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1. Introduction. Hierarchies have been constructed as attempts to organize

some collection of sets of integers according to degree of unsolvability. In this

paper we will be concerned with transfinite hierarchies, the foremost example of

which is the hyperarithmetic hierarchy [D, p. 191, Definition 5.1], [K2, p. 200,

the predicates Hy~\, [SI, p. 155 "Davis-Kleene hierarchy"]. In particular we are

interested in conditions under which a pathological type of collapse can be avoided.

Let N be the set of all non-negative integers: 0, 1, 2, •••. This is the simplest

infinite set, and we may justifiably claim to have a fair understanding of it. By

contrast the power set 0>N of N has uncountably many members, most of which

cannot even be specifically named. The phrase "all subsets" does not help us

comprehend the various sorts of subsets which may arise. (Since there is a natural

correspondence between the infinite subsets of N and the interval (0,1], we could

also formulate the problem in terms of comprehending the set of real numbers.)

By means of hierarchies we can organize large (but countable) subclasses of

0>N. In effect we bring civilization to the fringe of the jungle ¿?N.

The basic principle of hierarchies can be stated, "Little steps for little feet."

We choose a method of extending slightly any subclass of 0>N that we claim to

have already tamed. Then starting (for example) with the class of recursive subsets

of N, we apply our extension method over and over. With patience and fortitude

we thus construct a transfinite hierarchy. The quality of the hierarchy depends on

(i) the choice of the extension method and (ii) the method of achieving transfinite

iteration.

In the following sections we will see concrete examples of the process we have

described above in vague terms. Unfortunately there are complications which

arise in the course of making matters precise. Meeting these complications requires

a compromise between the dictates of expediency and motivation. For reasons

of expediency, we will consider transfinite sequences (and more general arrays)

of specific subsets of N. If we replace each such subset A of N by the class of all

sets recursive in A, we obtain an expanding sequence of subclasses of £?N.

2. The stumbling-block. One approach is to construct a hierarchy of Turing

degrees. Suppose we have (corresponding to the extension method) a function F
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defined on the set of degrees, and such that for any degree a, F(a) is slightly higher

than a. (An example is the ordinary jump, defined by F(a) = a' in the notation

of [KP, p. 384].) Then we can define an increasing function G on the finite

ordinals:

G(0) = the recursive degree,

G(ot + 1) = F(G(oc)).

But the appropriate definition of G(co) is a difficult problem. We might let G(co) be

the least upper bound of the G(ß) for ß < co, if this least upper bound existed.

But by a theorem of Spector [S2, p. 585] it does not; indeed no infinite increasing

sequence of degrees has a least upper bound.

The method which has been used to meet this difficulty involves (1) using

well-orderings or at least partial well-orderings of integers in place of ordinal

numbers, and (2) using particular sets of integers in place of degrees. This

requires making some artificial choices, but it enables us to get around the stum-

bling-block at limit ordinals. The purpose of this paper is to establish conditions

under which the resulting hierarchy does not depend in any essential way on the

artificial choices made.

3. Hierarchies. If e is a Gödel number of A from B (i.e., {e}B is the

characteristic function of A), then we will write

A£[e]B.

Unless otherwise specified, "set" will mean "set of non-negative integers."

First we want to define the notion of a jump operation. The two most com-

mon examples are

(1) The ordinary jump oj:

oj(A) = A' = {x:(3y)Ti(x,x,y)}.

(2) The hyperjump h :

h(A) = {x:(Vo¿)(3y)TÍ<A(x,x,y)}.

The hyperjump is stronger than the ordinary jump in the following sense :

Definition. If; and k are two maps from &N into itself, then k is as strong as

j iff there exists an integer e such that for any set A

j(A) = ie-]k(A).

Definition.   A jump operation is a function j from í?N into itself such that

(1) there is a partial recursive function J such that

A£[e\B*>KA)úlJ(.ej]j(B)i

(2) j is as strong as the ordinary jump oj.

A partial well-ordering < t is a transitive binary relation such that any nonempty

set has a < j -minimal element. The field D of < t is
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{x:(3y)(x<iyoiy<1x)}.

It is helpful to define

x _ ! y o¿[X < ! y or (x = y & x e D).

There is a unique function |    | from D into the ordinals defined inductively :

| x | = the least ordinal ß such that

(Vy<1x)|y|<jS.

Theorem 1.   If ß <\x\then(3y <ix)\y\ = ß.

If a partial well-ordering is to be the basis for a hierarchy, then we would like

it to be well-behaved. But if we make very strong demands (e.g., the r-systems of

[Kl]) then we place an upper bound on the possible values of | x | for x in D.

The following definition provides some regularity without imposing any such

upper bounds.

Definition.   A system of notations is a partial well-ordering < t which satisfies

(i)   If freD and |Z>| = 0, then t=l.

(ii)  Each b in D has a unique successor, which is 2*.

(iii) If | b | is a limit ordinal then b # 2Wo.

These conditions could be replaced by something less specific, which would simply

assert the existence of some partial recursive functions with certain properties

(cf. Definition 1 of [W]). But there seems to be little motivation for generalized

versions. And the notation is simplified by the special form of our definition. In

particular if x ^ 0 then we define

x* = 2*.

(Leave 0* undefined.) Then for x in D we have

|x*| = |*| + l-

Definition. A hierarchy is an ordered pair (J, < i) consisting of a jump and

a system of notations.

Example. The hyperarithmetic hierarchy is <o/', <0 >, where <0 is the

ordering defined in [Kl, p. 155] and in [KR, Theorem 2].

For the hierarchy O, < i > we define inductively a function H from D into

&N;

(1)H(1) = N.
(2) H(b*)=XH(b)),   binD.
(3) If | b\ is a limit ordinal then

H{b) = {(x,yy:y<ib &xeH(y)}

= U   Wy)x{y}).
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Here ordered pair and cartesian product are to be formed by means of the pairing

function
<x,y> = 2x3".

Cases (1) and (2) of the definition of H are intuitively natural. (For a hierarchy

relativized to a set A we would want H(l) = A.) Case (3) is analogous to the

definition of recursive join in [KP, p. 392]. Observe that if | b\ is a limit ordinal

and y <1b, then H(y) is recursive in H(b). In fact the reduction is uniform in y :

xeH(y)o{x,yyeH(b).

We hope that H(b) is as simple as possible, given that the above reducibility

property should hold. We shall see that in certain circumstances there is some

basis for this hope.

Since our construction of the hyperarithmetic hierarchy differs from those in

the literature, we state the equivalence.

Theorem 2. Consider the hyperarithmetic hierarchy {oj, <0 >. For each b

in the field 0 of <0, our set H(b) has the same degree of unsolvability as the

predicate Hb defined in [K2]. Furthermore the equivalence is uniform in b.

The proof is an application of the recursion lemma stated in §4. Details can be

found in [E].

Recall that we used a partial well-ordering <t in the construction of the

hierarchy because we were unable to use the classical ordinals. Our interest lies in

iterating j, not in examining <t. But this is not to say that different choices of

<! will lead to equivalent results. There are hierarchies in which the well-ordering

is not content with just keeping order, but usurps power itself. For example

given any set S we can form the relativized ordering <q on 0s [K2, p. 209].

The correct way to construct a relativized hierarchy is to use <q and define

H(l) = S. (Other cases of the definition of H are as before.) But if we instead

apply our definitions as they stand to the ordering < £, then for any jump j the

hierarchy <j, <o > has the following undesirable feature:

Theorem 3. There is a b in 0s such that | b | = co2 and S is recursive in H(b).

The proof will be found in §4.

If the degree of S is very high, then it is clear that this represents a failure of the

hierarchy to serve its purpose. This collapse of the hierarchy is due to the fact

that we have used an ordering which is too high-powered for the jump. We want

to consider circumstances in which this type of collapse can be avoided. Put

another way, what relationship between the jump and the ordering will assure

that the degrees of the sets H(a) are not artificially elevated?

One method for making this problem precise is to investigate the property of

uniqueness. We say that uniqueness holds in a hierarchy if for any a and b in the
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field of <x, \a\ = \b\ implies H(a) and H(b) are recursive in each other (i.e.,

Turing equivalent). This condition fails in our example above with < y. Uniqueness

implies that different paths through < t lead to the same Turing degrees. This is

certainly a desirable property, but we would like something even stronger. For

example if the ordering is linear, then uniqueness automatically holds, but it

gives no comfort.

A stronger property would be the following: If <t is replaced by another

ordering <2, then the degrees obtained (at any particular ordinal) are at least as

high as before. This will imply of course that uniqueness holds.

In order to enable us to treat two orderings at once we now modify our notation.

Now <j will have field Di. The ordinal associated with a member b of Dx will

be | b\t. The function from Dx into &(N) will be H^. For the ordering <2 we

will have correspondingly D2, \s\2, and H2. Always there will be just one jump j

for both orderings. Now we can give a precise statement of the desirable property

described.

Definition. A system < l of notations is canonical for a jump j iff given any

system < 2 of notations, there is a partial recursive function </> such that

We will also say that the hierarchy <j, <i > is minimal. We can now state our

central theorem :

Theorem 4. A sufficient condition for a system <1 of notations to be canonical

for j is the following:

(j|c) There exist partial recursive functions F and G such that whenever | b \x is

not zero then F(b)<1b and {y:y<1b} is recursive in H ¿Fib)) with Godel

number G(b).

Intuitively, condition (j|c) says that the set of all predecessors of a point b is

recursive in an earlier iî-set, and in a uniform manner. The proof of the theorem

will be in §4; applications and related results will be discussed in §5. The follow-

ing is an immediate consequence of (s^c) :

Theorem 5. Suppose <x and j satisfy (s|c), and let \b\t be a limit ordinal.

If A is any set such that

y <! b => H(y) recursive in A, uniformly in y

then H1(b) is recursive in A.

4. Proofs. In a system of notations the only element b with | b | equal to a

finite integer n is b — «, where

5-1,

n + 1 = ñ* .
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Proof of Theorem 3. We may suppose S is infinite; let its members be (in

ascending order) s0, sif •••. Let F be a recursive function such that

(a) F(x,y) is a Gödel number of the partial function:

{F(x,y)}(l) = x,

{F(x,v)}(n*)=={F(x,>-)}(n)*.

(b) F(x,y) encodes (in any uniformly retrievable manner) the integer v. Now let

G(l) = 1,

G(ñ*) = 3-5F(G(")<s"'n>).

Then G is partial recursive in S ; let e be a Gödel number of G from S and let

fc = 3-5e.

NowG(ñ)eO£Osand |G(ñ)| = co-n. Thus Ms in 0s and |/3| = co2.

From H(b) we can enumerate

{>>:(3x)<x,3-5»>eJÏ(&)}.

Each y in this set is of the form

y = F(G(n), <s„,»>),

whence we can compute n and s„. Thus we can enumerate from H(b) the set S

in ascending order.

The above result is analogous to XIII in [K2]. The lemma below is a basic

tool in studies of hierarchies. It is adapted from [R].

Recursion Lemma 6. Let <t be a partial well-ordering of a set D. Let P

be a two-place predicate, and let K be a partial recursive function such that for

any b in D and any q :

(Vy<1/3)P({g}(>>);>>)=>P(K(g,&);&).

Then we can find a partial recursive junction F such that for all b in D, P(F(b) ; b).

This is the recursive function theory counterpart of transfinite induction. The

hypothesis says that whenever you have a uniform way of making P true for all

y less than b, then you can effectively find a way to make P true of b. The con-

clusion states that you have a uniform method for making P true of all members

of D.

Proof of recursion lemma. By the recursion theorem [IM, p. 353] we can find

an integer e such that {e} = XxK{e,x). We claim that for all b in D, P({e}(&);/>).

For otherwise there is a minimal b in D for which this fails. By the minimality

(Vy<ib)P({eHy);y),

whence by hypothesis



1964] HIERARCHIES IN RECURSIVE FUNCTION THEORY 463

P(K(e,b);b), i.e., P({e}(b);b).

Contradiction.  Thus we may take F = {e}.

In the following we will apply this lemma when P has more variables, but the

extension is trivial.

As an abbreviation define

Lim(u)oáíu¿2Wo.

Instead of (for example)

(Vu)(u**<2s=*¿)

we will write simply

(Vu**<2s)A

Proof of Theorem 4. The proof will be informal. Recursive functions will

be described from the Turing machine viewpoint, cf. [D]. First introduce an

ordering <^ on Dx, the cartesian product of DY and D2.

<i>,r> <1<a,s><*-df (b ^xa and r <2s) or (b K^ and t ^2s).

The proof will use the recursion lemma, i.e., effective transfinite induction. The

induction hypothesis will consist of two parts. One will be concerned with the

ability to recognize when the inequality

Mi = l«|2
holds; the other part will be more directly related to the desired conclusion.

Define then:

ß(3,a,S)odf(Vc<1a)(VM**<2s)[{i}H2(s)(c,u)haltso|c|1a|M|2].

This can be read "q detects ordinal inequality from H2(s) below (a,s}." Of

course

{q}BlW(c,u) haltso(3w)Tf2(s) (q,c,u,w).

Next define

P(r,q;a,s)od{

[Lim (s) => Q{q,a,s)-] and [ | a |, ^ \ s |2 => H ¿a) = [r]tf2(s)].

In order to apply the recursion lemma to P we need partial recursive functions

K1,K2 such that for <a,s> in Dx,

(V <M> <*<a,s>)P(«(M, {<z}(M; M

implies
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P{K¿r,q,a,s),K2{r,q,s); a,s).

Assume then that (a,s}eDx and the inductive hypothesis holds:

(V <*>,i> <;c<a,s»P({r}(M, {«}(M;M-

First we seek an integer

f = Kl(r,q,a,s)

such that

|a|1á|í|i*Hi(a)á[<l»a«.

Our construction of r will use the integer

9 = K2(g,r,s)

so that logically the latter should come first. But the r-half will show why one

needs the q-hali at all.

Assume then that | a |i ^ | s \2. Then f must be the Gödel number of a Turing

machine (also called f) such that {f}Bl(s) is the characteristic function of H ¿a).

The behavior of f will be described by cases, all effectively recognizable.

Case I.   a = 1 or s = 1. Trivial.

Case II. a = />* and s = r*, where b = (a)0, í = (s)0.

Then

Hál'l, => |fr|i¿Ma
* fftWSCWífc.O^aíd.

So let

rW({r}(M),

where J is the function mentioned in the definition of jump.

Caselll. Lim(a). For each  <x,y> we want

/ 1     if v <, a and x e H,(v) ,

1 0    otherwise.

By(*)

{y:y<i«}á[G(«)]H1(JP(a)),

where F(a) < t a. And by inductive hypothesis

H!(f(a))á[{r}Wa),S)]Ha(í).

Hence r can begin by determining whether or not y < j a. If so, then

H1(y)^l{r}(y,sy]H2(s).
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Thus f can determine whether or not x e H^y). This description defines f effectively

as a function of a, s, and r.

Case IV. Lim (s) and a = b*, where b = (a)0. This is the only difficult case. If

f can locate an integer t such that

r*<2sand|f>|1^|i|2,

then we will have

tfi(«)á[{r}(a,t*)]fí2(í*)

and

xetf2(i*)o<x,r*>etf2(s).

Thus it remains only to describe how f can find i.

The answer is provided by q. The machine f enumerates (from H2(s)) the

various t such that r** <2s, and for each begins the computation of

{4}"*\b,t).

Since Q(q,a,s) holds, the above computation halts iff 12? |^ _ \t\2.  Eventually

this must occur, so eventually f will discover a suitable value for t.

This completes the description of

f = K2(q,r,s),

but we still need an integer

q = K2(q,r,s)

such that whenever Lim (s) then

Q{q,a,s),

i.e., q detects ordinal inequality from H2(s) below (a,sy. Suppose then that

Lim(s) and we are given c and u such that c <1a and u** <2s. Then q must be

the Gödel number of a Turing machine (also called q) such that

{q}a*\c,u) halts o\c|,S|«|2-

We will describe the steps made by this machine.

We may assume Lim(u), for otherwise q could replace u by log2 u and c by

log2c (if c = (c)o) and iterate until the Lim(u) situation was reached. Next q

computes F(c) and {q}(c,u).

By inductive hypothesis

Q({q}(c,u),c,u),

i.e.,
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(Vá <lc)( Vr** <2u)(M(d,t) halts o\d\t û\t\2)

where

M=d[{{q}(c,u)}B*>.

Next # enumerates (from H2(s)) the various t such that t** <2u, and for each

begins the computation of M(F(c), f). This is possible since

r**<2uo(3x)<<x,r**>,u>eH2(s).

By inductive hypothesis and (s(c)

M(F(c), t) halts iff | F(c) |t = 11 \2.

Now if |c |j_ _á |uI2 tnen (using Lim (u)) for some t** <2u  we will have

|F(c)|t ^ I r|2, whence M(.F(c), r) will halt. Thus if halting does not occur for

any r, it follows that | c|t < |u |2.

And

{q}H*'\c,u)

will not halt, so in this case q meets our requirements. On the other hand if for

some í,M(F(c),í) does halt, then

|F(c)|1^|<|2<|«|2.

It is clear that

|c|1g|u|2o(Vd<1c)(3»**<2«)|d|1^|o|2

o ( Vd)(d < j c => ( lv)(v** <2u and M(d,v) halts)).

By(*)

{d-.dK^}^^!^))

and by inductive hypothesis

tfi(nc))^[{r}(F(c),M)]tf2(«).

Furthermore

v** <2uo(3x)<x,v**>eH2(u)

and

M(d,v) halts o( 3y) T^"' ({g}(c,u),d,»,y).

Hence we can effectively put the predicate

lc|i = \UU

in nf 2(u)form. Since ; is as strong as oj, this yields a Gödel number of the pred-

icate in
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H2(u**)

and thence a Gödel number in H2(s). So q concludes by testing to see if | c |j ^ | u |2

(as described) and halting iff this inequality is true.

This completes the description of Kj and K2. We now apply the recursion

lemma to obtain a partial recursive function <p such that

l«UIS|2
implies

Observe that the function (¡> does not depend on <2. Gödel numbers for Ky

and K2 (and hence for <p) can be found from Gödel numbers of F,G,J, and the

function relating j(A) to oj(A).

Actually it is sufficient that (s(c) hold only when \b\t is a limit ordinal. The

q-half of the proof can be restricted to limit ordinals, with only notational com-

plications.

5. Continuation. Let us first consider some applications of Theorem 4. If

j = oj and <! = <2 = <o, then we have the uniqueness theorem of Spector

[SI,Theorem 5]. We can obtain an extension of Spector's theorem to Kleene's

system Sj of notations [Kl] by taking

<1 = <2 = RO(S1xS1)

where R is the most natural recursively enumerable relation for which

<0 = Rn(O x 0).

This extension to St was first obtained by Putnam [P]. In either case we obtain a

stronger result by allowing < 2 to vary. But our theorem does not apply to oj and

Kreider's ordering Si [KR; P].

If we use the hyperjump h then we can apply our theorem to a wider class of

orderings. It is easy to see that <° is canonical for h. In fact <* is canonical for

h for any of the following choices of S:

0,0°,   0(O°\ -..

Let us return for a moment to the difficulties we encountered in §2. There we

tried to construct a function G from the ordinals into the set of degrees. Let us

try again. Instead of the function F used in §2 we use the function on degrees

induced by a jump j. (This induced function is also called j.)

G(0) = the recursive degree,

G(a + l)=j(G(a)).

If X is a limit ordinal then G(l) is defined iff there exists a system < t of notations
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which is canonical for ; and whose field contains a b with | b | = X. In this case

we let

G{X) = degree of H(b).

By our theorem this depends neither on the choice of < t nor on the choice of b.

This function G has the pleasing feature of having been defined by the jump

; alone. The definition is, however, rather unwieldy. It would be convenient if

we could construct, given ;', a system <; of notations which would be canonical

for j and such that the ordinal

\<j\=áí\.u.b.\b\,        beDj,

is as large as possible. As an approximation to this goal we now construct a maxi-

mal system of notations <} such that the hierarchy <;, <_,-> satisfies (a(c).

The basic idea is to construct the ordering and the hierarchy simultaneously.

At limit points we insert into the ordering everything that will not violate (s(e).

Define by induction the set L(a) for each ordinal number a :

L(0) = {<1,2>},

L(a + 1) = L(a) u{<x,x*> : <l,x>eL(a)}

u{<x,y>:(3í)«x,í>GL(a)and <i,y>eL(a))}.

If A is a limit ordinal, then before defining L(X) we first let

Lx = \jL(X).

Then Lx is a system of notations ; form the hierarchy <j, LA >. Then we can define

L(X) = Lx U {<i, 3f'5e> : b is in the field of Lk and e is a Gödel number from

H(b) of a subset S of the field of LA such that

(i)   beS,

(ii)  (VxeS)(3yeS)|x|<|>|,

(iii) (Vx6S)(Vy)«y,x>£L;.*y6S)

and t e S.

Now let

<, = UL(«)
a

and let D¡ be the field of <,.

Then <} is a system of notations. If ?>"$e e Dj, then

{t:t<j3"5e}

is recursive in H(b) with Gödel number e. Hence <;', <,-) satisfies (3(c).

We claim that <} is maximal in the following sense: Let < ¡ be any system of

notations such that <;', < t > satisfies (j|c). Then we will construct a partial recursive

map M from the field D^ of < j into Dj which preserves ordinals, i.e.,
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(Six eD^Mix^j =1x1,.

(Again we have two orderings, and so use subscripts liberally.)

We may suppose that

x < ! y and Lim (y) => x* < x y.

For otherwise we could extend < 1 to make this true without loss of (^c) and

without changing 11 |x for any tin D,. By Theorem 4 there is a partial recursive

function Q such that

seD1 and b e Dj and

14 ^ 14*^(5) ^[ß(S,b)]tf,.(J>).

We will construct M by using the recursion theorem, along the lines of the

lemma in [R]. The property of M we want is that for each s in Dt the following

hold:

(a) M(s) is defined and is a member of Dj.

(b) |M(S)|,.= |*li-
fe) (Vb <jM(s))(3t <lS)M(t) = b.

The idea of the construction is this : Suppose we have an initial approximation

to M which satisfies (a)-(c) for all s such that s <lu. We want to define M{u).

In the case Lim (m), we map

{t:t<lU}

by the approximation into D}, thereby obtaining a subset S of Dj which will be

recursive in Hj(M(F(u))*). (F is the function of (j(e) for < t ; we will also use

the G function.) This will lead to a member

of Dj which we will want to be M(u).

First let Xxx o y be a recursive function such that for any sets A,B,C

A g [x]B and B ^ [y]C => A g [x o y]C.

Since j is as strong as oj, there is a k such that for any set A, A' ^ [fc] j(A). And

the image of A under {e} :

{e}04) =df {x :( 3t)(t e A and ( 3w)(T!(e,i, w) and I7(w) = x))}

is recursively enumerable in A, uniformly in e. That is, there is a recursive function

JV such that N(e) is a Gödel number of {e}04) from A'. Define now the partial

recursive function K :
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lifx=l,

K(e,x)~ -   {e}(y)*ïfx = y*,

. in all other cases :

3{c}(F(*))*. 5N(e)<=koHG(x)°Q(F(x),{e}(F(.x)))).

By the recursion theorem we can find an integer e such that

{e} = lx K(e, x).

Let M = {e).

We claim that for every s in Du properties (a)-(c) hold. For otherwise there

would be a minimal 5 for which one of (a), (b), (c) failed.

Clearly s # 1. Furthermore we could not have 5 = (s)*, by the minimality of

s and because

d <jb* =>d^jb.
Hence Lim (s). Let

d = M(F(s)),

f  = N(e)okoJ(G(s)oQ(F(s),d))

so that M(s) = 3d*- 5f. Let S be the image under M of

{r:r<1s}.

Then / exists and is a Gödel number of S from Hfd*). We further claim that

<XX-S,y>eU\s\{).

Looking at the definition of I(|s|i) and putting d* in place of b, we see that

(i) and (ii) hold. If x e S and y <}x then there is some u <xs such that M(u) = x.

Applying (c) to u we see that y s S, whence (iii) holds.

Therefore (a) is true of s. Since

|3"-n = \J{\c\3:ceS}

= U{líli:í<is} = lsli

(b) also holds. And (c) is obvious by our construction.

Theorem 7. <j isa maximal system of notations such that(j,< 7-> satisfies^).

In the case of the ordinary jump oj we do not get outside the class of hyper-

arithmetic sets, and thus {oj, <oj} is essentially the hyperarithmetic hierarchy.

In the case of the hyperjump h we obtain an ordering <h with field Dh.

Theorem 8.   For all b in Dh,

#,,(&) e si nn2\



1964] HIERARCHIES IN RECURSIVE FUNCTION THEORY 471

The proof is a straightforward application of the recursion lemma; see [E].

6. Further problems.   The ordinal number

\<j\ = [j{\b\-beDj}

s a measure of the strength of Theorem 4. We would like to compare this ordinal

with

(J {| < ! | : < ! is canonical for j}.

What is the relationship of these ordinals? In particular, does equality hold?

Suppose one wishes to iterate a jump over an ordering longer than any canonical

ordering. The resulting hierarchy cannot be minimal, but it still may be "almost

minimal." Recent work in this direction has been done by Luckham [L].
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