let /x :L-> Lx be a covering homomorphism of the simply

connected compact n-dimensional group L onto Lt and let f2:L1^L2 be a

covering homomorphism. Then

f?:nn(L , 1 )^nn(Lu lt)

and

f*- I2)

are isomorphisms and n„(L, 1) is isomorphic to H„(L).

Proof. The dimension of a simply connected compact group is at least 3. The

first two isomorphisms are a well-known property of covering spaces [3, Pro-

position 7.1, p. 154]. The last isomorphism is established by Hurewicz's theorem

[3, Theorem 44, p. 148].

1.13. Lemma. Letf :L^LX be a covering homomorphism of a circle group L.

Then f*:nt(L,l)-* 7i1(L.1,li) is a monomorphism.

Proof. See e.g. [3, Proposition 7.1, p. 154].
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1.14. Lemma. Let C be a compact connected group, L a simple subgroup or

a normal circle group. Let n be the dimension of L. Suppose that X is a subset

of C containing L. Then.

nn(X,\)*0.

Proof.   Consider the following diagram:

X

i

where i, ju j2 are inclusion maps and / : C -»L' is as in Lemma 1.11; to this dia-

gram there corresponds the following diagram involving the nth homotopy

groups of the spaces:

,rc„(X , 1)

f*  / \ ,*

7r„(L 1)->nm(C , 1)-S—->7tn(L

Now, (/"= /' is, according to Lemma 1.11, a covering homomorphism. Hence,

by Lemmas 1.12 and 1.13, (•/* is an isomorphism if n > 1 and a monomorphism

if n = 1. The group nn{L, 1) is isomorphic to an infinite cyclic group, if n = 1

and to H„(L) # 0, where L is the simply connected covering group of L (1.12).

Hence

f*jtJt=f*i*

is not trivial; therefore j* is not trivial, which implies

n„(*,l)-*0.

1.15. Lemma. Let G be a locally compact group such that the identity has

a neighborhood U satisfying

nn(U,l) = 0,    i = 1,2,....

Then every normal compact connected subgroup contained in U is a solenoid.

Proof. Since every connected subgroup of G is contained in the component

G0 of 1 and since U n G0 is a neighborhood of 1 in G0 having trivial homotopy

groups of positive dimension we may assume that G is connected. By Iwasawa's

theorem [5, p. 549], G is topologically the product of a vector space and a maximal

connected compact subgroup of G; hence we may assume that G is also compact.

Let C be a compact connected subgroup of G in U. Then C is the product of

a central connected abelian group Z and a projective limit Y of semisimple groups

[10, p. 90]. If Y were not trivial, then C would contain at least one simple sub-
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group [10, p. 91]. Hence C is abelian; it contains no torus subgroup of any

dimension by 1.14. This, however, is the type of group which we call a solenoid,

since every one-parameter group is a one-to-one continuous image of the real line.

The reader may observe that in the case that G is connected, C is, as a con-

nected compact abelian normal subgroup in the center of G. If we had required

only n„(U, 1) = 0, i = 2,3.then the conclusion would be that every normal

compact subgroup in U is abelian.

1.16. Main Lemma. Let G be a locally compact group. If the identity has

a neighborhood U such that

7r„(lU) = 0,     n = l,...,

then G has arbitrarily small neighborhoods V such that there is a euclidean

cell E and a solenoid Z (i.e. a compact abelian group in which every one-para-

meter subgroup is a one-to-one continuous image of the reals) and a totally

disconnected compact subspace T, and V = EZT, and this product is topolog-

ically direct.

Proof. G contains an open subgroup which is a protective limit of Lie groups.

Hence we may assume that G is itself a projective limit of Lie groups. Let W be

a given neighborhood of the identity. Let H be a normal compact subgroup of

G such that H c LTn Wand G/H is a Lie group. Since H admits a local cross

section (see [7, p. 65]), there is a euclidean cell E containing 1 in G such that

EH is topologically a direct product and a neighborhood of 1. Now H is a com-

pact group. Let HQ be its (characteristic) connected component. Then by 1.15,

H0 is a solenoid. H0 admits a local cross section in H; hence there is a totally

disconnected compact subspace T containing 1 such that H0T is topologically

a direct product and a neighborhood of 1 in H. The neighborhood V = EH0T

is contained in W and satisfies the requirements of the lemma.

1.17. Proposition. Let S be a homogeneous l.c.g.c.b. such that an arc joins

1 and e. Suppose that B is finite dimensional. Then S is finite dimensional.

Proof. By Lemma 1.10, each point of S has arbitrarily small neighborhoods

all of whose homotopy groups of positive dimension vanish. Hence, by the

Main Lemma 1.16, the identity 1 has a neighborhood of the form EZT, where

£ is a euclidean cell, Z is a solenoid, T is a zero dimensional space, and the pro-

duct is topologically direct. We shall show that Z is finite dimensional; then EZT

is finite dimensional [7], and the proof will be finished.

Let U0T' be a neighborhood of 1 contained in EZT such that U0 is homo-

topically contractible to 1 (hence arcwise connected) and T is some zero di-

mensional space (1.10). Then U0 is in EZ, the component of 1 in EZT. Let

p : £Z -» Z be the projection of the product EZ on the factor Z. Then A = p(U0)

is arcwise connected in Z.
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We shall show that p(l/0) cannot contain a full one-parameter group of Z.

Then, a fortiori, U0 cannot contain a one-parameter group of Z, because such would

have to be in U0 C\Z and then in p(U0). Thus U0T' cannot contain a one-para-

meter group of Z, and V = U0T' nZ is a neighborhood of 1 in Z which cannot

contain a connected subgroup. If, now, H is a subgroup of Z in V such that

Z/H is a Lie group, then H is totally disconnected and Z is finite dimensional

[7, p. 67]. It is, therefore, left to prove that a compact arcwise connected subset

A in a solenoid Z cannot contain a one-parameter group.

Let /: R -»Z be a continuous one-to-one representation of the reals R into Z

such that the image and, consequently, also its closure F is in A. Then every

point of F lies on a one-parameter group in Z because the arc component in a

compact group is covered by one-parameter groups [0]. But all these are torsion

free so that F is torsion free and connected. Thus its character group is divisible

and torsion free [9] and is therefore a rational vector space. Since its character

group is a direct sum of one-dimensional rational groups, F is a direct product

of duals of one-dimensional rational vector groups. We may from now on assume

that F is one-dimensional and that its character group Q is a rational vector

group. F is itself not arcwise connected, hence there are points in F which are

contained in a one-parameter group contained in Z but not in F; let g : R -*Z

be a representation of R into Z defining such a one-parameter group. Then

there is a smallest positive real number r such that g(r) e F and Y = g(R)F

= g([0,r])F is a compact connected group. Since s -> g(s)F is one-to-one from

[0,r) onto Y/F, it is clear that Y/F is a circle group. Hence Tis an extension of

F by a circle group; thus its character group Y' is the extension of a cyclic in-

finite group P by the rational group Q.

On the other hand, Y = g([0,r])F is certainly arcwise connected in Z. Hence,

all the points of YTie on one-parameter groups in Z, all of which are torsion free.

Hence Tis torsion free which implies that Y' is divisible (it is torsion free since

Y is connected). Hence Y' is a rational vector group and therefore cannot be

an extension of an infinite cyclic group by a rational vector group, since any

divisible extension of a cyclic group has torsion elements in the factor group.

This contradiction finally proves the proposition.

1.18. Proposition. Let S be as in 1.17, but suppose in addition that B is

locally connected. Then B and G are Lie groups and S is a manifold.

Proof. The compact finite dimensional locally connected group B is a Lie

group [10, p. 93]. Hence, by 1.10, S is locally arcwise connected since the totally

disconnected factor disappears. But a finite dimensional locally arcwise connected

group is a Lie group [6, p. 185]. Hence G is a Lie group and S is locally euclidean.

We collect the information gathered so far in the following:
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Theorem I. Let S be a homogeneous locally compact group with compact

boundary in which there is an arc joining the identity 1 and the identity e

of the boundary B (or, equivalently, in which the maximal subgroup G uoes

not contain a compact open subgroup). Then S is finite dimensional if and

only if the boundary B is finite dimensional. S is a manifold and both G and B

are Lie groups if and only if the boundary B is finite dimensional and locally

connected.

II. Homogeneous locally compact groups with compact finite dimensional and

locally connected boundary. In this section S will always be a homogeneous

l.c.g.c.b. in which the boundary is finite dimensional and locally connected.

Since the structure of S, as seen from our standpoint, is completely reflected

by the connected component of e we assume until the end that S is connected.

This implies that C = CtN with the connected component Cx of the identity

in C.

2.1. Proposition. Let S be a connected l.c.g.c.b., and let the boundary be

finite dimensional. Suppose in addition that C = Ct is connected. Then C is

isomorphic to the quotient of a direct product of a Lie group L and the group N

which is a sphere group of dimension 0, 1, or 3, modulo a discrete cyclic group D

whose order in the case of dim AT = 0, 3 is at most 2.

Proof. S is isomorphic to (M0 x C)/p as indicated in 1.3. vi. Let H0 be the

subsemigroup of M0 which is isomorphic to the interval [0,1] under multiplica-

tion. Then (H0 x C)/p, where p is the congruence relation induced on H0 x C

by p, is a L-semigroup in the sense of Mostert and Shields. Then N is a sphere

[8, p. 139]. It remains to determine the structure of C. As a compact connected

Lie group C is the product of a central torus A and a semisimple group. Suppose

first that N is the three sphere. Then the semisimple part of C is a product of

a semisimple group L0 and N; we set L = AL0. Then all elements of L commute

with all elements of N. Hence, the intersection of L and N is in the center of N

which consists of two elements. Hence, by [10, p. 21 and p. 158] C is isomorphic

to the quotient of L x JV modulo a subgroup isomorphic to Ln N. Let now

TV be a one-sphere. Then A is the direct product of N and a supplementary torus

A0. Let now L0 be the full semisimple part of C and put L = A0L0. Then by

the same reason as before C is isomorphic to the quotient of L x N modulo a

subgroup isomorphic to N n L. Since N is certainly not contained in L, this

intersection is a closed subgroup of the circle group and is therefore cyclic. No

statements can be made about the order in this case, since there are simple Lie

groups whose centers are cyclic groups of any order. The case dim N = 0 is ap-

parently trivial with L = C.

Remark. The conditions given in Proposition 2.1 are apparently necessary

and sufficient, since S is a connected manifold, if they are satisfied.
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2.2. Proposition. Let S be as in Proposition 2.1 but assume this time that C

is not connected, i.e. C = CtN with the component C\ of C. Then N is a 0-

sphere (i.e. a two-element group) and S is isomorphic to the direct product

of Ct and the full semigroup of real numbers under multiplication. (See also

[4, p. 14].)

Proof. G = S \B is not connected and has as many components as the finite

index of Ct in C indicates. Clearly dimS = dimC + 1. Since the submanifold B

separates the manifold S, we have dim S = dim B + 1; therefore dim C = dim B

= dim C/N = dimC - dim AT; hence dimiV = 0, i.e. N is discrete. But an n — 1-

dimensional orbit can separate an n-manifold in at most two parts (since "it

has only two sides"). Hence the order of N is two. The product is therefore

direct. Let R = M0N; then R is obviously isomorphic to the full semigroup of

real numbers. The mapping (r,c) -> rc of R x Ct onto RCt = S is one-to-one

continuous. It is open on (R \ {e}) x and is homeomorphic on every compact

neighborhood of {e} x Cj; hence it is a homeomorphism. It is clearly an al-

gebraic isomorphism, since R is central.

Remark. If S is no longer connected, then G = S\B is still the direct product

of C, the maxima compact subgroup and M0 \ {e}, a one-parameter group [2],

however S need no longer be the direct product of R = M0N and some compact

subgroup C of index two in C, since there are enough compact totally discon-

nected groups containing a normal subgroup N with two elements, which does

not split in C.

We summarize our results in the following:

Theorem II. Let S be a locally compact group with compact boundary

whose boundary is finite dimensional and locally connected. Let C be the maxi-

mal compact subgroup containing the identity 1 of S, B the boundary of the

maximal subgroup G with the identity e. Let K = {s:es = s], the kernel of the

Clifford-Miller endomorphism, and N=Cr\K. (See [2, Theorem II].) Suppose

that 1 and e are contained in some connected subspace. Then the following con-

ditions are necessary and sufficient that S be homogeneous:

(A) S contains a subsemigroup M0 isomorphic to the multiplicative semi-

group of nonnegative reals, C is a Lie group, and S is isomorphic to (M0 x C)/p

where p is the congruence relation which identifies in the group {e} x C all cosets

modulo the normal subgroup {e} x N.

(B) N is a sphere group, i.e. a group of two elements, a circle group or the

group of quaternions with unit norm and K is isomorphic to the full multi-

plicative semigroup of the reals, the complexes or the quaternions.

(C) Either one of the following cases occurs:

(CA) The maximal compact subgroup C n S' of the connected component

S' of 1 is not connected, then S' is isomorphic to the direct product of COS'

and the full semigroup of reals;
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(CB) CnS' is connected and is isomorphic to the quotient of the direct

product of a compact connected Lie group L and N modulo a finite cyclic group

of the center of this product whose order is at most two in the cases where

dim N = 0, 3.

If B contains only the point e, then S = K and we have the following

Corollary ILL Ahomogeneous locally compact connected group with zero

is isomorphic to the full multiplicative semigroup of the reals, the complexes

or the quaternions [1].
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