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1. Introduction. LetZ = {x} be an abstract set, and let 3$ = {B} be a cr-field

of subsets of X. The system (X,39) is called a measurable space. A subset B of X

is said to be measurable if it belongs to 39. A one-to-one mapping T of X onto

itself is said to be measurability preserving if T(B) and T_1(ß) are measurable

for any measurable set B.

Let (X, 38) be a measurable space, and let m be a countably additive set function

defined on 33. The values of m are either non-negative real numbers or + oo.

m is called a measure, and the system (X,33,m) is called a measure space. If

m(X) < + oo, then we say that m is a finite measure and that (X,34, m) is a

yîniie measure space. We also consider the case when m(X) = + oo, but we

always assume that there exists a sequence {B„| n = l,2, •••} of measurable sets

such that X = (J"=i ß„ and 0 < m(B„) < + oo, n = 1,2, •••. In this case, we say

that m is a a-finite measure and that (X,3S, m) is a c-finite measure space.

Let (X,3§, m) be a finite or ff-finite measure space, and let T be a measurability

preserving transformation of X onto itself. T is said to be nonsingular if

m(T(B)) = w(T~ l(B)) = 0 for any measurable set B with m(B) = 0. T is said to be

measure preserving if m(T(B)) = m(T~l(B)) = m(B) for any measurable set B.

We also say that m is invariant under T in this case.

Let (X,3$) be a measurable space, and let m and m' be two finite or tr-finite

measures defined on Sä. m is said to be equivalent with m' (notation: m ~ m') if

m'(B) = 0 for any measurable set B with m(B) = 0 and conversely m(B) = 0

for any measurable set B with m'(£) = 0.

We can now state our problem : Let (X, 38, m) be a finiet or a <r-finite measure

space, and let T be a nonsingular measurability preserving transformation of X

onto itself. Under what conditions on T does there exist a finite measure on 38

which is equivalent with m and is invariant under T? This problem has been

discussed by many authors, and many necessary and sufficient conditions have

been obtained. The main purpose of this paper is to obtain some more necessary

and sufficient conditions, and to show, by using a systematic method, that all of

these conditions are mutually equivalent.

We introduce the following notion : A measurable subset W of X is called a

weakly wandering set for a measurability preserving transformation T if there
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exists an infinite sequence {p¡ | i = 0,1,2, •••} of positive or negative integers or 0

such that the image sets T^'iW), i = 0,1,2, ■•• are all mutually disjoint. It is ob-

vious that there is no weakly wandering set of positive measure if there exists a

finite measure which is equivalent with m and is invariant under T. It will be

shown that the nonexistence of a weakly wandering set of positive measure is also

a sufficient condition for the existence of a finite equivalent invariant measure.

The first interesting result concerning the existence of a finite, equivalent,

invariant measure was obtained in 1932 by E. Hopf [4] who introduced the notion

of incompressibility and proved that there exists a finite, equivalent, invariant

measure if and only if the whole space is incompressible.

In 1955, Y. N. Dowker [2] proved, by using the mean ergodic theorem, that

(I)+ is a necessary and sufficient condition for the problem. (As for the condition

(I)+ and other similar conditions, see §3 where these conditions are defined.)

In the same year, A. P. Calderón [1] showed, by using a different method, that

the conditions (I)+ and (II)+ are necessary and sufficient. Later, in 1956, Y. N.

Dowker [3] showed that the condition (III) + is equivalent with the condition

(II) + and hence (III) + is still another necessary and sufficient condition. It is

obvious from the definitions that (I)+ implies (II)+ and (III)+, but it does not

seem to be so easy to show that conversely (II) + or (III) + implies (I)+ directly

(i.e., without using the fact that (II)+ or (III)+ implies the existence of a finite,

equivalent, invariant measure).

Let us now consider the conditions (I)_, (II)_, (III)_ concerning the inverse

transformation T_1 which correspond to the conditions (I)+, (II)+, (Ill)+, and

also the conditions (I)* , (II) *, (III)Î, (I)* , (II)*., (III) *, where the condition with

* may be considered as a qualitative analogue of the corresponding condition

without *. It is interesting to observe that each condition with * immediately

implies the corresponding condition without *, while the converse is not so ob-

vious in general. [It should be noted that the converse implication can be proved

by using Lemma 1 in two places, namely, (III) + —* (III)* and (III) _ -♦ (III)*.

We also observe that there is no obvious relation between two corresponding

conditions with + and —, i.e., between two correponding conditions on T and

r-1.]

We will show in §4 that all of these conditions are equivalent. For this purpose,

we introduce the condition (V) which is based on the notion of weakly wandering

sets, and its quantitative analogue (V)*. We also introduce the condition (0)*

which is based on the notion of equi-uniform absolute continuity of measures.

This condition (0)* is quantitative in nature, and there is no qualitative analogue

to (0)*. We will prove, by direct and elementary arguments, that the conditions

(0)*, (i)+, (ii)+, (iii)+, (i)_, (ii)_, (iii)_, (i)*, (ii)*, (in)*, (i)*, (ii)*, (iii)*,
(V), (V)* are all mutually equivalent. (First half of Theorem 1.)

The way our proof is carried out is best described by the diagram inserted at the

end of §1. We note that the implications (V) -> (I)+ and (V) -► (I)_ can be proved
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in one step, while the proof of the implications (V)*->(I)Î and (V)*->(I)*_

requires three steps (V)* -» (lift -> (0)* -> (i)*+ and (V)*-»(1I)Î -»(0)*-» (I)_*

We also note that the conditions (V), (V)* and (0)* are symmetric in T and T~l

and serve as a link between the conditions with + and those with —.

It is then an easy matter to observe, by using the technique of Banach limit,

that the condition (0)* is equivalent with the existence of a finite, equivalent,

invariant measure (second half of Theorem 1).

The conditions (IV)+, (IV) _, (IV) *., (IV)* which appear in the diagram are

obviously necessary conditions for our problem. We note that the impli-

cations (IV)*. ->(IV) + and (IV)* ->(IV)_ are obvious, while the converse impli-

cations (IV) + -» (IV)* and (IV) _ -» (IV) * are again the consequences of Lemma 1.

It turns out that these conditions are not sufficient for our problem. In fact,

it is possible to show that there exists an ergodic measurability preserving trans-

formation T defined on a finite measure space which satisfies the conditions

(IV)+, (IV)_, (IV)*. and (IV)*. and which admits a «r-finite, equivalent, invariant

measure (and hence, since T is ergodic, T does not admit any finite, equivalent,

invariant measure).

The study of such examples leads us to the problem of classifying ergodic

measure preserving transformations defined on a <7-finite measure space. We will

show in §5 that every ergodic measure preserving transformation defined on a

<T-finite measure space admits a weakly wandering set of positive measure (Theo-

rem 2). This result makes it possible toinvestigate the properties of ergcdic measure

preserving transformations defined on a a-finite measure space in further detail.
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The discussion of the above cited examples and other related problems will be

left to a subsequent paper.

2. Two lemmas on set functions. In this section we prove two lemmas on set

functions which we need in §4.

Let (X,33) be a measurable space, and let 2 be a real-valued non-negative set

function defined on 33. [This means that X takes only finite real non-negative

values. This assumption of finiteness of X is essential in Lemma 2, while Lemma 1

holds even when X takes the value + oo.] X is said to be monotonie if X(A) ̂  X(B)

for any two measurable sets A, B with AcB. X is said to be subadditive if

X.(A U B)^ X(A) + X(B) for any two measurable sets A, B, and superadditive if

X(A Uß)^ X(A) + X(B) for any two disjoint measurable sets A, B. [We observe

that if X is non-negative and superadditive then X is monotonie]

Let X, p be two real-valued non-negative monotonie set functions defined on J1.

p is said to be absolutely continuous with respect to X if p(B) = 0 for any meas-

urable set B with X(B) = 0. p is said to be uniformly absolutely continuous with

respect to X if, for any e > 0, there exists a ô > 0 such that p(B) < e for any meas-

urable set B with X(B) < ô. It is obvious that the uniform absolute continuity

implies the absolute continuity, while the converse is not always true. It is known,

however, that the converse is true if both X and p are finite measures defined on 33.

The following lemma may be considered as a generalization of this fact :

Lemma 1. Let (X,38,m) be a finite measure space. Let X be a finite measure

on 33, or mere generally, a real-valued, non-negative, monotonie and sub-

additive set function defined on 33. If m is absolutely continuous with respect

to X, then m is uniformly absolutely continuous with respect to X.

Proof. Assume that Lemma 1 is not true. Then there would exist an e > 0 and a

sequence {B„\ n = l,2,---} of measurable sets such that X(Bn) < 1/2", and

m(Bn)^s, n = 1,2, ••-. For n = 1,2, •••, let p„ be a positive integer such that

p„^n and

(2.1) m(An)<^,

where
oo p„

(2.2) A„ =   \jBk-\jBk.
k=n k=n

This is possible since m(X) < oo by assumption. Let us put

00 00

(2.3) £**=   p|   \jBk(=hmsupB„),
n = 1   k —n B-+00

(2.4) B*=   f]   (jBkJk-
ñ-\   k=n
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Then

(2.5)

and hence

CO /      CO \ CO CO CO

b*= n iM-M - n ik-u a-
n=l     \*=n / n=l   k=n = 1

= B**-\JA„,

m(B*) ̂  m(B**) - I m(A„)
n = l

(2.6)
vi 6 £

>   £
, 2"+i       2

On the other hand

(2.7)

KB*) á A ( Û Bk ) á f W

< í 2^<2^r^0

as « -» oo, and hence A(B*) = 0. This is a contradiction.

The following simple lemma is also useful :

Lemma 2. Let (X,3S) be a measurable space. Let X be a real-valued, non-

negative, superadditive (and hence monotonie) set function defined on ¿%. If

{Bn\ n = l,2,—} is a decreasing sequence of measurable sets, then, for any

e > 0, there exists a positive integer n0such that X(B„0—B„)< efor any n> n0.

Proof. From the monotonicity of X follows that lim,,.,^ A(5„) = ß ^ 0 exists

and that X(B„) ̂  ß for n = 1,2, •••. For any s > 0, let n0 be a positive number

such that X(Bno) < ß + e. Then X(Bno - Bn) + X(Bn) ̂  X(BJ <ß + e for n > n0

and hence X(B„0 - B„) < X(BJ - X(B,) < e.

3. Statement of the main theorem. Let (X,3&, m) be a finite measure space,

and let T be a nonsingular, measurability preserving transformation of X onto

itself. We put

(3.1) p„(B) = m(TnB),       n =0, ± 1, ± 2, -,

(3.2)+ cn(B) = - "Ï pk(B) = -  I m(TkB),       n = 1,2,-,
1    Jt = 0 n    k = 0

(3.2)_ G_n(B) = 1 "Zp-k(B) =1  Z m(T-AB),       n = 1,2,-.

It is clear that p„ (n = 0, + 1, ± 2, ■•■) and er„ (n = +1, + 2, ■••) are finite

measures defined on SB. From the nonsingularity of T follows that each of them

is equivalent with m, and hence any two of them are equivalent to each other.
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From Lemma 1 follows that any one of them is uniformly absolutely continuous

with respect to any other of them.

Next we put

(3.3)+ Pm+iB) =  liminfp„(5),
n-»oo

(3.3)_ p,_(B) =  liminfp_n(B),
n-»oo

(3.4)+ pliB) =  limsupp„(B),
n-*oo

(3.4)_ p*_iB) =  Um supp_B(ß),
n-*oo

(3.5) + a^iB) m  liminf(7n(ß),
n-*oo

(3.5)_ ff*-(ß) =  lim inf (7_„(B),
n-> co

(3.6)+ ff*(B) =  lim sup<rn(ß),
n-+oo

(3.6)_ o-*(5) =   lim super_n(B).
n-»oo

It is clear that the set functions p^+, p*_, p$, p*, c++, a*-, o%, a* are all real-

valued, non-negative and monotonie. We observe that p++, pt_, c^,+, (7^_ are

superadditive and that p%, p*, er*, a * are subadditive, and further that all of

them are invariant under T.

It is also clear that

(3.7)+        0 = p*+iB) = o0+iB) ^ a*iB) ^ p%iB) Ú m(X) < + oo,

(3.7)_ 0 g p*_(ß) ^ <r*-(B) ^ ff-(B) ^ pt(B) g m(X) <  + oo.

The following result concerning the asymptotic behavior of ajß) as n -* oo is

needed in §4 :

Lemma 3. For any measurable set B and for any finite set {p\ i=0, l,---,r— 1}

of integers, we have

r-l

(3.8) lim sup  I oniTp'B)= r<7*(B),
n-»ao        ¡=0

r-l

(3.9) lim inf   Z a„iTp,B) = ra^iB).

In particular, if the sets TPtB, i = 0, l,--,r-l, are mutually disjoint, then

we have
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(3.10) a% (ÜTP'ß) =  r°*+(B)>

(3.11) o% ('{J^b} = ra^(B).

Proof. We first observe that

| „„(T'B) - an(B) |   =    1 ' I X miTkB) - 1 "Í miTkB)

(3.12)

for any integer p = 0, ± 1, ± 2, ••• and n = 1,2, •••. From this follows that

| Î ff„(T"fl) - ran(B) | £ "l | a.íT"*) - <r,(B) |
¡=0 i=0

(3.13)

as n -*• oo. The relations (3.8) and (3.9) follow from (3.13); and (3.10) and (3.11)

are consequences of (3.8) and (3.9), respectively.

Let us consider the following conditions :

(I)+ m(B) > 0 implies p*+(B) > 0,

(II)+ miß) > 0 implies o\+(B) > 0,

(III)+ m(B) > 0 implies  a*+(B) > 0,

(IV) + m(B) > 0 implies p*+(B) > 0,

(I)_ m(B) > 0 implies p*-(B) > 0,

(II)_ m(B) > 0 implies ff*_(B) > 0,

(III)_ m(B) > 0 implies a*(B) > 0,

(IV)_ m(B) > 0 implies p*(B) > 0.

All of these conditions may be interpreted as saying that m is absolutely con-

tinuous with respect to p„.+, «r#+, etc.

We observe that the conditions (I)+ — (1V)+ and (I)_ — (IV)_ give a quali-

tative description of the different limits involved. The corresponding quantitative

conditions may be stated as follows :
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(I)*   for any e > 0, there exists a ô > 0 such that m(B) _ e implies

P*+(B) ^ S,

(II) *  for any e > 0, there exists a 3 > 0 such that m(B) _ e implies

<r*+(B) ̂  S,

(111)* for any s > 0, there exists a ô > 0 suc/i that m(B) _ e implies

A (B) = Ô,

(IV) * for any e > 0, there exists a ô > 0 shc/i that m(B) _ e implies

pX (b) ^ ô,

(I)*   for any s > 0, í/iere exists a <5 > 0 such that m(B) — e implies

P*-(B) ^ Ô,

(II)*   /or any e > 0, i/iere exists a ô > 0 smc/j f/ia/ w(B) = e implies

<**-(B) ̂  Ô,

(III)* for any e > 0, there exists a ö > 0 suc/i that m(B) ^ e implies

o* (B) = Ô,

(IV)* for any e > 0, i/ie/*e exists a ô > 0 swc/i rfiai m(B) _ £ implies

P* (B) ^ Ô.

All of these conditions may be interpreted as saying that m is uniformly abso-

lutely continuous with respect to p#+, (r*+, etc.

A measurable subset W of X is called a weakly wandering set if there exists a

sequence {p¡| i = 0,1,2, •••} of integers (positive, negative or zero) such that the

image sets TP,W, i = 0,1,2, ■•-, are all mutually disjoint. By using this notion of

weakly wandering set, we can introduce the following condition :

(V) There is no weakly wandering set of positive measure.

It is easy to see that the condition (V) is symmetric in T and T ~\ In fact, if the

image sets  T"'B,  i = 0,1,2,—, are mutually disjoint, then the sets  T~"'B,

i = 0,1,2, •••, are also mutually disjoint.

The qualitative analogue to the condition (V) may be stated as follows :

(V)* for any £ > 0, there exists a positive integer k such that, if B is a meas-

urable set with m(B) _ z, then at most k images ofB by powers of T are mutually

disjoint.

Again this condition is symmetric in T and T1.

Let {m„\ n = 1,2, ••■} be a sequence of finite measures defined on the same

ff-field 33. {m„\ n = 1,2,•••} is said to be equi-uniformly absolutely continuous

with respect to a finite measure m defined on 38 if, for any e > 0, there exists a
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ô > 0 such that mn(B) < e, n = 1,2, ••• for any measurable set B with m(B) < ô.

The last condition of this section can now be stated as follows:

(0)* {p„\ n = 0, + 1, ± 2,•••} is equi-uniformly, absolutely continuous with

respect to m, i.e., for any e > 0 there exists a ô > 0 such that miB) < ô implies

p„iB)<E /orn = 0,±l,±2,-.

We now state our main result in the following form :

Theorem 1. Let (X,3S,m) be a finite measure space, and let T be a non-

singular, measurability preserving transformation of X onto itself. The following

conditions (0)*, (I)+, (II) + , (III)+, (I)_, (II)_, (1II)_, (I)*, (II)*, (III)*, (I)*_,

(II)*, (III)*, (V), (V)* are mutually equivalent, and each of them is a necessary

and sufficient condition for the existence of a finite measure defined on S§ which

is equivalent to m and is invariant under T.

The proof of this theorem will be given in §4.

4. Proof of the main theorem. We prove Theorem 1 by following the way

described in §1 and indicated by arrows in the diagram at the end of §1. We first

list obvious implications :

Proposition 1. The following implications hold:

(4.1)+ (I)+    -     (1I)+    -*   (III)+    ->    (IV)+,

(4.1)- (I)_    -     (II)_    ->   (III)_    ->   (IV)_,

(4.2)+ (DÎ    -     (II)+*   ^   (III)+*   -+   (IV)+*,

(4.2)_ (I)*.    -     (II)*   -+   (III)*    ^   (IV)*,

(4.3)+ (I)í    -+      (I)+,

(4.3)_ (I)_*    -      (I)_,

(4.4)+ (II)Í    ^     (II)+,

(4.4)_ (ID*   -^     (ID-,

(4.5)+ (III)?    -   (HI)+)

(4.5)_ (III)*   ^   (III)-,

(4.6)+ (IV)*   -+   (IV)+,

(4.6)_ (IV)*   ->   (IV)_,

(4.7) (V)*    ->     (V).

Proof. Follows immediately from definitions.

Proposition 2. The following implications hold
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(4.8) + (III)+    -    (ÍII)Í,

(4.8)_ (HI)-    -    (HI)!,

(4.9)+ (IV)+    -+   (IV)+*.

(4.9)_ (IV)_    ->   (IV)*.

Proof. It follows from Lemma 1 and the fact that the set functions <j* , o-*_, p%

and p* are subadditive functions.

Proposition 3. The following implications hold:

(4.10)+ (III)+    ->     (V),

(4.10)_ (HD-    ->     (V).

Proof. We prove only (4.10)+ since (4.10)_ can be proved in exactly the same

way. Assume that the condition (III)+ holds but the condition (V) does not hold.

Then there would exist a measurable set W of positive measure and a sequence

{p¡\ i = 0,1,2, •••} of integers such that the sets T"'W, i = 0,1,2, •••, are mutually

disjoint. From (3.10) of Lemma 3 of §3 follows that

(4.11) ro%iW) = o%{ U Tpiw\ =miX)< oo for r = l,2,-.

This implies that otiW) = 0, which is a contradiction to (III)+.

Proposition 4. The following implications hold:

(4.12)+ (HI)*    -+     (V)*,

(4.12)_ (III)!    -+     (V)*.

Proof. We prove only (4.12)+ since (4.12)_ can be proved exactly in the same

way. Assume that the condition (III)* holds but the condition (V)* does not hold.

Then there would exist a positive number e > 0 such that, for any positive integer

r, there exists a measurable set B with m(ß) > e and a set {p¡| i = 0,1, •••,r — 1}

of r integers such that the sets TP'B, i = 0,1, •••, r — 1, are mutually disjoint.

From (3.11) of Lemma 3 of §3 follows the relation (4.11). This is a contradiction

since e > 0 is fixed and r is an arbitrary positive integer.

Proposition 5. The following implications hold:

(4.13)+ (V)    -   (I)+,

(4.13)_ (V)    -»   (I)_.

Proof. We prove only (4.13)+ since (4.13)_ can be proved exactly in the same

way. In order to prove (4.13)+ it is sufficient to prove the following:

Lemma 4. Let Abe a measurable set with miA) = a > 0 and assume that
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(4.14) P*+(yO = lim infm(T"A) = 0.
II-»oo

Then, for any e with 0 < £ < a, there exists a measurable subset A' of A such

that m(A') < e and W = A — A' is a weakly wandering set.

Proof. Let p0 = 0, and put £, = fi/i 2', ¿ = 1,2, •••. Choose a positive integer

Pi such that m(T"lA) < ex. This is possible because of (4.14). Assume now that

the integers 0 = p0 < pl < ••• < p,_! are already chosen. We choose a positive

integer p¡ such that p¡> p¡-i and

(4.15) m(Tp'-pjA) < s¡

for j = 0,1, ••■, i — 1. This is possible because of (4.14) and because the measures

p-p., j = 0,1, •■•,i — 1, are uniformly absolutely continuous with respect to m.

In fact, we first choose a positive number o¡ > 0 such that m(B) < o¡ implies

p-p(B) = p(T~PjB) <£,, 7 = 0, 1,—,i —1. Then choose a positive integer

p¡ such that Pi>Pi-l and m(Tp'A) < o¡. This implies that m(TPi~"'A) < e¡,

j = 0,í,-,i-í.
In this way we can choose an increasing sequence of integers {p¡ | ¿ = 0,1,2, •••}

with Po = 0 such that (4.15) is satisfied for j = 0,l,---,i — 1 and ¿ = 1,2,•••.

We put

OO ¡-1

(4.16) A'={J   \jT"-»AnA.
>=i   j=0

Then A' is a measurable subset of A with

œ      (-1

m(A') all m(Tp'-pjA)

(4.17) i = 1 J=0
CO

<    £   ¿£¡ = £,

¡ = 1

and it is easy to see that W = A — A' is a weakly wandering set. In fact, Tp'W,

i = 0,1,2,— are mutually disjoint since

(4.18) TPt~PlWC\ W c Tp,~p'Ar\ (A - A') = 0

for; = 0,1,•••,!'— 1 and i = 1,2, — .

Proposition 6. The following implications hold:

(4.19)+ (V)*   -   (II)Î,

(4.19)_ (V)*   -»•   (II)*.

Proof. We prove only (4.19)+ since (4.19)_ can be proved exactly in the same

way. Assume that the condition (V)* holds but the condition (II)*. does not hold.

Then there would exist a positive number £ > 0 such that for any positive number
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<5 >0 there exists a measurable set A with m(A) ^ e and <r*+(A) < ô. In order to

complete the proof it is sufficient to prove the following:

Lemma 5.  Let A be a measurable set with m(A) = a > 0 and assume that

1   n_1

(4.20) <t*+C4) = lim inf —  I m(TkA) < Ô.
n-»oo "   * = 0

Let k be a positive integer such that (k(k + l)/2)<5 < a. Then there exists a

measurable subset A' of A with m(A') < (k(k + i)/2)ô such that W = A - A'

has k+ I disjoint images by powers of T, i.e., there exist k + 1 integers

Po>Pi>'">Pk< sucn tnat TPtW, i = 0,i,---, k are mutually disjoint.

Proof. Let p0 = 0. Choose a positive integer px such that m(T PIA) < Ô. This is

possible since (4.20) is satisfied by A. Let 1 < i g k and assume that the integers

0 = p0 < pt < ■■• < p¡_i are already chosen. We choose a positive integer p

such that Pi > Pi-1 and

(4.21) m(\jTp,-"A\<i6.

This is possible since

o„(\Jt-"a)   = liminfff, (\JT-»a\
/j 22) \j=0 1 n-»co \j' = 0 /

¡-1

^  lim inf I o¿J-"A) = iam+(A) < iô
n-»co     J = 0

by (3.9) of Lemma 3.

In this way we get k + 1 integers 0 = p0 < p^ < ■■■ < pk such that (4.21) holds

for i = 1, •••, k. Let us put

k      ¡-1

(4.23) A'  =   (J   (J Tp'-p'A.
1=1    j=0

Then
k ,¡-1 V

m(A') í   ZiiiMJ T"'-piA

(4.24) i = 1     Xj=0 '

¿ ..      k(k + 1) s<   L to = ———- ô
< = i 2

and if we put B = A - A ' then it is easy to see that the sets TP,B, i = 0,1, • • •, k are

mutually disjoint. In fact

(4.25) Tp'~P1Br\ B c Tpi~P1An{A - A') = 0

for0^;'<i^fc.
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Proposition 6. The following implications hold:

(4.26) + (II)Î implies (0)*,

(4.26)_ (II)? implies (0)*.

Proof. We prove only (4.26) + since (4.26) _ can be proved exactly in the same

way. Assume that the condition (II)*. holds but (0)* does not hold. Then there

exists a positive number e > 0, a sequence of measurable sets {At | i = 1,2, •••} and

a sequence of integers {p¡\ i =1,2, •••} such that m(A) < 1/2 'and m(Tp'A) ^ 2e

for i = l,2,-. Let Bk = \Jf=kA¡, k = l,2,-. Then {Bk\ k = l,2,-} is a
decreasing sequence of measurable sets with \imk_o:)m(Bk) = 0 such that

(4.27) m(TPkBk) = 2e

for k = 1,2, —. On the other hand, from condition (II).* follows that there exists

a positive number 0>G such that <7#+(B)_¿ for any measurable set B with

m(B) = a. We apply Lemma 2 of §2 to X = a^+. Then there exists a positive

integer k0 such that

(4.28) a*+(Bk0-Bk)<ô

for any integer k > k0. If we put k = fc0 in (4.27), we have m(T"k°Bko) ̂ 2e. Choose

a positive integer k1 so large that kl > k0 and m(TPk<>Bki) < e, and put

B* = TPk°(Bko-Bki). Then m(B*) = m(T"koBko) - m(T"k°Bk¡) > 2e - e = e and

<J*+(B*) = o*+(Bko - Bki) < <5 by (4.28). This is a contradiction to (II)*. .

Proposition 7. The following implications hold:

(4.29)+ (0)*   -+   (!)*+,

(4.29)_ (0)*   -   (I)*_.

Proof. We prove only (4.29)+ since (4.29) _ can be proved exactly in the same

way. Assume that the condition (0)* holds, but (I)*, does not hold. From (0)*

follows that for any e > 0 there exists a positive number ô > 0 such that m(B) < 5

implies p-n(B) = m(T-"B)<e for n = 0, ± 1, ±2, — . If condition (I).* does

hold then there would exist a positive number e > 0 such that for any positive

number ô > 0 there exists a measurable set A with m(A) ^ e and pm+(A) < 5.

From this follows that there exists a positive integer n such that pn(A) = m(T"A) < Ô.

This is a contradiction since m(T"A) < ô would imply m(A) = p^n(T"A) < e.

Proposition 8. In order that there exist a finite measure defined on Se which

is equivalent with m and is invariant under T, it is necessary and sufficient that

the condition (0)* is satisfied.

Proof. Assume that there exists a finite measure p defined on SS which is equiv-

alent with m and is invariant under T. From Lemma 1 of §2 follows that m is
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uniformly absolutely continuous with respect to p.. Since p is invariant under T,

this implies that {p„\ n = 0, ± 1, ± 2, •••} is equi-uniformly absolutely continuous

with respect to p. On the other hand, again from Lemma 1 follows that p. is

uniformly absolutely continuous with respect to m. From these statements we

conclude that {p„\ n = 0, ± 1, ± 2, •••} is equi-uniformly absolutely continuous

with respect to m. Thus the condition (0)* is satisfied.

Conversely, assume that the condition (0)* is satisfied. Let us put

(4.30) p(B) = UmPn(B),

where Lim denotes a Banach limit. It is obvious that p(B) is invariant

and finitely additive on á?. From the equi-uniform absolute continuity of

{pn\ n = 0, + 1, ±2, •••} follows that p is countably additive and equivalent

with m. In fact, for any e > 0, choose a positive number ô > 0 such that m(B) < Ö

implies p„(B) < e for all n = 0, ± 1, ±2, •••. From this follows that m(B) < ö

implies p(B) = Lim p„(B) <¡ £• This shows that p is countably additive and uni-

formly absolutely continuous with respect to m. On the other hand, p(B) < S im-

plies that m(T"B) = p„{B) < ô for at least one n, and hence m(B) = p.n(T"B) < s.

This shows that m is uniformly absoutely continuous with respect to p.

Propositions 1-8 together give all the implications denoted by arrows in the

diagram at the end of §1. This completes the proof of Theorem 1.

5. Application to <T-finite measure space. Let (X,38,m) be a finite or in-

finite measure space, and let T be a nonsingular, measurability preserving trans-

formation of X onto itself. A measurable subset A of X is said to be invariant

under T if TA = A, and T is said to be ergodic if m(A) = 0 or m(X — A) = 0 for

any invariant measurable subset A of X.

Lemma 6. Let T be an ergodic, nonsingular, measurability preserving

transformation defined on a finite or a-finite measure space (X,&,m). Let X and

p be two finite or a-finite nonzero measures defined on 38 which are equivalent

with m and are invariant under T. Then there exists a positive constant c > 0

such that X = cp, i.e., X and p are either both finite or both a-finite, and

X(B) = cp{B)for any measurable subset B of X.

Proof. Since X and p are equivalent, there exists (by Radon-Nikodym's

theorem) a positive measurable function/(x) defined on X such that

(5.1) X(B) = jBf(x)p(dx)

for any measurable subset B of X.  Since both X and p are invariant under T, it

follows that/(Tx) =f(x) almost everywhere on X. Since T is ergodic, it follows

that/(x) is equal to a constant c almost everywhere on X. It is easy to see that

c> 0 and that (5.1) holds for any measurable subset B of X.
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Theorem 2. Let T be an ergodic measure preserving transformation defined

on a a-finite measure space iX,é$,p). Then T admits a weakly wandering set

of positive measure, i.e., there exist a measurable subset W of X with piW) > 0

and a sequence {p¿\ i = 1,2,•••} of positive integers such that the sets TP'W,

i = 1,2, •••, are mutually disjoint.

Proof. Let {Bn\ n = 1,2, •■•} be a sequence of mutually disjoint measurable

subsets of X such that X = (J"=1 Bn and 0 < p(B„) < oo, n = 1,2, •••.  If we put

(5,2) ^".ti-^SKT

for any measurable subset B of X, then m is a finite measure defined on 3§ and is

equivalent to p. T may be considered as an ergodic, nonsingular, measurability

preserving transformation defined on the finite measure space iX,S8,m). From

Lemma 6 above follows that there is no finite measure defined on 38 which is

equivalent to m and is invariant under T. Thus none of the conditions of Theorem

1 is satisfied. In particular, condition (V) does not hold.Thus there exists a weakly

wandering set Wwith miW) > 0, and hence p(W) > 0. This completes the proof

of Theorem 2.

Let again T be an ergodic measure preserving transformation defined on a

a-finite measure space iX,38, p). From the individual ergodic theorem follows

easily that

1   "_1
(5.3) lim —  I piTkA 0,4) = 0

for any measurable subset A of X with piA) < oo. This, however, does not imply

that

(5.4) lim p{T"A nA) = 0.
n-*co

It is not difficult to show that either (5.4) holds for any measurable subset A of X

with piA) < oo, or

(5.5) lim sup piT"A nA)>0
¿I-»00

for any measurable subset A of X with piA) > 0. In the first case T is said to be

of zero type and in the second case T is said to be of positive type. It is possible

to show that ergodic measure preserving transformations of both types exist on a

suitable tr-finite measure space (for example, the Lebesgue measure space on the

real line X = (- oo, oo)). Ergodic measure preserving transformations of positive

type are interesting in connection with the conditions (IV)+, (IV) J, (IV)_, (IV)!

introduced in §3.

Let m be a finite measure defined on 38 which is equivalent to p. As was ob-

served earlier in this section, T may be considered as an ergodic, nonsingular,
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measurability preserving transformation defined on a finite measure space

(X, 38, m), and there is no finite measure defined on 38 which is equivalent with

m and invariant under T. It is easy to see that T is of positive type on (X,38,p) if

and only if T satisfies the condition (IV)+ of §3. Thus we see that the condition

(IV)+, which is obviously a necessary condition for the existence of a finite,

equivalent, invariant measure, is not a sufficient condition.

The existence of ergodic measure preserving transformations of zero and

positive types on a cr-finite Lebesgue measure space will be shown in a subsequent

paper where more detailed classification of ergodic measure preserving transfor-

mations on a cr-finite measure space is discussed.
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