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1.   Introduction.     If v(x, t) is an arbitrary function of two variables its

Appell transform is

(1.1) A[v]   =^,(M = /c(x, t)v(j, =1),

-*»/4«

(1.2) k(x, t)   =
(4ni)1/2

Here k(x, t) is the fundamental solution of the heat equation

As we shall see, this transformation serves in a remarkable way to establish a

duality between types of solutions of (1.3). It was Appell [1] himself who showed

that if y is a solution then A\y~] is also. We shall be studying here various solu-

tions which have integral representations and the effect of the Appell trans-

formation thereon. A few of our results were outlined, mostly without proof,

in [8].

Let us introduce notations for the various integral transforms to be considered,

as follows:

Poisson transform

(1.4) £[«/>] = PXi,|>] =   T k(x - y,t)4>(y)dy;
J —CO

Fourier transform

(1.5) £[0] = £Xi([rp] = f   eix>-t3,2<t>(y)dy;

Laplace transform

(1.6) L[<p] = Lx([<p] =   T ex"+tv2<P(y)dy.
J — 00
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All of these have kernels which are solutions of (1.3) for each value of the para-

meter y and consequently produce solutions for more or less arbitrary functions

(j). The transform (1.4) is also commonly referred to as the Weierstrass or Gauss

transform. It is clear that Pix _,[<p] is also a solution of (1.3). We shall see that

this one is paired with £[<£] while L\jf\ is paired with P[<p] in the duality men-

tioned above.

We list a number of examples which will be useful in the sequel.

[n/2] x"~2k        tk

A. P[x"] = vn(x, t)=n\    S       * ' <>0.
k = o   (n-2k)\ fc!

This is called the heat polynomial of degree n. The Appell transform of this poly-

nomial is the associated function studied in [6]:

4M   = "nix, t) = k(x, t)v„(x/t,-l/t)rn, r>0.

B. F[eax2]   = 2nk(x, t-a), t > a.

C. L\ß"*2]   = 2nk(ix, a-t), t <a.

D. A[k(x,t + a)~]   =   (4naTll2k(x, t-a'1), t>a~l.

The transformed function is in every case a solution of (1.3) in the half-plane

indicated.

We now state briefly a few of the results of the present paper. The Huygens

property is defined in §2 below and the growth of an entire function, in §4. A

fundamental result is the following.

A function u(x, t) is equal to the integral £[0] defined by (1.5) where (j) is

entire of growth (2, l/d), if and only if it is the Appell transform A[v~] of a

temperature function v(x,t) which has the Huygens property for \t\ <a.

We also obtain several new characterizations of positive temperature functions.

The first involves those which are positive for all negative time.

A solution v(x, t) of (1.3) is ^ 0 for t < 0 if and only if

v(x,  t) = f    exy+,ylda(y), t < 0,
J — 00

where a(y) e î.

An example of such a solution is e 'cosh x, for which a is a step-function with

jumps at ± 1.

We also characterize a subclass of the above functions as follows.

A solution v(x, t) of (1.3) is ^ Ofor t < 0 and satisfies the inequality

I v(x, t)ex2/4tdx < oo, í < 0

J — 00

if and only if
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v(x, t) = k(y+ ix,  -t)(p(y)dy, t < 0,

where <j> is positive definite.

A case in point is v(x, r) = 1 with <p(y)=l. A less trivial example is

t>= k(ix, 1 — t), which evidently satisfies the conditions of the theorem. Here <p

is the positive definite function e~y2/*/y/(4-n).

Finally we characterize those temperature functions which are positive for posi-

tive time and are absolutely integrable in the space variable.

A solution u(x, t) of (1.3) is ^ 0 for t < 0 and satisfies the inequality

1'u(x, t)dx < oo, t > 0
J — 00

if and only if

/•   00

u(x, t) = eixy-y24>(y)Jy, t > 0,
J — 00

where (j)(y) is a positive definite function.

An example here is the fundamental solution itself with </> equal to the constant

(27t)"1.

2. Relation between the Poisson and Fourier transforms. Let us reintroduce

here some of the notation of [6].

Definition 2.1. A function u(x, t)eH, or is a temperature function, for

a < t < b if and only if it is a class C2 solution of the heat equation (1.3) there.

Definition 2.2. A function u(x, t) e //*, or has the Huygens property, for

a < t < b if and only if ueH there and

I* 00

(2.1) u(x, t) =j     k(x-y, t-t')u(y, t')dy
J   - 00

for every t, t', a < t' < t < b, the integral converging absolutely.

Example A. Any function

<
u(x, t) =        k(x — y, t)da(y)

J — 00

for which the integral converges absolutely in a < t <b belongs to H* there.

Equation (2.1) then results immediately by use of Fubini's theorem. In parti-

cular, a positive function of H is also a function of//*. See [7].

Example B. The function k(x, t + i) belongs to H in the whole x, r-plane

and belongs to //* in any strip of the form —a<t< l/a. See [6 p. 242]. It is

to be emphasized that a function may belong to //* on each of two overlapping

sets without doing so on the sum of the sets. Thus the present function has the

Huygens property for  — 2 < t < 1/2 and for 0 < t < oo but certainly not for
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— 2 < t < 2, for example. If we chose t' = — 1, t = 1, x = 0 in the integral (2.1

it becomes

ii
k(y, t)k(y, -1 + i)dy.

It clearly does not converge absolutely.

We prove now that any Poisson transform of a function in class L is also a

Fourier transform.

Theorem 2.   // <f> e L on ( — co, co), then £*,,[</>] e H* for t > 0 and

Px. ,M = Fx ,W, t > 0,

where

By definition

(2.2)

<Ka> = ¿sJV^tyMy.

/•oo

»> — oo

The integral converges absolutely for t > 0 since fc ̂  (4nt)~112. It consequently

belongs to H* there by Example A of this section. By Example B of §1 the integral

(2.2) becomes
1        r»oo /» oo

p*,w= ¿ J ßy^yj fx~y)z"z2dz

-1 /»OO /• 00

= 2^J /"~*d*j j~iyz<t>(y)dy

= Fxtm

The interchange in the order of integration is justified in an obvious way by

Fubini's theorem.

3. Relation between the Poisson and Laplace transforms. To prove our next

result we need a lemma.

Lemma  3.   //u(x, t)eH*for a < t < b, then u(ix, —t)e H*for —b<t< —a.

Since the integral (2.1), when it converges, defines an entire function of x,

the definition of u(ix, —t) is clear. We must prove that if a < t < t' < b then

u(ix,  i) =(3.1) u(ix,  t) =       k(x — y, t' — t)u(iy, t')dy,
J— 00

the integral converging absolutely. Choose t" so that a < t" < t. Then by hypo-

thesis
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/* 00

(3.2) u(x,  t) = \    k(x-z, t-t")u(z, t")dz,
J — 00

the integral converging absolutely. Substituting (3.2) in the integral (3.1) we have

/»CO /»CO

k(x-y, t'-t)dy\    k(iy-z, t' -t")u(z,t")dz
J ~ 00 J— CO

(3.3)
/•CO /»CO

= u(z, t")dz\     k(x-y, t'-t)k(iy-z, t'-t")dy.
J  — 00 J — CO

This last interchange is valid by virtue of the inequalities

/• CO

(3.4) k(x-y, t'-t)e MW-^dy < co,
J — CO

•/ — CO

(3.5) < oo.

The integral (3.4) clearly converges since t" < t; (3.5) does also since (3.2) con-

verges absolutely when t = r'. But the value of the inner integral in (3.3) is known

to be k(ix-z, t-t"). See [5, p. 177]. That is, the integral (3.2) becomes

i
k(ix-z, t-t")u(z, t")dz,

and this by (3.2) is u(ix, t). Thus (3.1) is proved. Finally, the absolute convergence

of (3.1) follows as a consequence of Fubini's theorem.

Theorem 3.   If tpeLon ( — oo, co), then P_iJC _,[<?] e H* for í <0 and

P-u.-W = ¿x.rl>], t <0,

where

By definition

(3.6)

Since

P_
i» co

,-,Wa       fc(ix + y, -t)tfy)dy.
J— CO

fc(ix + y,  -0   jj e-JC/4,(-47ti) -1/2 t<0,

it is clear that the integral (3.6) converges absolutely for t < 0. Since the integral

Px ([<p] converges absolutely for t > 0 it defines a function of H* there. By Lem-

ma 3 the function (3.6) belongs to H* for t < 0. By Example C of §1 (a = 0)

the integral (3.6) becomes
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1 /• °° |*00 I/*00 I»   GO

Tn)  J{y)dyJ_/iX~iy)+'Z2dz = Yni  fX+'Z2dZj    e~ÍyZ<¡,{y)dy-

The interchange of integrals is obviously permissible for t < 0, and the inner

integral is \¡j(z) as predicted.

Note that the initial temperature of Fx,[i//'] is the Fourier transform of i//;

the terminal temperature of Lx ,[i/f] is the Laplace transform of ij/ when these

transforms exist.

4. A criterion for the Fourier representation. Let us recall the following definition.

Definition 4. ^4n entire function

/(x)= f anx"
n=0

belongs to the class (2, a), or has growth (2, a), if and only if

(4.1) lim supn|a„|2/" ^ 2ea.
n-*tx>

See, for example, [2, p. 8]. A function of this class is of order á 2, and if it is of

order 2, then it is of type  ^ a. For example, the functions xe~3*2, e*2, e5x

all belong to (2, 3), whereas e~x does not.

We first call attention to the following lemma.

Lemma 4.1. If s > 0,  t > 0, then

Ax,tlk(x-y, t + s)] m Ay¡¿k(x-y, t + s)].

This is a simple identity. Both sides are equal to

(4nyl(st - l)"1/2exp[(2xy - ty2 - sx2)(4st - 4)"1].

A second preliminary result is contained in

Lemma 4.2. // v(x, t)eH* for \t\<at then v(-2ix, 0)e(2, 1/u).

To prove this we appeal to Theorem 11.1 of [6] and thus admit that

CO

v(x, t) =   Z a„v„(x, t), \t\<°
»=0

OO

v(x, 0)  = I a„x".
n=0

By Theorem 5.5 of [6],v(x, 0)e(2, 1/4ít). Thus (4.1) shows that i>(-2ix, 0)

e (2,1/tr), as stated.

Theorem 4. A necessary and sufficient condition that

/»oo

u(x, t) =F[«p] =        e"-^<Ky)dy, t>l/a,
J — 00
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where <¡)(y)e(2, a  1), is that there should exist a function v(x,t) of H* in \t\ <a

such that u = A[v~\.

We prove first the sufficiency. Since v e //* for 111 < a, then for any positive

a' <a
/.oo

(4.2) v(x, t) =       k(x - y, t + a')v(y, -a')dy,
J — OO

the integral converging absolutely when — er' < / < a. By Lemma 4.1

A\y-\ = jXk(y, c')k(x-^-„t-^jv(y, -a')dy, t>\/a',

= 2n        k(y> °'ïv(y' -a')dy\    exp   iz(x- — \-z2(t-—A  dz.

Here we have used Example B of §1. If interchange of iterated integrals is per-

mitted, we obtain

(4.3)

■i /»CO /»CO

-4M = -r-        exp(ixz - tz2)dz        v(y, -a')k(-2iz - y, a'
2lt   J-ao J_œ

/•CO-J      ¿
J — CO

(¡}(z)dz, t > I/o',

where 2ncj)(z) = v(—2iz, 0). To justify the interchange it is sufficient to know,

that
,2  \ («oo /        „2

/_>(-iz2+^)dz£exp(-è) v(y, - a') dy < oo.

The inner integral is finite since (4.2) converges absolutely when x = t = 0. The

outer integral clearly converges when t > 1/a'. Since <f>(z) is independent of a',

it is clear that (4.3) continues to hold for all t> 1/a. Finally, that0e(2, 1/<t)

follows from Lemma 4.2.

To prove the necessity we now assume that u = f [0] with <p belonging to

(2, I/o-). We appeal to Theorem 12.1 of [6] to show that

u(x,  t) = £ b„wn(x, t), t > I/o-,

where

(4.4) b  =
2n j)(n)(w)

n!(-2i)n"

Since w„ = A[v„] it is clear that u = A[v~\, where

(4.5) v(x,t) =   I b„v„(x, t), -a <r<0.
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By Theorem 11.1 of [6] the sum of any such series belongs to H* throughout

its region of convergence, always an entire strip of the form 11 \ < a. The con-

vergence of (4.5) in — a < í < 0 implies its convergence in |i|<rj, so that

veH* there. The equation (4.4) yields

v( — 2iz, 0)   = 27t(j)(z),

thus confirming the relation between v and <p established in the sufficiency proof.

Corollary 4. // v(x, t) e H* for a <t <b and if a < t0 < b, then

Fx,tiv(-2'x, i0)] = 2nAXft[v(x, t + t0), t > l/a,

where a = min(i0 — ab — t0).

This result was stated as Theorem II in [8]. It follows here by applying

Theorem 4 to v(x, t + r0), which belongs to H* in 111 < ex.

Example D of §1 provides an illustration of Theorem 4. The function

v = k(x, t + a)eH* for t > —a but the largest strip of the form 111 < a con-

tained in that half-plane is 111 < a. Hence A\y~\, according to Theorem 4, must

equal £[</>] for t > l/a, where

27irp(y) = v(-2iy, 0) = ey2la(4nay112,

(4.6) A[<fl = ^na\ f™ e'^'V-dy,
2« J-00

A14Í] = (4na)~1/2k(x, t--\, t > l/a.

Notice that <pe(2, l/a) as predicted and that (4.6) converges in no larger region

than that predicted by the theorem.

5. A sufficient condition for the Fourier representation. Although the previous

example shows that Theorem 4 cannot be improved to give a larger region of

convergence for the integral (4.6), nevertheless for some examples the region is

indeed larger. Consider the function

v(x, t) = fc(i'x, ô — t) + k(x, t + a).

It belongs to H* in — a < t < <5. If a > Ô, Theorem 4 would predict the con-

vergence of the corresponding integral ^4[<p] for t > I/o. However

m e^     e"21"

so that £[(/>] actually converges in the larger region t > l/a. The following

theorem would cover such an example.



1963 ] APPELL TRANSFORMATION 129

Theorem 5.    // v(x, t) e H* for -a <t <ô, a>0, ô>0, then

(5.1) A[v] = £[<?], t > 1/a,

where 2n(j)(y) = v(-2iy, 0) is entire and

(5.2) lim supx-2 log | cp(x) |   ^   1/a.
JC->±00

Note that if a > ô then <¡> e (2, l/ô) and Theorem 4 would guarantee the con-

vergence of the integral F\jf\ for t > I/o, in contrast with the present t > 1/a.

The proof of (5.1) proceeds exactly as in the sufficiency of the conditions of

Theorem 4. We find as before that (¡>(y) = v( — 2iy, 0)/2n. But now we cannot

show that <¡> e (2, 1/a). We show instead that (5.2) holds. From equation (4.2)

we have
X2/<T' Í» 00

from which it follows that

lim supx_2log|<p(x)| ^ I/o-'.
X-* ± 00

On account of the arbitrary nature of a' this inequality implies (5.2), and the

proof is complete.

Observe that the condition ô > 0 in Theorem 5 cannot be improved. The

function v = k(ix, —t)eH* in — co < t < 0. Its Appell transform is the con-

stant l/(An). This certainly has no Fourier representation A[</>], since any such

function must vanish at infinity.

6. A necessary condition for the Fourier representation. It should be observed

that £[<£] may define a temperature function even when r/> £ (2, a) for any a. For

example, if (j)(y) = e~y , <¡> is entire of order 4. But the integral

e» oo

f[0] =       eixy-,y2 e~yA dy
J — 00

converges over the whole x, r-plane. Although the example is not covered by

Theorem 4, £[<?] is nevertheless the Appell transform of some function, which

of course cannot belong to H* in any strip including the x-axis. The following

result would include such an example.

Theorem 6.   // u(x, t) = F[>] = J?» eixy~,y2(j>(y)dy,t > l/o^ 0, where

(6.1) lim sup x ~ 2 log | <p(x) | ^ I/o,
x-*± 00

then there exists v(x, t) belonging to H* in —a < ( < 0 such that A\y~] = u.

We define v explicitly:
/»oo

(6.2) v(x,  t) = 2nl     k(y+ix, -t) <j>(-y/2)dy.
J — CO
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By hypothesis

(6.3) (fa) = 0(ey2"'), y->±oD

for any positive a' < a. Thus the integral (6.2) is dominated by

(-4nt)-il2e-x2'*'r e>2iA'0(e>2/*"')dy.
J— OO

As a consequence it converges for — a' < t < 0 and hence also for — a < t < 0.

The same relation (6.3) shows that the integral

(•CO

w(x, t) = 2n\     k(x - y,t)<p(-y/2)dy
J— 00

converges absolutely for 0 < t < a, and defines a function of H* there. Since

v(x,t) = w( — ix, —t), we see by Lemma 3 that v(x, t)eH* for — a < t < 0. But

from the definition of the Appell transformation (1.1) we have

¿M = -2jXj-ix>"2-y2"4<p(-y/2)dy

e'^-'^iy^y = £[rp] = u.
i

This completes the proof.

In the example of this section the left-hand side of (6.1) is — oo so that a may

be taken + oo. The function (6.2) belongs to if* for — co < t < 0.

7. The Laplace transform of an Appell transform. If a function v(x, i)eH* in a

strip including the x-axis, then the Laplace transform of ^4[t;] has a remarkably

simple form. It is in fact equal to v(2x,0)e'x2 for all í sufficiently large. The ex-

plicit result follows.

Theorem 7.  // v(x, t) e H* for 11 \ < a, then for any t > l/a

/» 00

(7.1) v(2x, 0)e'x2 =       e"Art[v]dy.
J — 00

Make the change of variable y = tz in the integral (7.1) multiplied by e ~tx\

We obtain

te-,x2T extzk(tz, t)v(z, -l/t)dz=(t/4nfl2r e-(2x-z)2'l4v(z, -l/t)dz
J -co J—CO

= v(2x, 0).

This last equation follows from the  Huygens property provided   only that

-a < — 1/i < 0, and this is guaranteed by hypothesis. This completes the proof.

This result as applied to a function v(x, t + t0) was stated without proof as

Theorem III in [7]. As an example take v = k(x, t + a). Then for t > l/a
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tx2
e   e 'xl,a -[M^-tyy-

But this is a familiar result, which can be verified by Example C of §1.

8. Positive temperatures in negative time. Temperature functions which are

positive for all negative time, such as e' cosh x, have a particularly simple rep-

resentation in terms of the Laplace integral. The result follows.

Theorem 8.1.  A necessary and sufficient condition that

JOO
exy+ty2dot(y),

-00

where a(y)e î and the integral converges for  — co < t < 0 is that v(x, ()^0

and v(x, t)eH for - co < t < 0.

The necessity of the condition is trivial. The kernel of (8.1) belongs to //for

each y, and differentiation under the integral sign is valid for Laplace integrals.

Conversely, apply the Appell transform to the non-negative temperature

function v:

A[_v-] = k(x, r)Wy, --j.

Clearly A\y~] e H and is 5: 0 for t > 0. Hence by an earlier result of the author [7]

it has a Poisson representation

¿M-J_"k(x - y, t)dß(y), 0 < I < oo

v{t> -r) = ^/4t/0O/(JC"y)2/4t^(j').

where ß(y) e Î . Now by obvious change of variable

/•CO

v(x, t) =        exy*ty2dß(y/2), - co < t < 0.
J — 00

The proof is now concluded by defining oc(y) as ß(y/2).

Corollary 8.1. A necessary and sufficient condition that

/• CO

»0, r)=        exy+ty:
J —CO

dot(y),

where a(y) e î and the integral converges for — oo < t < c, is that v(x, f) ^ 0

and v(x, t)eH there.

This is proved by applying the theorem to v(x, t + c).
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As an application of this theorem we prove an earlier result of I. I. Hirsch-

man [4].

Theorem 8.2. J/ v(x, t) e H and is 2: 0 for — oo < / ^ c and if

MaX|x|ârt)(x, t) = M(r), then liminf,.,«, logM(r) ^ 0 implies that u(x, t) is

constant for  — oo < t ^ c.

We may assume that c = 0 and show that the function a(y) of (8.1) has at

most one point of increase, at y = 0. Suppose on the contrary that y = y0,£0

is such a point. Choose Ô so that y = 0 is not in the interval (y0 — ô, y0 + <5).Then

/•yo + á
v(x, 0) ^ exyda(y) > pe{yo ~ S)x[ > pe(yo+S)x],        x > 0 [x < 0]

J j>o-¿

where p is the positive number a(y0 + S) - a(y0 - S). This shows that

M(r) ^ peiyo~ô)r , yo-ô>0

^ pe-(yo+â» , y0 + <5<0.

In either case

liminfr-1 logM(r) > 0,
r-»oo

contradicting the hypothesis. This concludes the proof.

As a consequence of this theorem it is clear that any temperature function

which is uniformly bounded for — oo < t ^ c is a constant.

9. A subclass of positive temperatures in negative time. If an additional con-

dition is imposed on the function v(x, t) of Theorem 8.1 it will have in addition

to (8.1) a quite different integral representation.

Theorem 9.   A necessary and sufficient condition that

/» 00

(9.1) v(x,  t) =        k(y+ix,   -t)4>(y)dy, -oo<i<0,
J -co

where 4>{y) is positive definite, is that for—oo < t < 0 v(x, t)eH, ^0 and that

for some t0 < 0
/•CO

(9.2) v(x, t0)ex2/*todx < oo.
J— 00

We prove first the necessity. Assume the representation (9.1). Since <p is positive

definite we have by Bochner's theorem [3, p. 76], that for some a(z) that is

nondecreasing and bounded

(9.3) <t>(y)=reiy*da(z).
J— CO

Hence
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/•OO /»OO /* 00 /» 00

(9.4)   i>(x,r) =       k(y+ix,-t)dyj    eiyzdoi(z)=l     dz(z)\      k(y+ix, -t)eiyzdy.
J—cc v — 00 */— oo •/—00

The interchange is valid for r < 0 since

rda(z)í°V2/4tty<oo.
*/ —CO •/ —CO

Evaluating the inner integral (9.4) we obtain

Í0Oexz+,z2 da(z),

from which it is clear that veH,  ^0. Moreover,

(9.6)

\"v(x, t)ex2/4'dx=r etz2da(z)ï "  e*V2/4'dx
J— 00 J — CO J    — CO

/»CO

= y/(4n(-t))       da(z) < oo, í < 0.
•/ — 00

Hence (9.2) is also established.

Conversely, if t;(x, /)eri, ^ 0, for- oo < t < 0, then by Theorem 8.1 equation

(9.5) holds for some nondecreasing function a(z). Since (9.2) is now assumed,

it is the left side of (9.6) that is known to be finite for some t0. From the right

side we then conclude that a(z) is also bounded. Hence we may define <j)(y) by

(9.3) as a positive definite function. Finally, the equality of the integrals (9.5)

and (9.1), already established, concludes the proof.

To show that the functions here considered really form a proper subclass of

those considered in §8 we have only to exhibit the function v = k(ix, — t). It

fails to satisfy (9.2) for any r0.Yet it is positive for í < 0 and so has the represen-

tation (8.1). In fact a(y) = y/(2n).

10. Positive temperatures in positive time. As we have noted above, temperature

functions which are positive for t > 0 have a Poisson-Stieltjes integral represen-

tation. However, there is a subset of these functions which also have the Fourier

integral representation.

Theorem 10.   A necessary and sufficient condition that

(10.1) u(x, i) = F[<p] = f    eixy-'y24>(y)dy, 0 < t < co,
J — 00

where <p(y)  is positive definite,  is  that u(x, t)eH,   2:0 for 0 < t < co and

eL(— co < x < co) for some t = i0 > 0.

We prove first the sufficiency. Assuming ueH, ^ 0, a new appeal to [7] gives

/* CO

u =      k(x — y, t)da(y), 0 < t < co
J— 00

for some a(y) e f. Since u(x, i0) e L we have
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/»CO /•CO /»CO /»CO

(10.2) dx\     k(x — y, r0)da(y)=       £ia(y)       fc(x — y, f0)dx
J — CO J — 00 */—00 •/—00

/•   CO

(10.3) =        da(y) < oo.
J — 00

Hence a(y) is bounded and we can form the positive definite function

(10.4) <Xy) = ¿ J" e~"zd«00.

Substitute this integral for <p(y) in (10.1) to obtain

,|»OQ /»OO , /»  00 /»GO

i- e'*'-"2^       e~iyzda(z) =— da(z)      ««'-'»-«ty
27îJ-oo J-oo 27Tj_œ J.«,

(10 5) f00
=        fc(x - z, i)doc(z) = u(x, /),       0 < í < oo.

J— 00

The interchange of integrals is valid for t > 0 since a(z) is bounded.

Conversely, if we assume the representation (10.1) then 4>(y) is given by (10.4)

according to Bochner's theorem. And now a(z) is known to be bounded and

equation (10.5) results as before. It shows that ueH, ^ 0, for t > 0. Finally

u(x, r0) e L for every í0 > 0 from (10.2) and (10.3).   This completes the proof.

A simple example of a positive temperature function which does not belong

to L on any line í = í0 is u = x2 + 2t. It has the representation (10.5) with

<x(z) = z3/3, but of course none of the form (10.1).

An example of the theorem is fc(x, t + a), a > 0. Here </>(x) = e"ax /(2n) and

fc e L for each t > 0.
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