
SEMI-DISCRETE ANALYTIC FUNCTIONS(i)
BY

G. J. KUROWSKI(2)

1. Introduction. Several papers have been written concerning discrete ana-

logues for analytic functions (see, for example, [3; 4; 5; 7 and 8]). In each of

these, either a discrete analogue to the Cauchy-Riemann equations or, in the case

of Ferrand [7], a discrete version of Morera's theorem is used to define discrete

analytic functions.

In [4], Isaacs considers two forms of discrete analogues. He calls those lattice-

functions which satisfy the difference equation

(1.1) f(z + 1) -KZ) = [/(z 4- i) -/(z)]/i

monodiffric functions of the first kind and calls those which satisfy

(1.2) /(z + 1) -/(z - 1) = [/(z + i) -/(z - 0]/i

monodiffric functions of the second kind. The discrete analytic functions con-

sidered by Ferrand [7; 8] and Duffin [3] satisfy a difference equation equivalent

to (1.2).
Of concern here are single-valued functions of one continuous and one discrete

variable defined on a semi-lattice, a uniformly spaced sequence of lines parallel

to the real-axis. Such functions are called semi-discrete.

Definitions for the appropriate semi-discrete analogues of analytic functions

are obtained from the classic Cauchy-Riemann equations on replacing the y-

derivative by either a nonsymmetric difference

(1.3) - [/(z + ih) - /(z)]/m,      z = x 4- ikh,

or a symmetric difference

(1.4) = [/(z 4- in/2) - /(z - ih/2)~]/ih,    z = x + ikh/2.
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Semi-discrete functions which satisfy (1.3) or (1.4) are called, respectively, semi-

discrete analytic functions of the first, second kind.

Helmbold [1] considers functions on a semi-lattice which satisfy the following

semi-discrete analogue of Laplace's equation:

d-5) d2^;fe) + [>(x, k + 1) - 2u(x, k) + u(x, k - 1)] - 0.

He calls these functions semi-discrete harmonic. It is shown that semi-discrete

analytic (II) functions; that is, those which satisfy (1.4) for h = 1, have real and

imaginary parts which satisfy (1.5).

With path integration defined on the semi-lattice, analogues for Cauchy's

integral theorem and formula are presented. The derivative and indefinite integral

of a semi-discrete analytic function are also shown to be semi-discrete analytic.

The family of semi-discrete analytic functions is not closed under the usual multi-

plication; consequently, a modified "multiplication" having this property is dis-

cussed. Appropriate analogues for the powers of z, and thus polynomials, are

obtained. A method called "extension" is presented which enables suitable

functions to be extended as semi-discrete analytic functions into a rectangular

domain of the semi-lattice.

2. Definitions and notations. A discussion of the basic concepts for the

semi-discrete plane is given by Helmbold [1]. We will proceed in an analogous

manner letting the abbreviation SD stand for semi-discrete.

A grid-line, lm, is the set of points in the xy-plane such that y = mh, where

h > 0. The type I SD-plane, L^h), is the semi-lattice

(2.1) Lx(h) = \Jlm     (m = 0,±l, + 2,...);

the type II SD-plane, L2(h), is the semi-lattice

(2.2) W»)-UW       (m = 0,±l,±2,...).
m

For L2(h), there are two associated semi-lattices; the union G(2k) of the lm

for m = k called the even semi-lattice and the union G(2k + 1) of the lm for

m = (2fc+l)/2 called the odd semi-lattice. For each case, fc = 0, + 1, + 2,...

and further L2(h) = G(2k) U G(2k + 1).
Two points Z| and z2 of L2(h) are said to be similar if both belong to G(2k)

or both belong to G(2k + 1) and accordingly are called even or odd. Two grid-

lines of L2{h) are similar if they are composed of similar points.

Whenever possible, further definitions will be stated simultaneously for both

cases. Accordingly, we speak of the SD-plane LjQi) understanding that j may be

either 1 or 2. Since all points of L^h) could be called similar points, this termi-

nology will be used for both cases.
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On the continuous z-plane, to be denoted by Lc, we define the following sets

(2.3) OiX)= {(x,y)\ak£x£ßk; kh^y^kh + h},

(2.4) ß<2> = {(x, y) I *k £ x „ ßk; (kh - h) £ 2y £ (fch + h)}

where ctk and ßk are distinct real numbers. Let Q] be a finite union of sets like

Q}J\ The set Q) n L/h) = ß, will be called a SD-domain on L/n). On L2(h),

the set n G(2fc) is called an even SD-domain; the set ß2 n G(2/c + 1) is called

an odd SD-domain. Clearly, ß2 is the union of an odd and an even SD-domain.

If Qj is simply-connected so is Q}.

Let Pc be a polygonal path in Lc which is the connected union of a finite number

of line segments; each segment being parallel to either the x or y-axis such that

the horizontal segments lie on L;(h) along similar grid-lines (the lengths of the

vertical segments are integral multiples of h). A SD-path P on Lfih) is the set

(2.5) P = PcrMj(h).

The SD-path P is closed if Pc is closed.

Let Cc denote the boundary of Qc}. On L,(h) the inner-boundary C of Qj is

defined to be the set

(2.6) C = CcnLj(h).

The translator E" is defined by the relation

(2.7) £"(!«)

where a = 1 for Lj(h) and a = 1/2 for L2(h). The result of applying E" to a

SD-domain    is a vertical translation of nh/j.

Associated with the SD-domain Qj is a larger domain, Q*, called the augment-

ed domain which is defined as follows.

(2.8) Q* = E'iQjKJQi,

(2.9) Qt= E\Q2)UE-\Q2).

The outer-boundary of the SD-domain Qy is the inner-boundary of the augmen-

ted domain Q*. Clearly, both the inner and outer boundaries of the SD-domain

Qj are SD-paths on Lj(h). The total boundary, CT, of the SD-domain Q} is the

union of its inner and outer boundaries. The interior Q° of the SD-domain Qj

is the set Qj~CT. A SD-path P on Qj is contained in Q} if each point of P is also

a point of Q°.

A real or complex valued function of one continuous and one discrete variable

is said to be a SD-function on a domain Qj of Lj(h) if it is defined and continuous

in x (the continuous variable) for all points of Q} and its outer-boundary. The

subfamily of single-valued SD-functions defined on a SD-domain Qt of L^h)
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which satisfies the differential difference equation (1.3) at the point z e Qt is called

the family of h-SD analytic functions of the first kind at the point z [abbre-

viated, fc-SDA(I)].

On L2(h), the subfamily of single-valued SD-functions defined on a SD-domain

Q2 which satisfies the differential difference equation (1.4) at the point zeQ2 is

called the family of h-SD analytic functions of the second kind at the point z

[abbreviated, /i-SDA(II)].

Equations (1.3) and (1.4) are called the defining equations for the respective

/i-SDA functions. A single-valued SD-function /(z) is said to be /j-SDA(I) or

fo-SDA(II) on a domain Qj if /(z) satisfies the appropriate defining equation

for all points z of Q}.

3. Calculus of semi-discrete functions. It is convenient to introduce the follow-

ing operators on Lj(h):

(a) AJ(z)

(b) A2/(z)

(c) A)+1f{z)

(3.1) (d) v,/(z)

(e) 2Sjf(z)

(f) 2Sjf{z)

(g) 2SBf(z)

Without loss of generality, we will consider in this and the following section

only the case h = 1 and will write L/l) = Lj. The definitions and results are

easily extended to L/h). We introduce the following basic rectangles on Lt

and L2 respectively

Bi(M, AT) = {(x,y)\a£x£ß;   y = M,M + 1,...,N},
(3.2)

B2(M,N) = {(x,y)\a£x£ß; 2y = M,M + 1,...,7V},

where M, TV are integers, M iS TV. The proofs for all theorems are established

by proving the theorem for 73/M, TV) and observing that the general result follows

by juxtaposition. At all times D will denote a simply-connected SD-domain on

Lj(h), though this restriction will not always be necessary.

The path-integral on Lj of a SD-function f(z) is defined as follows:

(a) Along the horizontal segment whose endpoints are a = a. + iy and ft = ß+iy:

= f(z + ih)-f(z),

= f(z + ih/2) -f(z - ih/2),

= A,.[A;/(z)], n^l,

-%^>.

= f->
= ^ + tV<* -
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(3.3a) f "f(z)öz= ff(t+iy)dt.
Ja Ja

(b) Along the directed vertical segment connecting the adjacent points a = a

+ iy  and  b = a + i(y + 1):

-6        =       + [Type I],

(13b) Ja/(z)5z= m + iy + im [Type ii].

Along the directed vertical segment connecting the adjacent points b and a the

integral is defined to be the negative of the integral from a to b.

A path-integral over a closed SD-path is to be taken in the conventional posi-

tive direction. To illustrate, let P be the inner boundary of either Bt(k, k + 1)

or B2(2k — 1, 2k + 1). In each case this path integral is

(3.4) (C f(z)5z = - f(Ajfk)dx + i[fk(ß) -mi
Jp *a

where we introduce the notational convention

(3.5) A =/(*+ *&)=/*(*)•

The following provides an analogue for Green's formula.

Theorem 3.1. Let f(z) be a SD-function on (I) a SD-domain ßo/L.; (II) an

even (odd) SD-domain Q of L2. // P denotes the outer-boundary of Q on L},

then

(3.6) 2il jSj(f)dx = j> f(z)öz.

The proofs for this theorem and the remaining theorems in this section are

straightforward and accordingly are omitted. Note that Theorem 3.1 is applicable

to the usual domain on L2 if the path P denotes the total-boundary.

To obtain an analogue for the Cauchy integral formula, a modified formula

is required. Let f,g be a pair of SD-functions on the basic-rectangles Bt(N,M)

andU-1^) respectively and let the outer-boundary of Bt be denoted by P.

We define the modified path-integral

(3.7) () [/(z); g(zf\5z=     [fkgk-^M+1dx + i I. Uk9k!=* [Type I].

For the special case g(z) = 1, (3.7) reduces to the previous definition for the

path-integral of f(z) over P.
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Sum-integration over Bt(N, M) of the identity

-^(fk9k) + iAiCfot-i) = 2[fkSB(gk) + ffA(A)]

establishes a further analogue of Green's theorem on L2.

Theorem 3.2. Let /(z) he a SD-function on the SD-domain D of Lt and let

g(z) be a SD-function on E~l(D). If P is the outer-boundary of D, then

(3.8) 2i I jüSM+fSMdx = j) U-^oz.

To develop the Green's theorem for a pair of SD-functions f,g of the second

kind, we let P denote the total-boundary of B2{M, N), and define

(fiadM-i/z +/jf-i/2 9m ~/n+i/2 9n ~ fn9N+ni)dx
a

N-l N

(3'9) + i I [A+i/2 9k+mlZ+ i I IM        [Type II].

This definition reduces to the definition for path-integration of a SD(II)-function

about the total-boundary of B2(M,N) if either / = 1 or g = \. The analogue

of Green's theorem on L2 is a consequence of (3.9).

Theorem 3.3. If f[z) and g{z) are SD-functions of the second kind on a SD-

domain D of L2 and ifP denotes the total-boundary of D, then

(3.10) 2iZflfS2(g) + gS2(f)]dx= j> [/;g]5z.

4. Basic properties of semi-discrete analytic functions. Functions which are

SDA (semi-discrete analytic) on a domain D of Lj satisfy a pair of equations

analogous to the Cauchy-Riemann equations of classical function theory. Letting

/(z) = u{x,y) + iv(x,y) be SDA on D, where u and t> are real-valued SD-func-

tions, equating the real and imaginary parts of (1.3) and (1.4) respectively yields

the SD Cauchy-Riemann equations.

Type (I)

(4.1)

Type (II)

du(x,y)

dx

dv(x,y)

dx

du(x,y)

8x

dv(x,y)

dx

t)(x, y + 1) - v(x, y), and

u(x,y)-u(x,y + 1).

v(x, y + i) - v(x, y - ■£), and
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Since

(4-2) 4SJ.[S;(/)] - 4S'J.[S//)] - v//),

if /(z) is SDA on D, then v//) = 0 for all ze£>° and consequently

V/u) = V/») = 0.

SD-functions g such that V/fl) = 0 are called semi-discrete harmonic functions of

the first or second kind (SDH). The SDH functions of the second kind are the

semi-discrete harmonic functions considered by Helmbold [1], see equation (1.5),

who called such functions 1 /2-harmonic.

The common value of the defining equation is called the derivative of /(z),

denoted byf'(z); i.e.,

(4-3) /'(z)=Ä= _iAy/(z).

It should also be noted that f'(z) is given by

(4.4) /'(z) = S//).

Theorem 4.1. If f(z) is SDA on the augmented SD-domain D* of Lj, its deri-

vative f'(z) is SDA on D.

This theorem and many of the others in this section are either direct consequences

of definitions or result from classic arguments. Hence their proofs will not be

included.

Theorem 4.2. ///(z) is SDA on a simply-connected domain D of Lj and if C

is a closed SD-path contained in D, then

(4.5) (j) /(z)<5z = 0.

As in classic function theory, D need not be simply connected; only the sub-

domain of D whose inner-boundary is the SD-path C must be simply-connected.

As a consequence of (4.5), the value of the path-integral of / taken along a

SD-path joining two similar points of D is independent of the SD-path chosen

in D provided that/is SDA on D. Accordingly, for each SDA function /(z) on D

we may introduce the function

(4.6) F(z)= (Zf(z)8z,

where a and z are similar points of D and the path of integration is contained in D.

The function F(z) given by (4.6) is called the primitive of /(z).

Theorem 4.3. If /(z) is SDA on a SD-domain D of Lj, its primitive F(z) is

also SDA on D and further F'(z) =/(z).
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Proof. It is sufficient to consider the following SD-path C joining the similar

points a = cc + iß and z = x + iy.

The stated result is then a consequence of definitions. QED.

Evaluation along C of (4.6) with f = g' establishes the following.

Theorem 4.4. Let g(z) be SDA on the augmented SD-domain D* of Ly, let a

and z be similar points of D and let C be a SD-path contained in D which joins

a and z. Then,

Following the terminology of Duffin [3], a SD-function on L2{h). which is

constant on both G(2k) and G(2k + 1), these values not necessarily identical, is

said to be a bi-constant. A SD-function which is constant on LA[h) will also be

called a bi-constant. Hence, by Theorem 4.4, a SDA function is, up to an additive

bi-constant, determined uniquely by the primitive of its derivative.

Theorem 4.5. Letf(z) be SDA on the augmented domain D* of L} such that

f'(z) = 0for all points z of D. Then f(z) is identically a bi-constant on D*.

The following is a converse to Theorem 4.2 and as such is analogous to Morera's

theorem:

Theorem 4.6. Let f(z) be a SD-function defined on the augmented domain

D* of Ly If the path-integral off(z) about all closed SD-paths contained in D*

is zero, then f(z) is SDA on D.

Theorem 4.7. If /(z) is h-SDA at the point z of Lj(h) and X is a real constant,

then f(Xz) is Xh-SDA at the point Xz.

A direct consequence of (1.3) and (1.4) is the following "uniqueness" theorem.

Theorem 4.8. Letf(z) be SDA on a SD-domain of Lj such that (I) \f(z) | = 0

for all points z of P, the outer-boundary of D, (II) |/(z)| = 0 for all points z

of P, the total-boundary of D. Then f(z) is identically zero on D.

By the above, a SDA function is determined up to a bi-constant on D by its

values on (I) the outer-boundary P of D, (II) the total-boundary P of D.

Application of Theorems 3.2 and 3.3 results in a further analogue of Cauchy's

theorem.

Theorem 4.9. (I) Letf(z) and g(z) be SD-functions on a domain D of Lj such

that S^f) = 0 and SB(g) = 0 for all z of D. If C is a closed SD-path contained in

D, then

Along the horizontal segment y = ß from a to x,

then along the vertical segment at x from ß to y.

(4.7)
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(4.8) <C  [/(z);0(z)]fe = O.

(II) Let f(z) and g(z) be SDA(ll) on a SD-domain D of L2. If P is the total-

boundary of a subdomain D' of D, then

(4.8') I [/(z);fl(z)]«5z = 0.

Definition. The SD-path of Theorem 4.9(11) is called a closed total-path.

To develop an analogue for the Cauchy integral formula, a singularity function,

Gj(z ; (), having the following properties is required:

(A). Gj(z; 0 is continuous for all z of Lj except the point f where for real

e > 0 it has the following jump-discontinuity:

lim [G/C + e;ö-G/C-e;ö] = l-
«-»o

(BI). Gx(z; 0 satisfies the differential-difference equation SB(G) = 0 for all z

of Lx except the point z = £.

(BIT). G2(z ; 0 is SDA(II) for all z of L2 except the point z = f.

(C). As|y|-+oo, G/z ;0 = 0(|y|-1); as | x | - oo, G/z ;Q = 0( | x\~l).

The explicit expression for the respective singularity function may be obtained

formally by applying the operational calculus described by Helmbold [1]. Accord-

ingly, letting ( = 0 and defining

(«) sgnW. _;;;>»:

we obtain the following functions:

(4.10) Gl(z;0) = ^tj*F(z;y)dy,     t*0, [Type I]

where z = t + im, m = 0, + 1, ± 2,... and

F(z,y) = exp ^ — t |sgn(i)siny + 2isin2y-j — imy sgn(r)

G2(z ; 0) = f "e"2 1'1 sin "cos (mu) du

(4.11) j° [Type II]

-~ fe-2|,|sin"sin(mu)dM,
271 Jo

where z = t +im/2, m = 0, + 1, + 2,.... The singularity function whose singu-

larity occurs at the point (I) £ =c + in,(II) £ = c + in/2 is obtained from (4.10),

(4.11) with the substitution / = (x — c)and m — (k — n).
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It is easily established that each of the above functions possesses the properties

(A), (C), and (BI) or (BII). To develop the SD analogue for Cauchy's integral

formula, we consider each case separately.

Iff(z) is SDA(I) on a SD-domain D of Lt and g(z) is a SD-function on E~1(D),

(3.8) shows that for every closed SD-path P in D

In (4.12), let g be the singularity function Gx(z ;£). By property (BI), the value

of this path-integral for each closed SD-path P not having z = £ (£ not a point

of P) as an interior point is zero. Thus, we need consider only the SD-path P

which is the outer-boundary of the basic-rectangle BA[M, TV) containing £ as an

interior point. Let Pt denote the outer-boundary of the rectangle B[(M,N) which

for real e > 0 is defined to be the rectangle obtained on replacing ß with c — e

in (3.2) and let P2 denote the outer-boundary of the rectangle B'{(M,N) ob-

tained on replacing a with c + s in (3.2). Clearly,

Consideration of (4.12) for B\ KJB'[ as e-+0, using properties (A) and (BI),

leads to the following analogue of the Cauchy integral formula on Lt.

Theorem 4.10. Let /(z) be SDA(l) on a SD-domain D of Lv For an interior

point £ = c+ in of D, let Gj(z ;£) be the singularity function. IfP is the outer-

boundary of a subdomain R of D which contains the point £, then

Otherwise (provided £ is not a point of P,) the value of this path integral on D

is zero.

A further integral formula involving Gt(z ;£), proven with a similar argument,

is the following:

Theorem 4.11. Let f(z) be SDA(T) on an augmented SD-domain D* of Lx and

let P be a closed path in D such that the point £ is an interior point. Then

(4.12)

B1(M,ZV)= lim (BI ÜB?).

(4.13)

d> [/(z);G1'(z;£)]5z= -if\Q, where

(4.14)

Gl(z'0 = —c^T = - iA1G1(z - i ;£).

The analogue of the Cauchy integral formula on L2 is established similarly.

For real s> 0, the rectangles B'2(M,N) and B'2(M,N) are defined as before so
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that B2(M, N) = lim^o B'2 UB2. Applying Theorem 3.3, using properties

(A) and (BII) as e -* 0, leads to the integral formula for SDA(II) functions.

Theorem 4.12. Letf(z) be SDA(ll) on a SD-domain D of L2. IfG2(z ;£) is the

singularity function whose singularity occurs at the point £ = c + in/2 and if P

is a closed total-path contained in D having £ as an interior point, then

(4.15) () [/(z);G2(z;£)],5z = i/(£).
Jp

A further analogue of the integral formula is the following:

Theorem 4.13. Let f{z) be SDA(U) on a SD-domain D of L2 and let P be a

closed total-path contained in D having £ as an interior point. Then,

(4.16) <) [/(z);G2(z;£)]«5z-= -</"(£)•
Jp

As noted previously, the real and imaginary part of an SDA(II) function on D

are 1/2-harmonic on both D0 and D E, the odd and even domains which comprise

D. Helmbold [1] proves that a 1/2-harmonic function on D0(DE) cannot attain

its maximum or minimum value on Dq(De) unless it is identically constant on

D0(D E), a result which is used in the proof for the following ' 'maximum'' theorem:

Theorem 4.14. Let f(z) be SDAQ1) on a SD-domain of L2 and let P denote

the total-boundary of this domain D. Then |/(z)| cannot attain its maximum

value for a point z of the total-interior of D, unless f(z) is identically a bi-

constant on D.

Proof. Let zx be a fixed, arbitrary point of the total interior of D and let

/ = u + iv be SDA(II) on D. If |/(z) | = 0 the theorem is trivially true. If |/(z) | ^ 0,

application of the maximum principle of Helmbold [1] to the real-valued 1/2-

harmonic SD-function

<D(z) = u(zx) u(z) +v(zi)v(z)

leads to the stated result. QED.

Since |/| is continuous on each closed line segment of D and since D contains

only a finite number of segments, by the theorem of Weierstrass, |/| must take its

maximum value on D. By the above, this extremal must occur on the total-boun-

dary of D.

Such an analogue for the maximum theorem has not been established for

SDA(I) functions. The following result concerning the uniqueness of the sin-

gularity function of the second kind is a consequence of the above maximum

theorem:
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Theorem 4.15. The type II singularity function G2(z; £) having the defining

properties (A), (BIT), and (C) is unique up to additive SDA(ll) functions.

Proof. Let g(z) be another SD-function having the defining properties (A),

(BIT), and (C) and let C=0. Defining the function h(z) = G2(z ; 0) - g(z) and

integrating S2(h) along the line (x, 0) of L2 shows that

0 = A0(0 + if A2(h0)dx + C,

where C is a constant. Consequently, h0(t) is continuous for all t and, in addition,

satisfies the defining equation (1.4). Thus h(z) is SDA(II) on L2.

Given a real £ > 0, choose a total-boundary P such that | G | ^ e/2 and |/| S s/2

for all zp of P. Then | h(zp) | e. Hence by Theorem 4.14, if z is an arbitrary point

of the region interior to P, 0 ^ | h(z) \ g e. QED.

5. Analytic extension and multiplication. A direct solution of the defining

equation (1.3) can be obtained by applying Boole's symbolic method [9]. This

solution is

(5.1) fW=ScpÄ, y=Nh,
k = 0 ax

where/(x) is an arbitrary function of x having at least N continuous derivatives

and Cl(h) is the factorial polynomial for y ^ 0 defined by

(a) k\ci(h)= y(y-h)...(y-lk-i]h),
(5.2)

(b) C5(fc) = 1, and CJ(ä) = 0 whenever k>y.

Lemma 1. // Cl(h) is the factorial polynomial of y on L^h), then

(5.3) AiCg(ft) = 0 and A^&h) = hCl-t(h); k^l.

We will call the ft-SDA(I) function P(z) defined by (5.1) the extension of /(x).

By (1.3), P(z), is uniquely determined by/(x).

Theorem 5.1. Let f(x) be continuous with M continuous derivatives on the

closed interval [a,/?]. The extension P(z) of f(x) is h-SDA(l) on the rectangle

Bt(0,M) and further, this extension is unique.

As an example, let /(x) = x", where n is a positive integer. From (5.1), the

following function, denoted by (z ;hY"\ is the extension of x" on L^h):

(5.4) (z ; Ä)<"> = i CpW7-^r,*',-p •
P = o \n~PJ-

These functions will be called the pseudo-powers of z on LA[h).

It is easily seen that the usual product of two SDA(I) functions is not SDA(I).

Accordingly, the method of extension is applied to investigate "multiplication"
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on L^h). Let F(z), G(z), and H(z) be the respective extensions of f(x), g(x), and

h(x) on B.(0,Af). Using Leibnitz' rule for the nth-derivative of the product

h(x) =f(x)g(x),

) ^-pg(x)

dxk~p

where ( * ) =
fc!

We call H(z) the generalized dot-product of F(z) with G(z), to be denoted by

F(z) • G(z). Algebraic manipulation enables us to rewrite (a) in the form

(5.5) F(z) • G(z) = I ikCykG(z - ife)-d/W
k = 0 dxk

which provides a simple definition for the generalized dot-product on Lt. By

construction, this "multiplication" is commutative and associative.

As an application, let fix) = x. By (5.4), the extension of x is F(z) = (z ; Ui1'

and (5.5) yields

(5.6) (z ;      • G(z) = I ikCykG(z - i/c)^T = xG(z) + iyG(z - i).
k = 0 "x

Note also that if I(z) is the extension of x _1 on Lu then (z; l)'^ • I(z) = 1.

Another consequence of the definition for the generalized dot-product is the

following.

Theorem 5.4. Let H(z) = F(z) • G(z). The derivative of H(z) is obtained by

the usual rule for product differentiation; that is,

(5.7) H'(z) = F(z) • G'(z) + F'(z) ■ G(z).

We next consider extension on L2(h). Let T*(h) denote the symmetric factorial

polynomials of y and n 2; 0 which were discussed by Isaacs [4].

Odd n

nlWh)=[y+^h]...[y + lh] [y+lh]y[y-lh]...[y-n-^h],

(5.8)
Even n

n\Tn{h) y + ü_i h j ...[3, + „]/[;, _ h]...  ^ _ 1_2 ft j f

where ̂ (h) = 1, T[(h) = y, and T£(h) = 0 whenever k = 2( | y \ + h)/h. The

proof of the following lemma is given by Isaacs [4] for a unit gap, but is easily

extended to the general case.
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Lemma 2. If T„y(y) is the factorial polynomial of y on L2(h), then

(5.9) A2T$(h) = 0 and A2I*(*) = fel*. ,(h), n*l.

Following the discussion concerning functions of the first kind, we define a

function F(z) on L2(h) called the extension of/(x) into L2(h):

00 rlkf(x\
(5.10) F(z) = I ikTk\h) ±2™ .

* = o ax

Although F is written as an infinite series, by definition there are only a finite

number of nonzero terms for finite values of y. Thus, the convergence of (5.10)

is trivial.

Theorem 5.3. Let f(x) have M + 1 continuous derivatives on the closed

interval [a,)S]. Then the extension F(z) of /(x) is h-SDA(U) on B2(0,M).

For functions of the first kind, (5.1) represents the only way that /(x) can be

extended into the upper-half of L^h) as an h-SDA(I) function. This is not true

for the analogous expression (5.10) defining the extension of/(x) as an /j-SDA(II)

function since (1.4) shows that, for a unique extension, f(x—ih/2) must also

be given. In fact, summation of (1.4) gives the following

In- 1
d/(l/2)fc

(5.H) /,=/-1/2 + iZ

which provides a recursive method for extension into L2(h) that is unique if /„

and /_ 1/2 are specified. Accordingly, this represents the general method for ex-

tension on L2(h). However, if F(x + ih/2), as given by (5.10), and f(x + ih/2),

as specified in advance, agree, the extension (5.10) of/(x) will be unique. For

the present purpose, we confine our attention to specific applications of (5.10)

for considering a "multiplication" on L2(h).

The nth pseudo-power of z on L2(A) is defined to be the extension of x" on

L2(h); that is,

(5.12) (z ; hf? = I itWr^^";  n = 0,1 2,....
t=o (n-fc)!

Letting F(z) and G(z) be the respective extensions of / (x) and g(x) on B2(0,M),

the generalized dot-product of F and G is defined to be the extension of fg into

jB2(0,M); that is,

(5.13) F(z) • G(z) = f ikTk\h)      [/<?].
k = 0 ax

By Theorem 5.3, this dot-product results in an h-SDA(H) function on B2(0,M).

The derivative is computed by the usual rule for the differentiation of products
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(5.7). In particular, if G(z) represents the extension of g(x) into B2(0, M), we

define the dot-product of G with (z ; A)21) to be the extension of xg into B2(0,M).

It is unfortunate, however, that it is not possible to obtain a simple expression for

(z ; h)2!) • G to correspond to (5.6).

The following establishes that the respective pseudo-powers of z on L}(h)

behave in a manner analogous to the powers of z on Lc.

Theorem 5.4. // P„(z, h) = (z ; /t)Jn), where n is an integer, n _ 0, then for all

zofLj(h)

(5.14) P'0(z,h) = 0 and P„'(z,h) = nP^^z,h), n fcl;

(5.15) n f PB_t(z,ft)«z-Pl&A), n = 1.
♦'o

Inspection of the explicit formulae (5.4) and (5.12) for the respective /cth pseudo-

power of z on Lj(h) shows that as the gap of Ly(h) approaches zero, the pseudo-

power (z ; Kfk) converges to z\

Theorem 5.5. Let R be the rectangle R = {(x, y): \ x | ^ A, | y \ ̂  B} of L/h).

Then, for all z of R

(5.16) lim (z;h)f = z",
ft->0

where the convergence is uniform on R.

6. Semi-discrete analytic polynomials. A SD-polynomial is a SD-function

of the form

(6.1) P(z)= Z ICmB(h)xV,
m=0 »1 = 0

where the coefficients Cm„(h) may be polynomials in h with real or complex

coefficients. Since x = (z + z)/2 and y = (z — z)/2i, p(z) can be considered as a

function of z and z and written in the conjugate form P(z,z). The degree of the

SD-polynomial p(z), denoted by deg(p), is the total degree of the conjugate form

P(z, z) in z and z.

A SD-polynomial which is h-SDA on L,(h) is said to be a SDA polynomial.

By the expressions (5.4) and (5.12) for the respective pseudo-powers of z, these

functions are SDA polynomials, as are finite linear combinations of these powers.

Following Isaacs [4], we will show that essentially the only SDA polynomials are

the SD-polynomials which are linear combinations of the pseudo-powers of z.

Theorem 6.1. 17 p(z) is a SDA polynomial of degree n, it is of the form

(6.2) p(z) = k(h)ztt+G(z,z),

where deg(G) < n, and k^O.
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Proof. By hypothesis, the conjugate form P(z, z) is a SDA polynomial and thus

the polynomial k~"P(kz,kz) is kh-SDA. Clearly, the limit

lim k-"P(kz,kz) = Q(x,y)

exists and is a polynomial. If Q(x, y) does not satisfy the Cauchy-Riemann equa-

tions, then for some k sufficiently small k~"P(kz,kz) would not satisfy the de-

fining equation (1.3) or (1.4). Hence, Q(x,y) must be analytic. Further, since

deg(P) = n, P has at least one term of degree n with a nonzero coefficient k(h).

If this term were to involve z, then so must Q; in which case, Q would not be

analytic. QED.

An immediate consequence of Theorems 6.1. and 4.1 is the following.

Theorem 6.2. // p(z) is a SDA polynomial of degree n, its derivative is a

SDA polynomial of degree (n — 1).

If/(z) is SDA,/'(z) is given by Sj(f). Letting/["](z) denote the nth derivative

of /(z), by recursion

Proof. Using Theorem 6.1, p(z) is of the form (6.2). Repeated operation on p(z)

with the operator Sj and the use of Theorem 6.2 after each such operation yields

(6.5). QED.

Theorem 6.4. Let p(z) be a SDA polynomial such that deg(p) ̂  n. If p(0) = 0,

Sj-p(O) = 0,S;p(0) = 0, then p(z) =. 0.

Proof. By Theorem 6.1, p(z) is possibly of the form (6.2) with k # 0. However,

Theorem 6.3, shows that k must be zero. Thus, deg(p) g (n - 1). By repetition

of this argument p(z) must be identically zero. QED.

The following is the SD-analogue of the Taylor expansion for SDA polyno-

mials:

Theorem 6.5. If p(z) is a SDA polynomial such that deg(p) = n, it may be

written in the form

(6.4)

(6.5) S%p) = kn\ , and SJ+1(p) = 0.

(6.6) p(z) = Z ak(z ; h)f, where ak = ~SkjP(0).
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Proof. Application of Theorem 6.4 to the SDA polynomial

0(z) = p(z)-E [ls}p(0)](z ;«)?>

shows that g(z) s O.QED.

Consider the h-SDA polynomial P(z, h) defined by

(6.7) P(z,n) = iaJ?-m{z\h)Y>.
m = 0

It is easily verified that each term of this polynomial is of total degree n in the

three variables x, y, and h. Consequently, the polynomial P(z, h) of (6.7) is the

homogeneous polynomial of degree n in x, y, and h corresponding to the SDA

polynomial

(6.8) p(z) = £ amzf\ where z/">= (z ; l)/">.
m=0

Theorem 6.6. The real and imaginary parts of a SDA polynomial are

relatively prime.

Proof. Consider the SDA polynomial of (6.8) and let

F(x, y) = Re [p(z)], G(x, y) = Im [p(z)].

Assume that F and G have a nonconstant, common factor. Then, we can write

F(x,y) = [s + iq]A(x,y) and G(x,y) = [s + iq]B(x,y).

Since the left side of each of these expressions is real, either (1) ^ = 0, or (2)

[s — iq~\ is a common factor of A and B, and thus also of F and G such that

A/[s — iq] or B/[s — iq] is nonconstant, or (3) both A/C1 and B/C2 equal

[s — iq~\ where Ct and C2 are constants. In the event of either (1) or (2), the

common factor of F and G is real. Case (3) is not possible for nonconstant poly-

nomials which are SDA, since p(z) = [Ct + C2] g (x, y), where a is a real poly-

nomial, does not satisfy the defining equations. Thus, the nonconstant common

factor r(x,y) of F and G is real and p(z) can be written p(z) = r(x,y) t(x,y).

We introduce the SDA homogeneous polynomial of degree n given by (6.7) which

corresponds to the SDA polynomial (6.8) under consideration. By Bocher [6],

since p(z) is reducible, so is P(z,h) and the factors correspond. Hence, P(z,h)

can be factored.

(a) P(z, h) = R(x, y, h) T{x, y, h),

where R corresponds to r and T corresponds to /. The factor R(x, y, h) is obtained

from r(x,y) on multiplication of the terms of r by suitable powers of h (real);

hence, R(x,y,h) is real and nonconstant. By construction, some variable term

of R and also of T must be free of h. By Theorem 5.5, and (a)
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(b) lim P(z, h) = anz" = R(x,y,0) T(x,y,0),
»-»o

where by previous remarks, R(x, y,0) is real and nonconstant. By unique factori-

zation, this is impossible and thus F and G must be relatively prime. QED.

The result of the above theorem and a well-known property concerning rela-

tively prime polynomials gives the following:

Theorem 6.7. // p(z) is a SDA polynomial, deg(p) = n, there exists only

a finite number of values z = <xk, k = 1,2.TV such that p(ock) = 0.

Proof. As above, let F(x, y) and G(x, y) denote the real and imaginary parts

of p(z) respectively. Both F and G are real polynomials of the real variables x

and y and deg(F):£ n, deg(G) ^ n. By Theorem 6.6, F and G have no common,

nonconstant factor. Therefore, by Böcher [6], there exist only a finite number of

points for which both F and G vanish. QED.

In the continuous case, a polynomial of degree n has exactly n roots. This

statement is not true for the analogous SDA polynomial of degree n. For example,

the equation z[2) = 0 has three zeros, a double zero for z = 0 and a simple zero

for z = i. The discrete "monodiffric polynomials" considered by Isaacs in [4] and

[5] also exhibited this property. Terracini [10] shows that the number of zeros of

an nth degree monodiffric polynomial is at least n and at most n2.

The author would like to thank Professor R. J. Duffin for his invaluable advice

and guidance during the course of this work.
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