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1. We shall be concerned with the behavior of the eigenvalues of the integral

equation

(1) JV(x) 1/2fe(x - y) V(y)il2f(y)dy = Xf(x),

where fc is a function integrable over Ed (Euclidean space of dimension d) having

ultimately positive Fourier transform, and where F is a bounded non-negative

function with bounded support. Roughly, the main result is as follows. Let

K(Z,)= f fcíxjéf't'" dx.

Then the number of eigenvalues of (1) which exceed e is asymptotic, as £-+0,

to (2n)~d times the measure in Ed x Ed of

{(x,C):V(x)-K&)>e}.

Actually we consider an equation more general than (1) which we shall now

describe. Let K(%) be a bounded non-negative function tending to zero as | % | -* oo.

The operator T0 on L2(Ed) we define by

(To/Hö = £(©/($),

where the circumflex denotes Fourier transformation. If

K(%) = f fe(x)e-/5'x dx       keL^Et)

then T0 is just convolution by fe. However we shall not insist that this be the case.

Let F(x) be a bounded non-negative function with bounded support and denote

by MyVi the operator on L2(Ed) which is multiplication by F(x)1/2. We shall

denote by XX^.X2^.--- the positive eigenvalues of the positive semi-definite

operator Mv'^T0Mv'à. In case K is the Fourier transform of an Lt function

k then this is just the integral operator in equation (l).The result (Theorem II) is as
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follows. Let (¡>0(a.) (0 < a < co) be a nonincreasing function equimeasurable with

the function V(x) ■ K(Ç) on Ed x Ed. Then with further conditions imposed

(growth and regularity conditions imposed on K and <p0, V assumed properly

Riemann integrable) we have

K ~ 0o((27t)d«)      " -+ oo.

The theorem as stated is not too useful. In the case of equation (1) it requires

that k be a positive definite function (or at least, if Q is the support of V, that k be

the restriction to Q — ii of a positive definite functicn en Ed). However there is a

somewhat stronger result (Theorem II') for which this is not required. With

K, V, rp0 as before, let K' be any bounded function asymptotic to K as |Ç| -»oo

and let X\ ï; X'2 5: ••• be the positive eigenvalues of MV^T¿MV^, where T¿ is the

operator arising from A'just as T0 arose from K. Then we still have

X'„ ~ <p0((2n)dri)    n-»oo.

The special case of greatest interest (and, as far as we know, essentially

the only case which has been considered before) is equation (1) with

/c(x) = | x | " (a > — d, a ?¿ 0,2,4, • • •). If Q is the support of V then k is equal on

Q — Í2 to a function whose Fourier transform is asymptotically

r(i±i)
0d + q   d/2 \      Z      /      Icl-d-a

It follows that the eigenvalues of (1) in this case satisfy

(2) r(d + a\ r,

Xn~n-*12 (4 -;-Nl    \'^    -    \v(xfl{d+*Ux
\d) r(_*\   r¡dYd   y     |J

(d + ot)/d

n-(d + a)/d_

If a = 2 — d the kernel k is that which is associated with Laplace's equation.

Thus (2) in this case, with V a characteristic function, is essentially due to

Weyl [4]. In case V is the characteristic function of an interval in one dimension

and a > — i, (2) was obtained by Rosenblatt [3]. In case — 1 < a < 0 and

d = 1, (2) was obtained by Kac [1] using probabilistic methods which extend

to higher dimensions.

2. We shall concern ourselves first with the periodic analogue of the situation

described in §1. Let cn (n = (nx,---,nd) with n¡ integral) be real and tend to zero

as I n I -> oo. If Id denotes the cube
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{x:|je,|á».    i = l,---,d}

we associate with {cn} the operator T on L2(Id) given by

Tf(x)=T,cJBei«-\

where

/(x)=I/ne'-x.

We shall be interested in the eigenvalues of the operator Mrv>TMv'A on

L2(Id), where F is a Riemann integrable function defined on Id.

There is one trivial case. If F(x) = 1 then Mvy2TMyV2 = T has eigenvalues ca.

What follows is the derivation of the behavior of the eigenvalues for general V

from this special case.

We make the following assumptions concerning {c„} :

(i)   cB^0;

(ii) with all ntfixed but nio, ca, as a function ofnio, is nondecreasing between

— oo and some ñ = ñ(i0) and nonincreasing between ñ and oo ;

(iii) if |n|, | m|-> oo and |n| = 0(|m|) then cm = 0(ca);

(iv) if |n|, | m| -* oo and |n| = o(\ m|) then cm = o(cB).

The crucial lemma, which will allow us to pass from the case V(x) s 1 to the

general case, is the following.

Main lemma. Let Qx and Cl2 be nonoverlapping intervals (rectangular

parallelepipeds with edges parallel to the coordinate axes) contained in Id.

Denote by P¡ (i = 1,2) multiplication by the characteristic function of Í2¡. Let

N+(e) and N~ (e) be the number of eigenvalues of PlTP2 + P2TPl which

are respectively > e and < — e. Denote by *¥(£) the number of lattice points n

for which cn > e. Then if {cn} satisfies (i)—(iv) we have

N±(e) = oQ¥(e))      e->0.

The proof of this will be preceded by five subsidiary lemmas. The first is an easy

estimate of an integral involving an exponential sum.

Lemma 1. Assume {ca} satisfies (i) and (ii) and that the lattice points n for

which cn^0 are contained in a sphere of radius r (r> 2). Then

f |x|    |Zcne/n-x|2cix^^1r'|-1logrmaxc2,

where Ax is a constant depending only on d.

Proof. Consider first the case d = 1. It is no loss of generality to assume that

c„ is nondecreasing from — oo to 0 and nonincreasing from 0 to oo. Thus

max c„ = c0. Let
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5|i(x)=¿^ = e^sini(n + l)x

o sin£x

We have on the one hand (since there are at most 2r + 1 nonvanishing c„)

^(2r + l)c0

281

o

inx

and on the other

0
Z Ac„Sn+x(x)-c0
0

S csc —x Z Acn + c0 = lese y* + M*©*

Therefore with appropriate constants 4, .4' (recall r > 2)

00

and

It follows that

Í

Í

|x|Sr-'

oo ,2
-in*

dx ^ iáco

|x|    I c„einx   dx^A'logrcf.
•i£\x\t» 0

•/-Jt 0

dx ¿ A" log r Cq,

and a similar inequality holds for the analogous integral involving Z_¿.

Next consider an arbitrary d. Since

\x\ed^2(\x1\ + - + \xá\)

it suffices to prove the inequality with x replaced by xx. Now

f   |*t|
did

I cA dx

-(2«)'-'    Z    P |*t|   ZcB1,
i»2.iii v-» m

-¡«1*1 dxx.

The integral on the right vanishes except for at most A"rà~l choices of n2, •••, n,,

and (by the inequality for d = 1) the integral is in any case at most AIV log r max c2.

The desired inequality follows.

In the next three lemmas we deduce from (i)—(iv) certain properties of the

function «F. We shall assume in these lemmas that (i)-(iv) hold.
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Lemma 2. There is a constant A2 such that the lattice points n for which

c„> e are contained in a sphere of volume A2vf(e/2).

Proof. It follows from (iii) that there is a constant a > 0 such that | cm — cB | ̂  cm

whenever | m — n | :g a | n | and | n | is sufficiently large. Thus if cn > e for a certain

n, we have cm>s/2 for all m in a sphere of radius a | n |, i.e., for at least a' | n \d

lattice points m. Thus ^(6/2) ^ a'|n|d, which implies that n lies in a sphere of

volume A2y¥(e/2) about the origin. Although this is proved for e sufficiently small,

the constant A2 can be adjusted so that the statement holds for all e.

Lemma 3. // Ô -► 0 and s = o(ô) then *¥(ô) = o(»P(e)).

Proof. We first note the following elementary fact. Given a set S of s distinct

lattice points, there are at least f s lattice points m whose distance from S is at

most i( | m I + 1). This is easy if d = 1 and may be proved by induction for d > 1

by taking sections of S. We omit the details. Now let

S = {n:cB>5}.

There are at least fF(<5) lattice points m, each within \( | m | + 1) of a point nm of

S. If | m | §: 2 this implies

■   _L < Le-J <Z_
4 -   |m| -4

from which we deduce, by (iii), that cm ¡îcb ¡A > 5/A for some constant A.

Thus if M is the number of lattice points satisfying | m | < 2 we have

W(d/A) ̂  y¥(<5) - M ^ y V(ö)

for sufficiently small ô. For any positive power p therefore,

V(8) S^J^Ô/A").

If e = o(ô) we have XF(<5//1P) ^ *F(£) for sufficiently small S and so

V(8)£(l\\(¿).

Since p can be made arbitrarily large we have the result.

Lemma 4. For any constant A we have *F(£) = 0(x¥(Ae)) as e -> 0.

Proof. Suppose the contrary. Then for some sequence of e's approaching 0

we have vF(Ae) = o(x¥(e)). Since there are *F(fi) lattice points m satisfying cm > e,

one of these, call it m£, must satisfy | mE | ^ ay¥(E)l/d. (Here a is a positive constant.)

Since the lattice points n' satisfying cn< > 2Ae lie inside a sphere of volume
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A2vV(Ae) there is some point ne such that c„ ^ 2Aa and | nE | ;£ A'i'(As)1/d. Our

assumption »F(As) = oQ¥(e)) gives |ns| = o(\ mt|). But c„£< 2Acm£ so cra¡; # 0(1^)

and this contradicts (iv).

The final subsidiary lemma is well known. Given a self-adjoint completely

continuous operator A we denote by N±(s, A) the number of eigenvalues of A

which are respectively > e and < — e.

Lemma 5. Let A¡ (i = l,---,iQ) be self-adjoint and completely continuous.

Then if s =   Z e( we have

N±(e,TAi)^I,N±(ei,Ai).

Proof. If A„+¡ denotes the nth largest positive eigenvalue of A¡ and 2„+ that of A,

we have for any nx,---,nlo

This follows from the minimax characterization of the eigenvalues. See for

example [2, §95]. If we set n¡ = N+(e¡,A¡) we obtain

and the other inequality is obtained similarly.

3. We can now prove the main lemma. Let 0 < e < Ô. (Later ô will be chosen

as a specific function of e.) We write ca — cnl + cn>2 + cn_3 as follows:

if cn ^ £,

otherwise,

if cn > Ô,

otherwise,

if e < c„ g a,

if cn > <5,

if cn ^ Ê.

Each of the sequences {caJ} (i = 1,2,3) gives rise to an operator T; just as {cn}

gave rise to T. Denote by N*(e) the number of eigenvalues of PxTtP2 + P1TiPx

greater than e. It follows from Lemma 5 that

N+(3s) ̂  Nt(2e) + nUO) + N¡(b).

Since Ty is an operator of norm at most e, PyTxP2 + P2TXPX has norm at most

2e. ThusJVÍ"(2e) = 0.

Since T2 is an operator of rank *¥(<)), PyT2P2 + P2T2PX has rank at most

2¥(<5). Thus N2(0) á 2»P(Ô).

It remains to estimate N3+(e). The  square  of the  Hilbert-Schmidt  norm  of

«... - {:■

«■■-■{?-'

fcn-e

*n»,3  =   j <5 - e

10
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P1T3P2 + P2T3P1  is at least e2N3(e).  Thus, since  T3   is   convolution   by

(2n)-dlc0,3e"-x,

e2JV3+(e) ^ 20)-2d f        f     |Scn.3e'-(^)|2dxiiy
Ja,    Jn2

= 2(2it)-2d[     dyf |Z cn>3e'n-x|2ifx
Jn,       Jn2-y

= 2í»_Mf IQ^ÍQj-x)!    | Z v/"1 fdx,
Jn2-ni

where | -"j denotes measure. If we recall that Cl1 and Q2 are nonoverlapping

intervals contained in Id we see that

¡Í21n(£22-x)já(27r)d-1

min (27t — x¿)
i

min (271 + x,)

LïM-
Therefore for some constant A

|Qtn(Q2-x)|ai4Z
.   1

xeld-l„

and so

sin — x¡

sin — x.
2   '

cn.3«

cn,3e
.in - x I

dx

dx.

s2N3+(e) Ú A' [ Z

= 2dA' f    Z

since the integrand is of period 27c in each x¡. Consequently

e2Nt(E)^A" f   |x|    \2Zcn,3e'"-x\2dx.
Jid

It follows from Lemmas 1 and 2 that we have, for sufficiently small £,

e2JV3+(e) g ^'"»P(e/2)(''-1)/''logT(e/2)¿2.

Combining the three estimates obtained and replacing e by e/3,

JV+(e) g 2x¥(ô) + 9A'"x¥(E/6fd~1)/dlogx¥(s/6)ô2/E2

g 2«F(<5) + m(E/e)x~V2d ö2/e2

if e is sufficiently small and S > e/3. From Lemma 4 it follows that

x¥(s/6)1-l'2d=o(^(E)).
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Now we set

/ VP(6) \V*

\T(e/6)i-i/2"/    '

Then

«F^/tS)1"1'2^2/«2 = (<P(e)xP(2/6)1_1/2,i)1/2 = o(T(e)).

Also limo/e = oo so by Lemma 3 we have W(ö) = o (*P(e)). Thus N+(e) = 0(^(2)),

and a similar argument gives N~ (e) = o(*¥(e)).

4. Now that the main lemma is proved we can proceed in a straightforward way

to the asymptotic distribution of the eigenvalues. For a subset Q. of Id, PQ will

denote the projection operator on L2(Id) which is multiplication by the charac-

teristic function of Q. {c„} and T are as above and we assume (i)-{iv) hold.

Lemma 6. Let Q. be an interval. Then for each S in 0 < ô < 1,

Proof. Let 2íir¡ (i = 1, ■■■,(!) denote the lengths of the edges of Q. We assume

first that l/r¡ = q¡ are integers. Then we can find Qx, ■-•, £24l...id, nonoverlapping

translates of ii whose union is Id. We have

T = Z PajTPnk

and it follows from Lemma 5 that

¿V+((l - S)b, T) ^ N+ (e, I PnTPnj.) - N+ (¿e, - I PnTPfik)

= N+ (s, Z P0,TP0,) - N - (öe, Z Po.TpJ .

Each of the operators PajTPnj has the same spectrum as PnTPa and the sum

Z PsijTPçij is direct. Therefore

¡v+(6,ZPQ/rpû,)=«i1"«i<{iV+(8,PorpQ).

Since the eigenvalues of T are the quantities {cn},

iV+((l-á)e,T) = T((l-á)e).

Thus (3) gives

qy-qdN+(e,PaTPn) g «P((l - a)e) + *T(&, Z Pn,TP J.
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By Lemma 5 we have

N- (öe,1  PnTPnt) ^ I AT (btl (qi "2 q^,Pa¡TP^ + PakTPaj)

and this is o(*¥((l — ô)e)) by the Main Lemma and Lemma 4. Hence

Km sup ~^;p/^f-=(«i - «-r1 - (2^r;; |0|,

which is the first inequality in our special case. The second is proved similarly.

Next we assume rt =pllqi with Pi,q¡ integers. Let Q0 be an interval with edges

271/(7; (and for which, therefore, the lemma has been proved), and let Q],--,QPi Pd

be nonoverlapping translates of Q0 whose union is Q. Then

N+(E,PaTPn) ̂  N+ ((1 - Ô)e, Z PnjTP^ + N+ (¿£, Z Pn,rPn,

- Pi-PäN +((1 - ô)E,PaoTPiio) + 0(«F((1 - ô)2e))

Pí-'-Pd  muí   _ x^2„A   ,    n<xu((\   _ S\2

(ll-'-ld
>F((1 - <5)2£) + o(V((l - ô)2s)),

and so

lin1^nJV + ̂ P"TP")   *-Pl-Pi        O^-'IOlllmSUP   ^((l-,5)2£)    -J^q-d=(2n)     I0''

which is the first of the desired inequalities except that 1 — ¿is replaced by (1 — d)2,

a matter of no importance. The second inequality is proved similarly.

To remove the restriction that each r¡ be rational, observe that Q1 c Q2 implies

JV +(e,PniTPai) ^ N +(e,Pa,TPa2).

This follows from the minimax characterization of the eigenvalues. We can find

Qj and Cl2 with edges which are rational multiples of 7t in such a way that

Qt ç il c Q2 and that the ratio | Q21/1 Qt | is as close to 1 as desired. The ine-

qualities for Q now clearly follow.

The above lemma essentially determines the behavior of the eigenvalues when

V is the characteristic function of an interval. We now pass to the more general

situation. The characteristic function of Q will be denoted by Xn-

Lemma 7. Let Qj be finitely many nonoverlapping intervals, V¡ ^ 0

and F(x) = Z VjXaj(x). Then for each ô in 0 < ô < 1,

N + (E,MyV>TMyK) d
llmSUP "vin In/in-jt\  iv\ = (2?t)    '

£-0       L\^j\^((^-- S)e/Vj)

. N+(e,Mv</>TMvK) d
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Proof. We have

N + (e,MvV>TMvV> ^ W(l - <5)e, Z VjPajTPa)

+ N+(88,T,VJ'2Vk1'2PajTP0k).

It follows from the main lemma and Lemma 4 that the last term is o(*¥(s)) and

so also

<KZ|ny|*((i-a)Vï9).

Since the sum Zé/-17;Pq,T'Pq is direct

N+ ((1 - 0)6, Z VjPajTPa^j = ZiV+((l - S)s/Vj,P0jTP0j)

and by Lemma 6 this is at most

(2;t)-" 110, | ¥((1 - Ô)2e/Vj)(1 + o(l)).

This proves the first inequality, with 1 — <5 replaced by (1 — ô)2, and the second

follows similarly.

Denote by Ad the set of lattice points in Ed. The cartesian product Id x Ad has a

natural measure : the product measure obtained from Lebesgue measure on Id and

from the measure which assigns to each point of Ad the measure 1. Given our

sequence {cn} and a function V(x) on Id we shall write

®(e) = \{(x,n):V(x)-cD>e}\.

Note that in case V = Zl^Xa, as in Lemma 7 we have <p(e) = Z|£2/|*F(e/7y).

Lemma 8. Assume V(x) is Riemann integrable on Id. Then for any ô in

0 < ô < 1,

N+(e,Mr*TMrV>) d
h™?P       $(d -<5)s)- = (27I)   '

liminf N-wy)
^o ^((1 + S)s) - v    '

Proof. Let r\ > 0 and find a partition of 7¿ into nonoverlaping intervals Í2,- such

that, with

m¡ — inf V(x)      Mj = sup F(x)
a, n,

we have

(4) Z(M,.-m,.)|£i,.|<«2<5.
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Let

Vi - Z myzQj        F2 = Z Mjxa¡.

It follows from the minimax characterization of the eigenvalues that

N+(E,Mv^TMvf) ^ N +(e,Mv*TMv*) S N+(e,Mv?TMvk).

By the first inequality of Lemma 7 we have for sufficiently small e

N+(E,Mvf TMV?) á(l + n)(2n) -iZ|0,| ¥((1 - ^e/M,.).

We now write Z= Z(I)+ Z(2)4- Z<3); to which sum a given index J belongs is

determined as follows :

Z(1) : Mj < n,

Z(2) : Mj ^ n and m, < (1 - á)M7-,

Z(3) : Mj^n and m,- ̂  (1 - S)Mj.

We have

(1 + l,)(27t) -" Z(1)| Qy| V((l - ¿)£/M,.) g (1 + «)T((1 - 5)6/1,).

From (4) we deduce Z(2)| Slj\ ^ n. Therefore

(1 +w)(27c)-dZ(2)|QJJxF((l -8)b/Mj)£(1 + n)n(2n)-d*¥((l - ô)s/supV).

Now it follows from Lemma 4 that (except in the trivial case F = 0) the ratio

*F(£)/Î)(£) is bounded above and below. Hence for an appropriate constant A we

have

(1 + n)(27r)-dZ(2)|£î,| T((l - 6)e/Mj) ^ A(l + i?)ff*((l - ô)2e).

Finally

(1 + n)(27c)-dZ(3)|n,|»F((l -Ö)£/Mj)^(l + n)(27r)-dâX(l -¿)2e).

Therefore, putting the three inequalities together,

N + faMyHTMyH) g (1 + J7)»F((1 - S)e/ti)

+ ((2n)-d+An)(l + n)<ï>((l-ô)2s),

and so

N+(E,MvV*TMy'/*)      ,   ..       .,. *V((l-$)E/n)

+ ((^r'+i^Ki+ii).
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Now n > 0 is arbitrarily small. The first inequality of the lemma will therefore

be proved if we can show

hm hmsup   ^        = 0

(recall the boundedness of *P (e)/í> (s)). This, however, is equivalent to the statement

of Lemma 3.

The second inequality is proved similarly.

5. We now state and prove the theorems which give the asymptotic behavior

of the eigenvalues in the periodic case.

Theorem I. Assume {cn} satisfies (i) — (iv) and V is Riemann integrable. Let

<j>(ct) (0 < a < oo) be a nonincreasing function equimeasurable with the func-

tion V(x) • cn on Id x Ad. Assume further that

(5) a ~ ß -» oo implies <p(d) ~ 4>(ß).

Then if Xy ̂  X2 ̂  ••• are the positive eigenvalues of MV'Á TMV1/2 we have

X„~ <¡>((2n)dn)       n -» oo.

Proof. We show first that with <5> as above we have <p(<&(e)) ~ e as e -> 0. Of

course were 3> to be continuous and strictly decreasing we would have ^>(i>(e)) = e

but this is generally not the case. It is true though that a < 0(e) implies rp(a) S: e,

so in particular (/)((! — e)i>(£)) ^ e. Since (1 — e)<b(s) ~ O(e) the assumption (5)

gives

liminfffi^->l

and a similar argument gives

hm sup ^ 1.
e

Next, by the first inequality of Lemma 8 we have (0 < b < 1)

(e)(2n)~dN +(e,Mv*TMv*)^ 0>((1 - <5)e),

where p(e) -» 1 as e -» 0. Set e = (1 — n~l)Xn. Then since e < X„,

p((l - n-l)Xn)(2n)-dn S 4>((1 - S)(l - nl)Xn)

and so

<p(p((l - n-l)Xn)(2n)-dn) £ ^(«D((l - <5)(1 - n"1)^).

Using (5) and the facts that p(e) -» 1 and ^(0(e)) ~ s, we conclude

..    . - </>((2nydn)
hm inf ,- > 1 - ô.

K
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Since ô > 0 was arbitrarily small the lim inf is at least 1. Similarly the lim sup is at

most 1 and the theorem is proved.

The next theorem shows that the conclusion of Theorem I holds if {cn} is

replaced by any asymptotic sequence {cB}.The sequence {c„}, the corresponding

operator T, and the function <p are as before.

Theorem I'. Assume the hypotheses of Theorem I hold. Let {cB} satisfy

cB~cB (|n|->- oo) and let T' be the operator on L2(Id) corresponding to {c'B}.

Then if X\ ^X'2^. ■■■ are the positive eigenvalues of My1/2T'MV'/2 we have

X'„ ~ <j)((2n)dn)       n->oo.

Proof. Let ô > 0. There is a sequence {c'B} vanishing on all but finitely many

(say JV) lattice points so that

c:^(i + ô)cn+c:

for all n. Then if T" is the operator corresponding to {cB},

T'^(1 + Ö)T+T",

and so, if X\ ^ X22: ••• are the positive eigenvalues of My^T'My^,

X'n^(l + o)Xn-N + X'¿ + 1 = (l + o)Xn-N

since MyhT"Myh is of rank JV. By Theorem I,

Xn_N ~ <K(27c)d(n - m ~ <t>((2n)dn)

by (5). Therefore

X'
lim sup        "       ^ 1 + <5.

<p((2n)dn)

Since 5 was arbitrarily small the lim sup is at most 1 ; and similarly the lim inf is

at least 1.

6. We now consider the situation as described in §1. K(Ç) = K(ÇU ■■■,^d) is a

bounded function on Ed which tends to zero as |%| -*■ oo. Conditions replacing

(i)-(iv) above are :

(F)   K0j)e0;
(ii') with all ¿¡ fixed but Çto, K(Ç), as a function of £io, is nondecreasing

between — oo and some | = |(i0) and nonincreasing between \ and oo ;

(iii') if \\\, | n | -* co and \ ~ n (i.e. \\ - i, | = 0(| t, |)) then K(\) ~ X(r,);

(iv') if | \ \, | ri | - oo and | Ç | = o(\ t, |) then K(n) = o(K(Ç)).

T0 is the operator on L2(Ed) associated with K as described in §1.
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Theorem II. Assume K satisfies (i')-(iv') and V is properly Riemann inte-

grable. Let (¡)0(d) (0 < a < oo) be a nonincreasing function equimeasurable

with the function V(x) • K(Z,) on Ed x Ed. Assume further that

(6) a ~ ß -» oo implies <p0(a) ~ (¡>0(ß)-

Then if Xy ^.X2¡í-- are the positive  eigenvalues  of MyV2T0Mr'/2  we  have

X„ ~ (¡)0((2n)dn)       n -» co.

Proof. For any a > 0 the eigenvalues of Mv'h T0Myh are unchanged if V(x)

is replaced by V(ax) and K(t¡) by K(%/a). The function </>Q is also unchanged.

Because of this, and because V has bounded support, we may assume that V

vanishes outside the cube {x:|x;| ^ tt/4}. Then My/2T0MYl/2 may be iden-

tified in a natural way with an operator on L 2 of the cube Id: {x: | x¡ | ^ n}. (Of

course it may also be identified with an operator on L2 of the smaller cube which

supports V, but we prefer to ignore this.) We shall see that it is in fact an operator

of the type considered in the previous section and to which Theorem I' can be

applied.

Let w(x) be an infinitely differentiable function on Ed which satisfies

u(x) = 1 if all | x, | á n/2,

u(x) = 0 if any | x¡ | > n,

and set

U($) = f u(x)e~*-*dx.

Let us assume first that

K(Q =   ffc(x)e_,Vxc/x,       keLy.

Then MyhT0Myh is the integral operator on L2(Id) with kernel

V(x)1/2k(x - y) V(yY'2 = V(x)1/2k(x - y)u(x - y) V(y)1/2

since u(x — y) = 1 whenever V(x) • V(y) # 0. This is also equal to

F(x)1/2fe1(x-y)F(y)1/2,

where kx(x) is the function of period 2ji in each x¡ which is equal to fc(x) w(x) in

|x,| ^ it. Now ky(x — y) is the kernel of the operator T on L2(Id) associated with

the sequence {cn}, where

cB=[     ky(x)e-'a'xdx=¡    u(x)k(x)e'ia'xdx

J Id J Ed
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since m(x) = 0 outside Id. Thus

(7) My* ToMyV*  = My* TMy* ,

where T is the operator on L2(Id) associated with the sequence

ca = (2n)-d jU(Ç)K(p-Ç)d$.

Now this last statement holds even if K is not the Fourier transform of an Lx

function. For we can find a sequence K°\j -» oo) satisfying

(a) each Ka) is the Fourier transform of an Ly function,

(b) Ka) -» K boundedly and pointwise.

Then we have

(8) Mr * T¿J)MV* = My* T iJ)My*,

where T00)is the operator on L2(Ed) corresponding to KU) and T(j) is the opera-

tor on L2(Id) corresponding to

¿» = (2nYd ju(QK<J\n-Ç)dS.

It follows from (b) that T0(j) -» T0 and TU) -» T  strongly  as j -» co.  Thus (8)

gives (7) in the general case.

Let (¡>(à) (0 < a < oo) be nonincreasing and equimeasurable with the function

V(x) ■ K(n) on Id x Ad. We shall show that c„ ~ K(n) ; since K(n) satisfies (i)-(iv),

Theorem I' will give X„ ~ </>((2n)dn). Now

c„= (27trd  \v(QK{n-%)d\\

= K(n) + (2n)-d j UQQ [JC(a - Ö - K(n)] d\

since (2b)~d f U(\) d\ = «(0) = 1. For any ô > 0

| cB - K(n) |  g (27t)-" f 117(Ç) I    I K(n - !j) - K(n) \ d^

+ (»""f |17(.;)|    \K(n-Q-K(n)\dí
J|Ç|ïi|B|

^     sup  |íC(n-^)-ÍC(n)| + 0(|n|-p),
IÍISí|»l

p > 0 being arbitrary. The bound 0(|n|~p) for the last integral arises from the



1963] ASYMPTOTIC BEHAVIOR OF EIGENVALUES 293

fact that u is infinitely differentiable and has bounded support. Since, as follows

from (iii'), |n|~p = o(K(n)) for some sufficiently large p, we obtain

\ca-K(n)\i    sup   \K(n-Z,)-K(n)\+o(K(a)).
IÍIS¿|o|

It also follows from (iii') that, £ > 0 being given, ô can be chosen so small that

sup     | K(n - Ç) - K(a) | g e K(n).
15|+«|d|

Thus

limsupl   ¿j-llS.

and since £ > 0 was arbitrary cn ~ K(n).

We have established so far that Xn ~ (¡>((2n)dn) ; we shall be through if we can

prove 4>(cc) ~ <p0(o:) as a -» oo. Given <5 > 0 the following is true for | n | sufficiently

large: If F(x) • K(n) > e then F(x) • K(Q > (1 - <5)e for all % in the cube

I {i ~ R|| si i> This follows from (iii'). Thus there is an JV such that

| {(x,S) : F(x) • K(Ç)>(1 - 3)8} | > | {(x,n) : F(x) ■ K(n) >e}\-N

for all £. Given a, let (1 — ô)e > 4>0(a). Then

|{(x,^):F(x)-K(^)>(l-¿)£}|^a

and so

a + TV > | {(x,n) : F(x) • ̂ (n) > £} |,

which implies (p(a + JV) ̂  £. This holds for all £ > (1 — ¿)~ 1</j0(a) and so

(/>o(a)

or alternatively

<j>(* + JV)

<j>0(z - JV)

>l-<5

>l-á.

Since a — JV ~ a as a -» oo (6) gives

lim inf ^> > i _ 5.

Since ô > 0 was arbitrarily small the lim inf is at least 1 ; similarly the lim sup is

at most 1. This completes the proof of Theorem II.

Finally we state and prove the analogue of Theorem I'. The functions K and

4>0 and the operator T0 are as before.
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Theorem II! Assume the hypotheses of Theorem II hold. Let K'(Z,)

satisfy K'(Z,) ~ K(£)(|Ç| -* oo) and let T'0 be the operator on L2(Ed) corre-

sponding to K'. Then if X[^X'2 S> ••• are the positive eigenvalues of Mr^T¿Mr%

we have

X'„ ~ (j)0((2it)dn)       n -» oo.

Proof. This is only slightly less simple than the proof of Theorem I'. Given

ô > 0 and p > 0 we can find a function K" of the form A/(l + | §|p) (with A

depending on ô and p) so that

K'(Dá(l + 5)X(D + X'(§)

for all Ç. Therefore with the obvious notation

X^(l + o)Xn-N + X¡l+1.

Now X£ + 1 is at most ^4 sup F times the (JV + 1) st eigenvalue of PTq'P, where P is

multiplication by the characteristic function of the support of F and T'¿' is the

operator on L2(Ed) corresponding to the function 1/(1 + | § |p). Applying Theorem

I to this case we obtain X'¿+1 ~ A' JV~p/das N -> oo. Now (6) implies <p0(°0 ̂ «_A

for some A > 0 and a sufficiently large. Thus if we set p = 3Ad and JV = [n'^] we

shall have X'¿+1 = o(<fi0((2n)dn)). Since

A»_Ä = l„_[n./2] ~ U(2n) \n - [n1/2])) ~ M(2n)'n)

by Theorem I and (6), we have

X^(l + 2¿3)4>0((270dn)

for n sufficiently large. Since ô > 0 was arbitrary this gives lim sup X'J(j)0((2ii)dn)^l.

Similarly lim inf 2:1.

7. Now that all the unpleasant details are behind us, we state what we think

is the correct theorem in the subject.

Let G be a locally compact abelian group, G its character group. Adjust the

Haar measures dx and d% in G and G, respectively, so that Fourier transformation

F,

Ff(Q=   U(x)f(x)dx,

is a unitary operator from L2(G) to L2(G). Let F, K be bounded non-negative

functions on G and G, respectively, both tending to zero at infinity ; let Xi 2: X2 St • • •

be the positive eigenvalues of the operator

My'àF*MKFMrH

on L2(G). Then if ij/(a) (0< a < oo), a nonincreasing function equimeasurable
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with the function V(x) ■ K(t/) on G x G, is sufficiently regular and does not

approach zero too rapidly as a -» oo, we ought to have Xn ~ \¡i(n).

What we have considered were the two cases in which G was Id (i.e., the d-fold

product of the circle group with itself) and Ed. The assumptions (5) and (6) are of

the type we have in mind for i//. In addition to saying something about regularity

they imply \¡/(<x) S: a~A for some positive A. That it is necessary to have some

restriction on the rapidity with which \// may approach zero (although i//(ot) ̂  oT

for some A > 0 is probably much too restrictive) can be seen by taking (in the

case G = G = Ex) both K and V to be characteristic functions of intervals. This

corresponds to an integral equation like

¡1^^mdy = Àf(x)       Wj5L
J -i     x — y

Then \p(a) is ultimately zero but the operator is certainly not of finite rank so

Xn ~ \¡/(n) is false.

It is probably not necessary to have a restriction on the slowness with which i//

may approach zero. The condition (iv) implies that i//(oc) = 0(cc~d) for some

ô > 0 but if the c's have somewhat more regularity than we have assumed (in

dimension one, if {c„} is even and convex for n ^ 0) one can make a better estimate

than that given by Lemma 1 and then dispense with (iv) altogether.

The following is the reason our assumptions on K and V seem unnecessary.

The two operators

MyViF*MKFMv*,       MK*FMVF*MK*

have exactly the same spectrum since one is of the form A* A and the other ^4^4*

with an appropriate operator A. Thus (in case G = G = Ed) the roles of K and V

are interchangeable. Since in our proofs there was no assumption made on both

K and V (the assumptions on K and V were of entirely different sorts) no assum-

tions of any kind ought to be necessary.
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