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1. Introduction. In what follows we shall consider strictly power-associative

algebras over a field of characteristic different from two and three that satisfy the

identity

(1) x(xa) + (ax)x = 2(xa)x,

whose equivalent linearized form is

(2) x(ya) + y(xa) + (ay)x + (ax)y = 2(ya)x + 2(xa)y.

Rosier has shown [10] that every semisimple algebra of this class has an identity

and is the direct sum of simple algebras. Moreover, the simple algebras of degree

greater than two are Jordan or quasiassociative. Hereafter let A be a central sim-

ple degree two algebra of this class. Then A has an identity, 1 = e +/, that is, the

sum of two orthogonal primitive idempotents, e and/, every scalar extension AK of

A is simple, and e and/are primitive in every AK.

It is known [2; 3] that A can be decomposed relative to e into a vector space

direct sum A = ,4(1) + A($) + A(0), where e • x = i(ex + xe) = Ax for all x in

A(X), X = l,i,0. Moreover ,4(1) = eF + Nx and A(0) =/F + JV0 are vector space

decompositions in which Nx and JVj are nilsubalgebras of the algebra A+.

(A+ is the same linear space as A with the multiplication x • y = i(xy + yx).)

A(l)+ and A(0)+ are orthogonal subalgebras of A+, e is a two-sided identity

in A(i) and a two-sided annihilator of A(0),

xy = yx = 0, for all x in A(\) and y in A(0),

A(l) ■ A&) e AQ) + A(0),

A(0) ■ A(i) c A(i) + ,4(1),

and, for each x and y in A(\), there is an a in F and n in Nx + JV0 for which

x • y = al + n.

Without further information about the multiplication of subspaces little can be

predicted even for commutative power-associative algebras. L. A. Kokoris has
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shown [5] that simple commutative power-associative algebras of degree two

exist that are not Jordan. On the other hand let us define A to be nilstable(2) in case

Au(X)Au(j) and AU(\)AU(X) cz Au(%) + JVM(i_A),A = 0,1, where u is any idempotent

in A, AU(X),X = l,i,0, are the subspaces in the decomposition of A relative to u,

and NU(y-x) is the nilsubspace of ^4„(1 — X), X = 0,1. Then nilstable simple com-

mutative power-associative algebras were shown by Kokoris [8] to be Jordan. In

fact, the added assumption of nilstability has produced the solution of the degree

two flexible algebras [9]. We shall therefore assume hereafter that A is nilstable.

Lemmas 2.4 and 2.6 will show that A is nilstable if and only if A + is nilstable,

and Theorem 6 in [6] states that A+ is nilstable whenever F has characteristic zero,

so that we shall also have described all algebras of degree two and characteristic

zero. Actually, by these same lemmas it suffices to assume that AU(X)AU(\) and

Aud-) AU(X) are contained in AjQ) + JVu0 + JVul for every idempotent u and A = 0,1.

The principal result will be that A is a noncommutative Jordan algebra and so

possesses a known [9] multiplication table. We shall obtain this result by showing

that A+ is Jordan. Then, by considering a certain trace-like function on A, we

shall show that A+ is simple and that A satisfies the flexible law x(yx) = (xy)x.

Being Jordan admissible and flexible A is known [12] to satisfy the Jordan identity

x2(yx) = (x2y)x. In case A is not nilstable the algebras constructed by Kokoris

provide examples of algebras of our class that do not satisfy the Jordan identity

even though they are nilstable with respect to at least one idempotent. Finally, as

a consequence of (1) and the flexible law, A satisfies x(x>>) + (yx)x = x(yx) +(xy)x.

Moreover, we can write each x in A as x = oqe + x1/2 + a0/with x\¡2 = ß\ and

then define i(x) = a0 + at and n(x) = <x0Xy — ß. Then A is a quadratic algebra and

the results of [13] apply.

2. Construction of an ideal in A. Let A be decomposed relative to the idem-

potent e. We shall show that Ny + JV0 = 0 by showing that each Nx is an ideal of

A(X) and then constructing a proper ideal of A containing JVX + JV0. The first few

propositions below repeat results found in [10].

Lemma 2.1. If x is in A(^), then ex is in A(\).

In case A is commutative ex = \x. Here let ex = at + (^x + x*) + a0 with

ak in A(X) and x* in A(%), then xe = — at 4-Qx — x*)— a0, since ex + xe = x.

Similarly, write ex* = bx + (ix* 4-x**) + b0. Now (1), with x and a replaced by e

and x, respectively, becomes ex* = ax-a0 — x* + 3x*e so that ex* = \a y + \x*—£a0.

Consequently x** = 0. Apply (1) again by replacing a and x by x* and e respec-

tively and obtain 0 = ex** = (l/16)a! + (l/16)a0. By equating corresponding

A(X) components, ay = a0 = 0. Thus, for all x in A(\), we can write

(2) The results of this paper for the stable case were announced by Rosier in Abstract

61T-296, Notices Amer, Math. Soc. 8 (1961), 618.
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ex = \x + x*,

(3) xe = \x — x*,

ex* = x*e = $x*.

Consequently (ex)e = \x = e(xe) so that we have proved

Lemma 2.2. Every x in A(%) is of the form ey and zefor some y and z in A(^).

Lemma 2.3. If ex = ax for some x in A($) and a # £ in F, then x = 0.

For now (1), with a and x replaced by x and e, respectively, becomes

(2a - l)2x = 0, so that x = 0.

Theorem 2.1. The subspaces A(l) and A(0) are subalgebras of A.

Let x and y be in A(l) and write xy as the sum of its A(X) components,

xy = ax + ax/2 + a0, so that yx = bx — ax/2 — a0. Then (2), with x in the asym-

metric position and y and e in the others, becomes (ax/2 + 4a*) + 2a0 = 0, so that

a0 = 0 and eax/2 = \axi2, implying a1/2 = 0. Similarly, for x and y in ,4(0),

call xy = ax + ax/2 + a0 and yx = — ax — ax/2 + b0. Again giving x the dis-

tinguished position in (2) produces ax = ax/2 = 0.

Continuing in this vein, let x be in ,4(1) and y in A(\) and write xy = ax+ax/2+a0

and yx = — ax + bx/2 + b0. At the same time call xy* = rx + rx/2 + r0 and

y*x = -rx + sx/2 + s0.

Lemma 2.4. For eac/t x in ,4(1) and y in A(^), xy = ax/2 + a0,

yx = (a1/2 — 4a*) + a0, and xy* = y*x = a*.

Replacing x, y, and a in (2) by e, y, and x, respectively, and using (3) results in

(4) 2:(bx/2-ax/2)+(b0-a0) = a*-3b*,

so that, by equating corresponding components,

(5) a0 = b0,

and

(6) bx/2 - ax/2 = 2a* - 6b*.

Multiplying (4) on the left by e produces

(7) bx/2-aX!2 = 4a*-Sb*.

From (6) and (7) it is apparent that

(8) a* = b*.

Applying (2) to x, y, and e again, this time with y in the asymmetric position, and

using (5) and (8) produces
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(9) — ay + 2a* = 3y*x — xy*,

while replacing a with e results in at + Kai/2 — bl/2) — 3y*x — xy* so that

(10) ay = 0 and b1¡2 = a1/2 — 4a*.

Making the same computations with x, y*, and e will therefore result in rt =0,

r0 = s0, and s1/2 = r1/2 - 4r*, that is, xy* = r1/2 + r0 and y*x = (r1/2 - 4r*) + r0.

However, if we consider (2) in the light of these results and with y* in the select

position we find xy* — y*x = Ar* = 0, so that

(11) xy* = y*x = r1/2 + r0.

But then (9) with the use of (10) and (11) becomes 2a* = 3j>*x - xy* = 2(r1/2 + r0),

and consequently, by equating corresponding components, r1/2= a* and r0 = 0.

Lemma 2.5. For every x in A(i) and y in A(%),(xy)*i2 = (yx)*/2 = (x • y)*/2

where the subscript \ indicates the A(%) component.

By Lemma 2.4 we have (xy)1/2 = a1/2 and (yx)1/2 = al/2 —4a*. Therefore

(Xy)* 2= a*, and e(yx)1/2 = $a1/2 + a*- 2a* = \(yx)yn + a* so that (yx)*/2=a*.

Analogous methods will produce the corresponding results for products of zero-

space elements by half-space elements. Calling xy = ay + a1/2 + a0 and

yx = by + bi/2 - a0 for x in ,4(0) and y in A(\), we obtain

Lemma 2.6. For each x in A(0) and y in A(\), xy = at + alj2,

yx = ay + (a1/2 + 4a*), xy* = y*x = a*, and (xy)*i/2 = (yx)*/2 = (x • y)f/2.

At this point we can conclude that A is e-nilstable if and only if A + is, since

Lemmas 2.4 and 2.6 show that the /1(0) + A(l) components of xy and yx are the

same whenever y is in /!(£) and x is in A(i) + .4(0). Now let x and y lie in A(\)

and set xy = at + a1/2 + a0 and yx = by — a1/2 + b0.

Lemma 2.7. For each x and y in A(\), xy* = \(by — ay) — a* + %(a0 — b0),

y*x=\(by — ay)+a* +i(a0 — b0), xy*= —yx*, x*y= — y*x,and x*y* = y*x* = 0.

Substituting x, y, and e in (2) with y in the place of a, we obtain

(12) K&i - ay) + 4a* + K^o - *>o) = 3>>*x - xy*.

Repeating the substitution, this time with e in the place of a, gives

(13) yx* — 3x*y = 3y*x — xy*.

Now call xy* = rt + r1/2 + r0 and y*x = Sy — r1/2 + s0. Then, corresponding

to (12), we obtain \(rx - Sy) + 4r* + \(r0 - s0) = 3.y**x - xy** = 0 so that

r y = Sy, r* = 0, and r0 = s0. Then the right side of (12) becomes 3(rx — r1/2 + r0)

- (ri + 7*1/2 + *■<)) so that, by equating corresponding components in (12),



1964] A CLASS OF NILSTABLE ALGEBRAS 417

ft = \{i>i - ai)> ^tn = - a*, and r0 = \(a0 - bQ). Again, corresponding to (13) is

y*x* — 3x*y* = 3y**x — xy** = 0, that is, for all x and y in A(\), 3x*y* = y*x*.

But then, by the symmetry of the assumptions for x and y, 3y*x* = x*y*, and so

x*y* = y*x* = 0. If we continue by calling yx* = cx + c1/2 + c0 so that, by

what has been shown so far, x*y = ct — cx/2 + c0 with c* = 0, then, by (13),

Ci = i(ûi - *i) = - rlf c1/2 = a* = - r1/2, and c0 = i(o0 - «o) = - ro- As a

corollary to this lemma we might observe that xx* = — xx* = 0 for all x in A(%).

To obtain another corollary to Lemma 2.7 write xy = (<xxe + nx) + ax/2 + (a0/ + n0)

and yx = (ßxe + mx) — ax/2 + (ß0f + m0) with a¡ and ßt in F and n¡ and m; in JV;,

for i = 1, 0 then by Lemma 2.7

xy* = \[(ßx - ccx)e + (m, - nx)~] - a* + {-[(cc0 - ß0)f + (n0 - m0)]

and

y*x = i[(^i - ccx)e + (mx - n^] + a* + i[(a0 - ß0)f + (n0 - m0)].

But x • y = yl + n and x • y* = ¿1 + m for some y and <5 in F and n and m in

JVj + JV0. Consequently yl = $(ax + ßx)e + i(a0 + ß0)f and ¿1 = \-(ßx - a,)e

+ i(ao - ßo)f, that is, ax + ßx = a0 + ß0 and -a! + /Jj = a0 - j90, and so

ßx = a0 and ß0 = ax, producing the following.

Corollary. For each x and y in A(\), xy = (txxe + nx) + ax/2 + (a0/+ n0),

yx = (a0e + mx) - ax/2 + (<xxf + m0).

By a method similar to that used in [11] we can now show that each JVA is an

ideal of A(X).

Lemma 2.8. For every x in A(l) and y in A(±), (xy)1/2 = 2[e(x • y)]1/2

= 2(x • ey)1/2 and (yx)x/2 = 2[(x • y)e]1/2 = 2(x • ye)x¡2. For every x in ,4(0)

and y in A($), (xy)1/2 = 2[(x • y)e]1/2 = 2(x • ye)x/2 and (yx)x/2 = 2[e(x • y)]1/2

= 2(x • ey)x/2.

The first statement is a consequence of Lemma 2.4. Using the notation of the

lemma we have 2[e(x ■ y)]J/2 = 2[e(ax/2 — 2a* + a0)]1/2 = 2(\ax¡2 + a* — a*)

= (xy)i/2- I" the same way 2(x • ey)i/2 = (x ■ y)1/2 + 2(x • y*)x/2 = (ax/2 - 2a*)

+ 2a* = (xy)1/2, 2[(x • y)e]i/2 = 2[(a1/2 - 2a* + a0)e]1/2 = (yx)1/2, and

2(x • ye)i/2 = (x • y)1/2 — 2(x • y*)1/2 = (yx)1/2. In the same way Lemma 2.6

produces 2[(x • y)e]1/2 = 2[(a! + a1/2 + 2a*)e]1/2 = 2(^a1/2 - a* + a*)

= (xy)i/2, 2(x • ye)1/2 = (x • y)x/2 - 2(x ■ y*)x/2 = (xy)1/2, 2[e(x • y)]1/2

= 2[e(ßi + ax/2 + 2a*)]1/2 = (yx)1/2, and 2(x • ey)x/2 = (x ■ y)x/2 + 2(x ■ y*)1/2

= (vx)1/2.

Theorem 2.2. The nilsubspace Nx is an ideal of A(l)for X = 1,0.

Suppose that JVi is not a subalgebra. Then there are elements x and y of JVi

for which xy = e + n, so that yx = — e + m, with m and n in JVi- Let a he any
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element of A(%) and write, by Lemma 2.4, xa = b1/2 + b0 and ax = (b1/2 -4b*) + b0.

Now (2) with x and a interchanged becomes

(14) a + 4a* = 2ma — am — na + b1/2y — ybi/2 + 4yb* — 8b*y.

The left side of (14) is an element in A(\) while each term on the right is of the form

zw or wz with z in JVi and w in A(%). Indeed, since zw and wz are in 4(i) + A(0)

by Lemma 2.4, their zero-space components vanish, and we need only consider

their half-space components. But these can all be written, by Lemma 2.8, in the

form (z • we)y/2 or (z • ew)1/2. That is to say, a + 4a* lies in \_Ny • 4(|)]1/2. But

a + 4a* = 4e(ea), and every element in A(\) is of the form ec for some c in A(\).

Consequently,

(15) ¿(i) <=[#!• ¿(i)]1/2.

To state (15) differently, define, for each x in 4.(1), a linear transformation, Sx, in

•4(i) bytne formula Sx(w) = (x • w)1/2 for all w in 4Q). It has been shown that Sx

is a nilpotent transformation whenever x is a nilpotent element [3] and that the

associative algebra generated by a set of transformations, Sx,each determined by

a nilpotent x, is a nilpotent algebra [1]. Calling this enveloping algebra, SNt

we can rewrite (15) as A(%) cz A(\)Sííl, and therefore 4(£) cz A(2J)SNi cz ■■•

cz 4(£)S#1 cz ■■■ for all positive integers n. Since S*, = 0 for some k, 4(£) = 0.

But then A is the algebra direct sum 4(1) © A(0), contrary to the simplicity of A.

Hence JVi is a subalgebra and therefore an ideal of Ay.

In the same way JV0 is shown to be a subalgebra. Here we use the fact that for

every x in A(0) there is a linear transformation, Tx, in 4(£) given by

Tx(w) = (x ■ w)y/2 for all w in 4Q). Again, Tx is nilpotent whenever x is in JV0,

the enveloping algebra TNo generated by all Tx with x in JV0 is nilpotent, and

4(|) cz A($)TNo, producing the same sort of contradiction.

Now call JV = JV0 + Ny, B = A(\) + N, and / = {x e A : Ax + xA cz B}. Then,

by nilstability and Theorem 2.2, JVczJ. In fact JV = Jn[4(l) +4(0)], since

e2 = e is not in B, so that we may write J = I1/2 + N cz B. We shall show that /

is an ideal(3). To do this we shall show separately that AN +NA and 4/1/2 +I1/2A

are contained in /. First observe that [4(1) + 4(0)]JV + JV[4(1) + 4(0)] cz JV cz /.

Next, call *4 = [JV4(i)]1/2 and 4* = [4(i)JV]1/2 so that

4(i)JV + JV4(i) cz 4* + *4 + JV.

We shall see that 4* + *4 cz /. We begin with methods similar to those used in [9].

Lemma 2.9. Ifx - y and x • ey are in N for some x and y in 4(£) then xy and

yx are in B.

(3) The author is grateful to the referee for suggesting / as an ideal easier to establish than

that in the original.
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Using the notation and results of Lemma 2.7 we have x • y = $(ax + bx)

+ i(a0 + b0) in JV and x • ey = -fcx • y + x • y* = \bx + %aQ in JV. Hence bx is

in JVi and a0 is in JV0 so ax and b0 are in Nx and JV0, respectively, and xy and

yx are in B.

Lemma 2.10. The subspace B is not an ideal in A+.

For, JV[4(1) + ,4(0)] = [,4(1) + 4(0)] JV c JV e B since JVA is an ideal of

A(X), and 4(¿)[4(1) + ,4(0)] and [4(1) + 4(0)]4(i) e B by nilstability so that,

were B an ideal in A +, A($) ■ 4(£) would be contained in B, indeed in JV. But

then x • y and consequently x • ey is in JV for all x, y in 4(£) so that A(\)A(\) c B

and B would be an ideal in A. By simplicity of A, and since e is not in

B, 4(i) cB = 0, and A = A(l)©4(0) contrary to simplicity.

As a result of Lemma 2.10 we can prove, as Kokoris did in Lemma 7 of [7],

that A($) has a non-nilpotent element. In fact, all the results of that paper con-

cluding with the statement that the set C = A(\) ■ JV + JV is an ideal in A + are

now at our disposal.

Lemma 2.11. If x is in *A + A* and y is in A(%) then xy and yx are in B.

Every such x is a sum of elements of the form (nz)x/2 or (zri)x/2 for some n in JV

and z in A(\). For any such n and z and y in A(\), y ■ (n • z) is in C since C is an

ideal in A + and n • z is in A(\) • JV cr C. Indeed, y • (n • z^ and y • (n • z)0 are in

C since (n • z)j and (n ■ z0) are in JV by nilstability, while y • (n • z)x/2 is in C and

in ,4(1) + 4(0), and therefore in JV. That is, y • (n ■ z)x/2 is in N for every y in

4(|), hence ey ■ (n • z)1/2isin JV for every y in 4(£), and, by Lemma 2.9, y(n ■ z)Xj2

and (n • z)1/2y are in B. In case n is in Nx, (nz)i/2 = 2(n • ez)1/2 = (n • z)1/2

+ 2(n • z*)1/2 and (zn)x/2 = 2(n • ze)1/2 = (n • z)1/2 — 2(n ■ z*)1/2 by Lemma

2.8. In case n is in JV0, (nz)1/2 = (n • z)1/2 — 2(n • z*)x/2 and (zn)i/2 = (n • z)1/2

+ 2(n-z*)1/2bythe same lemma. So in either case y(zn)1/2, y(nz)i/2,(zn)1/2y, and

(nz)i/2y will be in B provided y(n • z*)1/2 and (n • z*)x/2y are in B. But, in fact,

for any z in A(\), z* is in 4(£) and so y • (n • z*) is in C and, as in the preceding,

y(n • z*)i/2 and (n • z*)x/2y are in B.

We now remark that, for all x in *4 + A*, Nx + xN c B by nilstability, ex

and xe and consequently fx and x/ are in B by Lemma 2.1, and therefore, by

Lemma 2.11, *4 + 4* c /. So we have shown that 4JV + JV4 c /, and to show

that 4/1/2 +/1/24 c / now requires only showing that e/1/2 (and consequently

f1/2e,/71/2, and Ix/2f) and A($)Ix/2 + /i/24(2-) are contained in /. We begin with

the former.

Lemma 2.12. If x is in Ix/2 then ex is in I.

For all y in 4(£), we have, by Lemma 2.7, x*y = — y*x is in B and yx* = — xy*

is in B. Further, x*e = ex* = x*/=/x* = \x* is in B. Finally, for all n in JV,
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x*n and nx* are in A* + *A + N czB. Thus x*, and consequently ex = \x + x*,

are in /.

Lemma 2.13. If x is in Il/2 and y is in 4(£) then xy and yx are in I.

We have that (xy)x, (xy)0, (yx)x, and (yx)0 are in JV since x is in I1/2, and

(yx)i/2 = _ (x.y)i/2 so we need only examine (xy)l/2. But,for all n in JV, (xy)l!2 n

and n(xy)i/2 are in *4 + 4* + JV cz B. Also (xy)x/2e and e(xy)x/2 are in A(\) cz B,

so we need only examine products (xy)x/2z and z(xy)x/2 with z in A(\). Replace

a and y in (2) by y and z, respectively, and obtain z(xy) + (yx)z — 2(xy)z

= 2(zy)x — (yz)x — x(zy). The right side here is a member of B since x is is in /.

On the left, the terms z(xy)x, z(xy)0, etc., are in B by nilstability, and, therefore,

for all z in 4(i), z(xy)x/2 + (yx)x/2z - 2(xy)x/2z is in B. Now (xy)x/2 = - (yx)x/2

so that

(16) z(xy)x/2 - 3(xy)x/2z is in B.

By Lemma 2.7 we can call (xy)x/2z = ax + ax/2 + a0 and z(xy)1/2 = (ax + 4rx)

- a1/2 + (a0 - 4r0) where rt = l(xy)i/2z*']y = \_z*(xy)1/2]y andr0 = [(xy)1/2z*]0

= \_z*(xy)y/2]0. Then (16) becomes: — 2ay + 4r¡ is in Ny and — 2a0 — 4r0 is in

JVo- But, by repeating the preceding argument with z* in the place of z we obtain

in place of (16): z*(xy)i/2 — 3(xy)yj2z* is in B for all z in 4(|). That is, rx is in

JVi and r0 is in JV0 and therefore ax is in JV1 and a0 is in JV0 so that (xy)1/2z and

z(xy)l/2 are in B. This completes the proof of Lemma 2.13 and at the same time

produces the following desired result.

Theorem 2.3. The set I is an ideal and N cz I cz B.

3. Classification of 4.

Theorem 3.1. 4 is Jordan admissible.

Since 4 is simple and e is not in /, JV cz / = 0 and 4 = eP + A(\) +/P.

By Lemma 10 of [3], A(\) ■ A(i) cz IF. From this fact follows the argument

on p. 331 of [4] by which it is shown that 4 + is Jordan.

Now let ô(x) — cty + a0 for each x = <x¡e + x1/2 + a0/in 4. Then <5 is a linear

functional. We shall show that <5 satisfies, for all x, y, and z in 4,

(a) ô(xy) = S(yx),

(b) <5[(xy)z] = <5[x(yz)], and

(c) ö(x) = 0, whenever x is nilpotent.

Then it is known that the set Ns of all x in 4 for which ô(xy)= 0 for every y in 4 is

an ideal of 4 containing the nilradical. Now ö(ee) = 5(e) = 1 so, as before, Ns = 0.

In fact we shall show that Ô satisfies the three properties in the attached algebra

4+ ; hence N¿ is an ideal of 4+ containing the nilradical of 4+. But N¿ and Ns

are the same subspace since 6(x ■ y) = {S(xy + yx) = \-[S(xy) + <5(_yx)] = ô(xy).

Hence 4+ is semisimple and consequently is either simple or else the direct sum
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4(1) ©4(0). The latter contradicts the simplicity of 4, so that, pending proofs

of (a), (b), and (c), we have the following.

Theorem 3.2. 4 is J-simple.

To prove (a) write x = axe + xx/2 + a0/and y = ßxe + yx/2 + ß0fand, using the

corollary to Lemma 2.7., xx/2yx/2 = yxe + a1/2 + y0/andy1/2x1/2 = y0e-a1/2 +yxf.

Then xy = (ctxßx + yx)e + (xy)m + (a0ß0 + y0)f and yx = (a^ + y0)e + (yx)x/2

+ (<x0ß0 + yx)f so that b(xy) = axßx + yx + oc0ß0 + y0 = b(yx). Of course

b(x ■ y) = b(yx) since x • y — y ■ x.

To verify (b) observe first of all that <5[(xy)z — x(yz)~] = b[(x-y)-z — x-(yz)~\

so that b satisfies (b) in 4 if and only if it does in 4+. By (2) and the linearity of b,

b[x(yz)~] + (5[y(xz)] + <S[(zy)x] + <5[(zx)y] = 2¿[(xz)y] + 2<5[(yz)x], which, by

application of (a) to its right member, becomes — (5[x(yz)] — <5[y(xz)] + ¿[(zy)x]

+ <5[(zx)y] = 0. Applying (a) again produces — <5[(yz)x] — <5[(xz)y] + <5[x(zy)]

+ <5[y(zx)] = 0    or    b[x(zy) — (xz)y~\ = b[(yz)x — y(zx)~\.    Consequently

4b[x -(yz)-(x-y)-z~]

= b[x(yz) + x(zy) + (yz)x + (zy)x — (xy)z - (yx)z — z(xy) — z(yx)~\

= 2b[x(yz) — (xy)z + (zy)x — z(yx)] = 4<5[x(yz) — (xy)z~\.

Now b can be shown to satisfy (b) in 4+ by a direct computation. Let

x = ate + x1/2 + a0/,   y = ßxe + yx/2 + ß0f,   and    z = yxe + zx/2 +y0f.   Then

x-(yz) = a1/?1y1e+a1(y1/2-z1/2)1+K/9i+^o)(^i/2-Zi/2)i+Kyi+)'o)(^i/2-)'i/2)i

+ [x-(yz)]1/2 + a0ß0y0f + a0(y1/2-z1/2)0 + i(p\ + ß0) (xx/2-zx/2)0

+ i(?i + yo)(xU2 • ^1/2)0- If we call (x1/2 • yxl2)x = <pe, then, by the corollary

to   Lemma   2.7,   (x1/2 • y1/2)0 = 4>f    Similarly,   let   (x1/2 • zí/2)x = \¡/e   and

(.V1/2 • Zi/2)i = ae. Then b[x • (y ■ z)] = ocxßxyx + <x0ß0y0 + (ctx + a0)co

+ (ßi + ßoW + (?i + 7o)0-1° the same way we find the value of b[(x ■ y) • z] and

so verify (b) in 4+.

Property (c) can be obtained by observing that 4 has the subspace decomposition

4 = IF + uF + A(\) where u = e —f and so u2 = 1 and u ■ x = 0 for all x in

A(\). Let x = <xx + ßu + x1/2, with x2/2 — yl, be any element in 4, then b(x) = 2a

and x2 = (a2 + ß2 + y)l + 2a/?w + 2ax1/2 so that

(17) x2 - 2ax + (a2 - ß2 - y)l = 0.

Whenever x is nilpotent, the minimal polynomial for x is of the form xk for some

k> I and divides the left member of (17), so that k = 2 and 2a = b(x) = 0. By

the agreement of powers in 4 and 4+ b satisfies (c) in 4 + as well.

Moreover, it is shown in [10] that 4 satisfies the flexible law by showing that,

as a consequence of (2) and properties (a) and (b) of b, b[((xy)x — x(yx))z~\ = 0 for

all x, y, and z in A. Thus (xy)x — x(yx) is in JV¿ and so vanishes for all x and y in 4.
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Being flexible and J-admissible, 4 is known [12] to satisfy the Jordan identity.

We can summarize the results of this section in the following principal result.

Theorem 3.3. If A is a nilstable central simple strictly power-associative

algebra of degree two satisfying (1) over afield of characteristic i=2,3 then A is

a noncommutative Jordan algebra that is J-simple.

The multiplication table for every such algebra has been described [9]. On the

other hand, when F has a characteristic different from zero and the assumption of

nilstability is dropped, examples of commutative (hence satisfying(l)), power-

associative, central simple, degree two algebras are known [5] that fail to satisfy

the Jordan identity because they are not «-stable with respect to every idempotent

u they possess.
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