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1. Introduction. Let K be the open unit disk and A, the unit circle. It is well

known that if/ is a bounded analytic function on K then it has nontangential

boundary values/*(e,e) a.e. (almost everywhere) on A. We say / is an inner

function if |/* | = 1 a.e. on A. Inner functions have been used to advantage in

answering questions about certain spaces of analytic functions on K. In this

paper corresponding results are obtained for more general regions using a gen-

eralization of inner function.

First let us state one result for the disk. Let A(K) be the class of functions

continuous on K and analytic on K. Under pointwise addition and multiplication

A(K) is a Banach algebra where for/e A(K) the norm of/ is defined by

||/|| = max |/|.
K

The following theorem describing the closed ideals of A(K) was proved inde-

pendently by A. Beurling (unpublished) and W. Rudin [8].

(1.1) Theorem. If I is a closed ideal of A(K) then there is a closed set E on A

and an inner function <p such that I = {feA(K)\f = 0 onE;f/(j) is bounded on K}.

A direct translation of this theorem for other regions is not true in general.

For let R be an annulus {z | rL < | z | < r2} and T the boundary of R. A bounded

analytic function F on R will have nontangential boundary values

F*(rjeie),j = 1,2, a.e. on T. Let A(R) be the Banach algebra of functions continuous

on R and analytic on R. For £ fixed in R, 1={F e A(R) \ F(Q = 0} is a closed ideal

of A(R). Suppose (1.1) is true for ^4(R). Then there is a closed set E on T and a

bounded single-valued analytic function 4> on R with | <t>* | = 1 a.e. on T such

that J = {Fe^(R)|F = 0 on E; F/4> is bounded on R}. Since z - Ç is in I it

follows that E is the empty set. It also follows that O must be bounded away from

zero near T. This in turn means that O can be extended to be analytic in a neigh-
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borhood of R. Then | $ | = 1 continuously on T. Also O has a simple zero at £ and

vanishes nowhere else on R. Thus log | <ï>(z) | = - G(z,Ç) where G(z,Ç) is the

Green's function of R with singularity at £. Then i>(z) = exp[ -(G(z£) + iH(z))]

where H(z) is the harmonic conjugate of G(z,Ç) on R - {£}. But the period of

H(z) along r^'6 is not a multiple of 2n and thus í> is not single-valued, con-

tradicting our assumption. However, this example does suggest how we should

generalize the notion of inner function : we must permit an inner function to be

multiple-valued.

In this paper we will be considering a region R on a Riemann surface which

satisfies the following conditions:

(a) R, the closure of R, is compact.

(b) T, the boundary of R, is union of a finite number of disjoint simple closed

analytic curves Tu r2,---,TN.

(c) R lies on one side of T.

A(R) will denote the Banach algebra of functions continuous on R and analytic

on R. One of our main results is the determination of the closed ideals of A(R).

For j = \,2,---,N let <S>j be a 1-1 analytic map from an annulus

R0 = {z | rx < | z | < r2}, where rt < 1 < r2, onto a neighborhood of Tj such that

í)j(A) = Fj and 3>/R0 n K) c R. Let v be the measure induced on T by the

measure d6 on A = {e'8| 0 iS 0 < 27c} and the homeomorphisms 07- restricted to

A, j = l,2,-,N.

A multiplicative function F on R is a multiple-valued analytic function on R

such that | F | is single-valued. In §2 we show that if F is a bounded multiplicative

function on R, then | F | possesses nontangential boundary values a.e.-v (almost

everywhere with respect to v) on T. A bounded multiplicative function 3> is an

inner function if | <S> | = 1 a.e.-v on T. For i> an inner function and E a closed set

on T we define /(<D) = {FeA(R)\ |F|/|0| is bounded on R} and

1(E) = {Fe A(R) | F = 0 on £}. It is easy to see that 1(E) is a closed ideal of A(R).

In §4 we show that J(<D) is also a closed ideal of A(R). In §7 we prove the following

generalization of (1.1).

Theorem 1. If I is a closed ideal of A(R), there is an inner function 0 and a

closed set EonT such that I = /(<D) 01(E).

Before stating our second main result we need some more definitions. Hœ(R) is

the Banach algebra of bounded analytic functions on R with the norm

|| F I = supÄ| F \. Hp(R) for 1 ^ p < co is the class of analytic functions F on R

such that | F |" has a harmonic majorant on R. In §7 we show that HP(R) is a

Banach space where || F ||p = (HF(t0))1,p for i0 a fixed point on R and HF the

least harmonic majorant of | F \p on R. It turns out that H2(R) is a Hilbert space

with this norm. A closed subspace C of H2(R) is said to be invariant if FG e C for

all FeA(R) and all GeC. For $ an inner function we define

(C$) = {F e H2(R) | | F |2/1 d> |2 has a harmonic majorant on R}. In §8 we show
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C(í>) is a closed invariant subspace of H2(R). The following theorem is proved in

§9.

Theorem 2. If C is a closed invariant subspace of H2(R) then there is an

inner function O such that C = C(G>).

This theorem reduces to the known result for the case R = K due to A.

Beurling [1]. Beurling's theorem has been generalized in many ways. (See [3,

Chapter 7].)

2. Hp(K) and boundary values onT. We will first review some of the properties

of functions in Hp(K). Where other references are not given we refer the reader to

[3].
It is almost immediate from definition that the classes Hp(K) are invariant

under conformai transformations of K. For suppose s maps K conformally onto K.

LetfeHp(K) where 1 g p < oo and let ft be a harmonic majorant of \f \p. Then

h • s is a harmonic majorant of \f ■ s \p. Thus/ • s e HP(K).

Hp(K) is usually defined as the class of analytic functions f on K such that

Jo"|/(rel9) \p d9 is bounded for 0 < r < 1. The previous definition is of course

equivalent to this one. (See [7].)

If feHp(K), l^p^co, then/has nontangential boundary values f*(e'e) a.e.

on A,f*eLp(A,d9), and if/#0 then log |/* | eLt(A,dO). HP(K) is a Banach

space with the norm ¡/ ||p = ((l/2n) \ln\f*(eie) \pde)1/p for 1 =;> < oo and ¡/ ||œ

= ||/* iU«, = supx|/1 for j> = oo.
If k is a non-negative function in Lp([0,2it],d6), l_p^oo, such that

log k(9)eLl([0,2n],de), then

(2.1) h(z) = exp (1/2t0 f "(log /c(0))^-±-^ dd
Jo e       z

is in HP(K) and | h*(eie) | = k(6) a.e. A function which can be represented as in

(2.1) is called an outer function.

The next result follows almost from definition.

(2.2) Lemma. If f and g are outer functions and /*/ g* e Lp(A,dQ) then f/g

is an outer function in HP(K).

If in formula (2.1) we let k = \f* | for/e HP(K) and/#0, the resulting function

is denoted by f1 and is called the outer factor of /. Note that |/f | = |/* | a.e.

on A. ïîfeHp(K) then f0=f/f1 is an inner function and is called the inner

factor off. (This terminology is due to A. Beurling.) We have then for/e HP(K)

that/=/<>/!. The representation off as the product of an inner function and an

outer function is unique. For iff = gh where g is an inner function and h is an

outer function then |/f | = \f* | = [ g* \ \h*\ = \h*\ a.e.. Thus fx = h and

fo = h.
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For /,geHX(K) we say / divides g (written f\g) if g/feHJJC). Inner

functions on K display an important property with respect to this relation :

(2.3) Lemma. If 3F is a collection of inner functions on K then there is an

inner function (p such that

(1) cp\fforallfe&.
(2) If a is an inner function such that a\f for allfeHF then a\<f>.

For <f> and SF as above <p is called a greatest common divisor (written g.c.d.)

of !F. If \¡í is also a g.c.d. of J5" then \j/ = X(p for some constant X with | X | = 1.

We will need the following lemma later.

(2.4) Lemma. Let ¡F be a collection of inner functions on K and <p a g.c.d.

of' !F. If h and a are inner functions on K such that a\hffor allfe SF, then a\h<p.

Proof. Let 5 be a g.c.d. of the collection of inner functions <S= {hf\fe^}.

Then h(f) 15 since h<p | hf for all/e SF. Then ß = ô/(hcp) is an inner function and

ö = ßh(p. Thus ßh(p\hf for a\\fe& and hence ß<p\f for a\\fe&. Thus ß<p\<p.

This implies ß is constant. Hence h<¡> is a g.c.d. of IS. Therefore a\h<j> since a\g

for all ge&.

The existence of boundary values on T for functions in HP(R) is deduced

quickly from the existence of boundary values of functions in HP(K). Let F e HP(R)

and a be a simple arc on T. Let ß be a simple arc with its interior in R connecting

the end points of a such that ß (Ja bounds a simply connected region JF. Let P be

a 1-1 analytic map of K onto.yT. Then P can be extended to be a homeomorphism

of R. onto JF = JF\Ja\Jß and to be 1-1 analytic in the neighborhood of the

inverse image of the interior of a. Then FPeHp(K). This is clear for p= co.

For 1 :£ p< co let H be a harmonic majorant | F |p on R. Then H • P is a

harmonic majorant of |F •'P|p on K and thus F-PeHp(K). Thus F-P has

nontangential boundary values a.e.-d6 on A which implies F has nontangential

boundary values a.e.-v on a. Since the boundary function of F • P is in Lp(A,dO)

it follows that the boundary function of F is in Lp(oe',v) for any proper subarc

a' of a. These comments yield the following theorem.

(2.5) Theorem. If Fe HP(R), 1 g p ^ co, then F(i) approaches a limit

F*(x) as t approaches xeT nontangentially for a.a.-v (almost all with respect

to v) xeT; and F*eLp(T,v).

The obvious adjustments in the above remarks give us :

(2.6) Theorem. If F is a bounded multiplicative function on R, then \F(t)\

approaches a limit | F*(t) | as t approaches xeT nontangentially for a.a.-v

xeT; and | F* \ eLJX,v).

3. Modulus invariant analytic functions on A and multiplicative functions on R.

In this section we investigate a correspondence between certain analytic functions
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on K and the multiplicative functions on R which arises by viewing K as the

universal covering surface of R.

(3.1) Definition. T is a map from K onto R which has the following properties :

(a) T is analytic and locally 1-1.

(b) Given a path(3) a on R and a point z e K with T(z) = a(0) there is a

unique path & on K such that a = T- & and 5(0) = z.

That such a map Texists is well known. (See [9, Chapter 4].) It is easy to see

that Tis 1-1 if and only if R is conformally equivalent to K.

(3.2) Definition. S is the set of all fractional transformations s(z)

= X{z — a)/(äz — 1), where X and a are constants with | X | = 1 and \a\ < 1,

mapping K conformally onto itself such that T- s = T.

S is then a Fuchsian group without fixed points. That is, S is a group under

function composition ; if s 6 S and s is not the identity then s(z) ^ z for all z e K ;

and given any zeK the set {s(z)\seS} has no accumulation point in K. (See

[9, Chapter 9].) Also S is transitive in the sense that if T(zx) = T(z2) for zl,z2e K,

then there is a unique seS such that s(zx) = z2. (See [9, Chapter 4].) Of course

when T is 1-1 S contains just the identity.

An analytic function/ on K is said to be invariant iff ■ s =/ for all seS. A

measurable function m on A is said to be invariant if m ■ s = m a.e. on A for all

seS. Since

||/-s-/||p=   ^i/2n)^"\f*-s-f*\'dej"

for 1 ̂  p < oo and

|/-«-/|.-!/•••-/•!*.

we have :

(3.3) Lemma. Iffe Hp(K), 1 ̂  p ^ oo, thenf is invariant if and only iff* is

invariant.

An analytic function/on K is said to be modulus invariant (written m.i.) if

\f ■ s | = |/1 for all s e S. Note that/ is m.i. if and only if for each se S there is a

constant Xs, \ Xs \ = 1, such that / • s = Xsf.

We deal next with the correspondence induced by T between the modulus

invariant analytic functions on K and the multiplicative functions on R.

(3.4) Definition. By Tz for z e K we mean the map T restricted to a neighbor-

hood of z where Tis 1-1. For/ an m.i. analytic function on K we define /■ T~l

as the set of function elements/ • (Tz)~ * centered at T(z) for all zeK.

(3.5) Lemma. If f is an m.i. analytic function on K then f-T'1 isa

multiplicative function on R.

(3) By a path we mean a continuous map from the closed interval [0,1].
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Proof. We will show first that/- T~l is a (multiple-valued) analytic function

on R. Consider function elements/• (T2l)-1 and/-(T22)-1 in/-T-1. Let

tj = T(zj), j = 1,2. Let à be a path in K from zx to z2 and let a = T- à. Then for

Fx=f-(TS(x)yi, O^x^l, we see that Fi=f-(T22)~1 is the analytic

continuation of F0 =/-(T2l)-1 along a. On the other hand let t be any point

on R and /? a path from ix to t. Then there is a path ß in K such that ß = T- ß

and J?(0) = zt. Then/ • (Ti(1))- ' is the analytic continuation off ■ (TZl) ~x along ß.

We have then shown that F • T~l is a multiple-valued analytic function

on R.

It remains to show that F • T-1is multiplicative. Let/- (T2) -1 and /• (Tz.)-1

be function elements off ■ T~ l at a point f = T(z) = T(z'). By the transitivity of

S there is an s e S such that s(z) = z'. Since / is m.i. we have

|/(z')| = |/(s(z))| = |/(z)|. Thus |/-(T2.)-1(f)| = |/(*')| = |/(z)|

= |/*(Ti) 1(t)\. Hence f-Tl is multiplicative. This completes the

proof.

As is easy to see/ • T_1 is single-valued if and only iff is invariant. Also, if F

is a single-valued analytic function on R, then/= F • Tis an invariant analytic

function on R and F =/ • T-1.

(3.6) Lemma. // F is a multiplicative function on R then there is an m.i.

analytic function f on K such that F =/• T-1.

Proof. Let F,0 be a function element of F at f0 = T(z0). Consider the function

element Fto • T2o at z0. Let à be a path starting at z0 and let a = T- à. Let Fa(1) be

the analytic continuation of F,0 along a. Then Faa) • Tä(1) is the analytic con-

tinuation of F,0 ■ Tzo along a. We have then that F,0 ■ Tzo generates an analytic

function / on K.

We show next that/ is m.i. Let se S and z, = s(z0). Let $ be a path in R from

z0 to zx. Then/- (TZl)-1 at i0 is the analytic continuation of F,0 along ß = T- j8.

Thus | Fi01 = |/ • (T2l)-11 in the neighborhood of r0. Now since T= T- s we have

that(T2l)-1 • T20 = s in the neighborhood of z0. Hence |/(z) | = |/-(T2l)-1(T20(z))|

= \f ■ s(z) | in the neighborhood of z0. Thus |/| = \f • s | on all of K. Thus/

is m.i.

Now F(0(=/-(T2o)-1) is a function element of both F and/- T-1. Thus

F=f-T~\

(3.7) Lemma.   If f and g are m.i. analytic functions, thenf • T-1 = g • T-1

¡/ and only if there exists se S such thatf= g ■ s.

Proof.  Assume / • T- x = g ■ T~1. Let Ft0 be a function element of F =/ • T- J

at a point i0 on R. Then there exist z0, Zj e R such that T(z0) = T(zx) = t0 and

/• (T20)-1 = Ft0 = g- (T21)-1, and there exists se S such that s~1(z0) = zt. Now

T=Ts~1;   thus   (T2o)-1 = s • (TZl)-1   in   the   neighborhood   of   i0.   Then
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g ■ (TZl)~l =/ • (TZo)~ ' =/ • s (T2l)~l there. Therefore g =/ ■ s in the neighborhood

of zlt and g =/ • s on K. This proves half of the lemma.

Assume now that there exists se S such that f=g-s. For z0 fixed in K let

z1 = S-1(z0)-Then/-(TZl)-1=/-S-1-(T2o)-1 = g-(TZo)-1.Since/-(Tzir1and

g ■ (Tzo) 1 are function elements in / • T ' and g ■ T 1 respectively, it follows

that/-r-1«*-T-1.

A proof of the following lemma is in [7] for the case when R is a plane region

which will carry over for more general R.

(3.8) Lemma. If F is a (single-valued) analytic function on R andf = F • T,

then F e Hp(R), l^p^oo,ifand only iffeHp(K).

4. Modulus invariant inner functions on K and inner functions on R. We will

show here that under the correspondence f->f-T~l between m. i. analytic

functions on K and multiplicative functions on R, m.i. inner functions on K

correspond to inner functions on R. This will enable us to prove that 7(i>) is a

closed ideal of A(R) for 0 an inner function on R.

We say two points z¡ and z2 in K are equivalent if there exists s in S such that

s(zi) = z2. Two subsets Kt and K2 of R are said to be equivalent if there exists s

in S such that siKj) = K2.

(4.1) Definition. A is a simply connected subset of A* which has the following

properties :

(a) For A0 the interior of A, 0 e A0 and no two points of A0 are equivalent.

(b) Any point in K has an equivalent point in AnK.

(c) The boundary of A is a simple closed piecewise analytic curve.

(d) The closure of that part of the boundary of A which is in K consists of

a finite number of analytic arcs which are pairwise equivalent and such that any

two meet at no more than one point. These are called the inner sides of A.

(e) That part of the boundary of A which is on A is nonempty and consists

of a finite number of disjoint subarcs of A. These are called the free sides of A.

We further stipulate that no two points which lie on disjoint free sides are

equivalent.

For the existence of A see [4, Chapter 7] and [10, pp. 512-514, 525].

Since A has a finite number of sides we have :

(4.2) Lemma. There is a finite subset S' of S such that \^JS€S' s(A) is a

neighborhood of A in K.

By the reflection principle Tcan be extended to be analytic and locally 1-1 in

the neighborhood of the free sides of A; and disjoint free sides will map onto

disjoint boundary curves of R. Thus there are JV free sides of A, ylt ■••,yw where

T(y¡) = Tj. We let y = \Jyj and SI = Usess(y). Then SI is an open subset of A

and Tcan be extended to be analytic and locally 1-1 in the neighborhood of K U £2.

A proof of the following lemma can be found in [10, p. 525].
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(4.3) Lemma.    \ad6 = 2n.

By virtue of this lemma we have that for T* the restriction of Tto SI, T* is

defined a.e. on A. It follows that if F e Hp(R) and/ = F ■ T, then/* = F* ■ T* a.e.

on A. Also we have:

(4.4) Lemma. // F is a multiplicative function on R and f is an m.i. analytic

function on K such that F =/• T_1, then F is an inner function if and only iff

is an inner function.

We can now prove:

(4.5) Theorem. J/<D ¿s an inner function on R then J(<D) is a closed ideal of

A(R).

Proof. It is immediate that J(<p) is an ideal. We must show that I(<S>) is closed.

By (3.6) and (4.4) there is an m.i. analytic inner function (j> on K such that

O = (j, ■ T~\ Now | <¡> | = | $ | • T. Hence if FeHJR) and / = F ■ T, then

| F |/1 O | is bounded on R if and only if (j) \f. Suppose G„ -> G in A(R) where

Gne /($). Let g = G • T. We will show that </> | g which implies G e 7(0). This in

turn shows that /(<£) is closed. Let g„ = Gn ■ T. Then g„-+g in HX(K). Also

cp | gn.   That   is,   K = gJtpeHJK).    Now    || hn - hm \n = \\ h*n - Ä • ||Loo

= «<¿*ikK-/i*,ik = wpk-pkWl* = ik:-?: ik - oas
n,m-> oo. Hence there exists heHx(K) such that || h„ — h \\m -+ 0 as n-* oo.

Thus ik„-#iu = n#„-#iu = i </>*/!„* -^^iz.00 = h:-ft*ik
= I h„ — h ¡a, ->0 as n -> oo. Therefore g = (¡>h on R". That is, <j> | g which is

what we wanted to show.

We conclude this section with two central facts about m.i. inner functions.

(4.6) Lemma. If feHp(K) andf^f^ are its inner and outer factors respect-

ively, thenf0 andft are m.i. iff is m.i.

Proof. Let seS. Then since/ is m.i. there is a constant aeA such that

(/o ' s)(/i " s) —f ' s = a/ Note that/0 • s is an inner function and f1- seHP(K).

Let h0 and hx be the inner and outer factors of fx • s respectively. Then

/i — (^o ' s_1)(/ii - s_1). Since h0 ■ s_1 is an inner function and /t is an outer

function it follows that h0 • s_1 = b for some constant J? e A. Therefore/! ■s = b-h1

and thus af0fx = b(f0 ■ s)hv Then ft = ^ and af0 = b(f0 ■ s). Then ft • s = i)/!

and/g • s = (a/ b)f0. Since s was picked arbitrarily from S the lemma is proved.

(4.7) Lemma. Let SF be a collection of inner functions on K which are m.i.

If 4> is a g.c.d. of'SP', then </> is m.i.

Proof. Let OF = {ft | i el} for some index set I. For each i el let ht =fi/4>.

Then h¡ is an inner function and /¡ = (¡¡h^ Fix seS. Since each f is m.i.

there are  constants  b¡ e A  such  that /, = b¡(fi ■ s) = (4> ■ s) (b¡(h¡ ■ s))   and
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/. = hfjt ■ s-1) = (<p ■ s-1)(i,(Ä, • s-1)). Note that (¡> ■ s, h¡-s, <p • s-1 and ht -s-1

are inner functions. Thus </> • s |/¡ and </> ■ s~' |/; for all/ e SF. Since (p is a g.c.d.

of #" it follows that (j) ■ s\(j) and 0 • s-1 | <p. The latter relation implies <p\(p ■ s.

Thus 0 and (j) ■ s divide each other. This implies <p ■ s = b<¡> for some constant

be A. Since s was picked arbitrarily from S the lemma is proved.

5. A generalization of the F. and M. Riesz Theorem on measures. We denote

the space of continuous complex-valued functions on T by C(T) and the class of

continuous first order differentials on T by D(T). To a, a continuous first order

differential in the neighborhood of T, we associate a* e D(r) as follows. In terms

of the uniformizer reie = <P,T'(r) in the neighborhood of Fk, a has the form

ak(re'e)dr + bk(re'e)d6 where ak and bk are continuous. We define a* as bk(e,e)dd

onTt.

A proof of the following lemma is in [5, p. 8].

(5.1) Lemma. If P and Z are disjoint finite collections of points on R, then

there exists a function F meromorphic on R with zeros at points of Z and poles

at points of P of prescribed orders and no other zeros or poles on R.

Suppose d is a divisor on R. Then by (5.1) there is a function F meromorphic

on R which has d as its divisor on R. Also there is a meromorphic differential on

R with d as its divisor. For let at be a meromorphic differential on R and let dt

be its divisor on R. Let F be a meromorphic function on R with divisor d/dy.

Then a = F^ has d as its divisor on R.

In particular we have that there exists a nonvanishing analytic differential on R.

We fix one and denote it by co. Then for a e D(T), a/œ* e C(T) and we define

¡a|| = maxr|a/a>*|. Then D(T) is a Banach space isomorphically isometric to

C(T) by the mapa->a/co*.

Propositions 1, 4 and 7 and Theorem 2 in [6] yield the following theorem.

(5.2) Theorem. // L is a continuous linear functional on D(T), then there

exists a function F e H^R) such that L(a) = JrF*a for allae D(F) if and only if

L(ß*) = Ofor all analytic differentials ß on R.

(5.3) Corollary. // p is a Borel measure on T such that §rWdp — Ofor all

W eA(R) then there exists FeH^R) such that F*a>* = dp as a measure on T.

Proof. We define L, a continuous linear functional on D(T), by

L(a) = §r(a/a>*)dp. If ß is an analytic differential on R then ß/co is an analytic

function on R and thus L(ß*) = 0. By (5.2) there exists F e H^R) such that

L(a)= JYF*a= ¡T(a/œ*)F*oi* for all aeD(T). This says J"rGF*io*= ^Gdp

for all G e C(T). It follows F*co* = dp.

Corollary (5.3) is a generalization of the well-known result of F. and M. Riesz

for measures on A. (See [3, pp. 47, 51] and [6, §3].)
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In terms of the boundary uniformizer <3>k~1(f) = reta, co* = bk(eie)d6 on rk

where bk is continuous and nonvanishing on Tk, k = \,2,---,N. Hence as a

measure co* = Vdv where V is continuous and nonvanishing on T. Now for p

a Borel measure on T there exists a unique function PeLx(T,dv) and a unique

measure a which is singular with respect to v such that dp = Pdv + da. For

M = P/F we get dp = Ma>* + da. We call Mco* the absolutely continuous part

of dp and da the singular part of dp. This decomposition is, of course, unique.

6. Some lemmas. We will need the following lemma in the proof of Theorem 1.

(6.1) Lemma. //MeL^r.v) then m = M ■ ̂ eL^AJO).

To prove this we will need :

(6.2) Lemma.

S  max \ds(eie)/d6\<œ.
seS   ei9ey

Proof. When S contains just the identity the result is trivial. If S contains more

than one element it contains denumerably infinite elements s,,s2,---. (See

[2, p. 70].)
Let Sj(z) = Xj(z — aj)/(äjZ— 1), where Xj and a¡ are constants, | A,-1 = 1, | a,-1 < 1.

Direct calculation shows |ds(ew)/d0| = (1 - \aj\2)/\âjeie - 112. Now

a j e Aj = sj1 (A) since s/aj)=0 e A. By (4.2) there is J > 0 such that \JJ= t A,- is

a neighborhood of A in R. Since all the a¡ are in K, we have then, that for some

positive constant, b, \elt— a}\>b uniformly for ; = 1,2, ••• and e''ey. Thus

we have

\dsj(eie)/d0\= (l-|a,|2)/|¿,eie-l|2

S l-\aj\2/b2

= ((l + |aj.|)/&2)(l-|a,.|)

á (2/b2)(l-|a,|)

for;' = 1,2,— andei8ey.

Hence it remains to show El — |a;| < co. To this end consider a function F

analytic and not identically zero on R with a zero at f0 = T(0). Such a function

exists by virtue of (5.1). Then /= F ■ T is a bounded analytic function on K, not

identically zero and f(af) = F(T ■ s]i (0)) = F(T(0)) = F(t0) = 0. This implies

Il - | a¡| < co. (See [3, p. 63].) This proves (6.2).

Proof of (6.1). First note that MeL^r.v) means that M ■ O*eLi(A,í?0) for

k = l,2,-,N.
If S contains just the identity, then N = 1, T is 1-1 analytic on R and thus

M • T* = M • Ox • Of1 • T*eLi(A,dd) which proves the lemma for this case.
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Assume S has infinitely many elements s^Sj,---. We let T*be the restriction of

T* to yk. Note that T* is 1-1 on the interior of yk. Since T is analytic and locally

1-1 onKUÎÎ there is a P>0 such that |d(Tt*)_1 • Ot(e'*)Aty> | < P for all

e'*eA, k = 1,2, -, JV. If we let Q = max* P JA | M • Ot(e'*) | d<¡> and
e'* = <Dt_1 • T£(eia) we have for k = 1,2,-, W

f  \m(eix)\da =  f | M • O, • ̂  ' • T*(e;") | doc
•'vit Jyic

= P Í |M-0(e'*)|^

/ d(T*)-l-<!>k(el*)\

\ d<¡> )
d(j>

= Q.

Thus for j = 1,2,-" and fe = l,2,--,JV

= 6 max |ds/e'")/da|.

Using (6.2) we get

f   \m(eie)\d6=  !   \m(eie)\dO
J\ Ja

=   f    Í  f        \m(ei9)\de
j=l k = l Js,(?k)

= NQ   Î   max|ds/eia)/da|
y = l    e*"ey

<    00.

In the proof of Theorem 1 we will also use

(6.3) Lemma. Let Cj and C2 be closed subspaces of A(R). Then Cx s C2 if

for any Borel measure p. on Y such that ¡rFdp. = 0 for all FeCt it follows

jrFdp = OforallFeC2.

Proof. For FeA(R) we let F* be the restriction of F to T. Then

A* = {F*\FeA(R)} is a closed subspace of C(T) and the map F->F* is an

isometric isomorphism of A onto A*. Then for C*= {F* \Fe Cj}, j = 1,2, C*
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and C*are closed subspaces of C(T). Assume Ct $ C2. Then there is a function

G* 6 C* — C* Hence there exists a continuous linear functional L on C(T) such

that L(F*) = 0 for all F* e C* and L(G*) ï 0. There exists a Borel measure /i on T

such that Jr Wdp = L(W0 for all We C(T). Thus JYFd/i = ¡TF*dp = L(F*) = 0
for all F e C1( and $rGdp = \rG*dp = L(G*) ^ 0 for some G e C2. This proves

the lemma.

7. Proof of Theorem 1. Assume / is a closed ideal of A(R). We will find an

inner function í> and a closed set £ on T such that / = J(3>) n /(£).

Let J = {feHx(K)\f = F ■ T for some F el} and ^ be the class of inner

factors of functions in J. Let 0 be a g.c.d. of SF. Then <p is m.i. since each function

in SF is m.i. (see (4.6) and (4.7)). Let <t> = (p • T ~\ Then $ is an inner function

by (4.4). We put £ = {<e¡r|F(í) = 0 for all F el}. Clearly £ is a closed set

onT.

We show first that I <=I($)rM(E). Consider F el. Then certainly F e 1(E).

We must show F e J(O). Let/ = F • T and/0 be the inner factor off. Then cp |/0

since/0e^. Thus </>|/, and hence |F|/|0| is bounded on R. Thus Fe/($).

Hence F e J(fl>) n/(£) and / c/(<[>) n/(£). To complete the proof we must

show that I => J(O) n/(£). To this end let p be any Borel measure on T such that

¡rFdp = 0 for all F el. By (6.3) we need only show that $rGdp = 0 for all

GeI(Q)r\I(E).
If F el then WFel for all W e A(R) and thus Jr WFd/1 = 0 for all W e A(R).

By (5.3) there exists Bf e H^R) such that F dp = Bpa* on T. Let Mm* and do- be

the absolutely continuous and singular parts of dp respectively. Then

B*œ* = Fdp = FMco* + Fda on T. It follows that B*-m* = FMco* and that Fda

is the zero measure. The first identity implies B*= FM a.e.-v on T. Since Fda is

the zero measure and F was picked in / arbitrarily, it follows that £ includes the

carrier of a.

We let / = F • T, bF = BP • T and m = M • T*. Then / e HX(K) and èf e /^(R),

and both are invariant. By (6.1) m e LX(A, dB). Clearly m is invariant. Let /0 and/x

be the inner and outer factors of/ respectively, and bF0 and bF1 the inner and

outer factors of bF respectively. Now since B*= FM a.e.-v on T it follows

(7.1) f*f*m =f*m = bj = ^0^i     a.e.-dö on A

Since |/0*| = |^*01 = 1 a.e.-dO, (7.1) gives us ¡b^ |/|/*| = |m| a.e.-d0 on A

and thus f>*1//1*GL1(A,dö). By (2.2) wf = b^/fi is an outer function in H^K).

By (6.1) we have

(7.2) /0*m = bUrtJfT) = b*FOw*        a.e.-dd on A.

We now fix P e J. Rewriting (7.2) with F = P we have

(7.3) p*m = bp0w*       a.e.-dO on A.
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Multiplying (7.2) by p* and (7.3) by/* we get

(7.4) b*FoPo'wF<=f0¥p0'm=f0*bP<0wP*       a.e.-dÖonA.

Thus we have bFOp0wF =f0bPOwP on K. Since wF and wP are outer functions and

bFOp0 and bPOf0 are inner functions, it follows bFOp0 = i>PO/o- Thus p01 bP0f0

for all/oeJ5". By (2.4) p0\<¡)bp0. Then a = 4>bP0/p0 is an inner function.

Multiplying (7.3) by </>*//>* we get

(7.5) <p*m = (4>*bP0/pt)wl = a*w*     a.e.-ddon A.

Let G e I(d>) n /(£) and let g = G ■ T. Since G e /(<£), | G |/1 cp | is bounded on R

and thus <f> \ g. That is, h = g/</> e H^K). Note /j*<£* = g* a.e.-dö on A. Multiply-

ing (7.5) by /ï* we have

(7.6) g*m = h*(f)*m = h*a*w*      a.e.-döonA.

Since g is invariant, g* is invariant; and thus g*m is invariant. Now for d = ocfcwp,

(7.6) shows d* = g*m a.e.-d6 on A; thus d* is invariant. This implies d is invariant.

Note d e H^K). Then D = d- T'1 is single-valued and in Ht(R) by (3.8). Now

GM = D* a.e.-v on T since g*m = d* a.e.-dd on A. By (5.2) we have

JrGMo)*= JrD*cu* = 0.
We showed earlier that E includes the support of o. Since G e 1(E), G = 0 on E

and thus J"r Gd<7 = 0. Hence we have \TGdp= jrGMo)* + jrGdo = 0. Since

G was picked arbitrarily from /(<!>) n /(£) we have I => /(<E>) n /(£). This proves

the theorem.

8. Hp(R). For G(i,t) the Green's function of R with singularity at t, and /

a continuous function on T, it is well known that

(8.1) F(t) = - (1/2«) J /(t) *dtG(f,T)

is harmonic on R, with continuous boundary values/(r)(4).

Let H(t, t) be the harmonic conjugate of G(r, t) on R - t and

W(t,x) = G(t,z) + iH(t,r). W is an additive analytic function on R — t; and

dtIf is an analytic differential on R — t which at t is of the form

- (1/(z(t) - z(t)))dz + (regular terms).

Since G(í,t) = 0 for teT it follows *dtG(r,t) = - idtW(t,x) along T. We can

rewrite (8.1) as

(8.2) F(t) = - (l/2«i) £ f(z)dtW(U t).

Note that — (l/2ni)dxW(t,x) = — (1/2«)*dtG(r,t) is a positive measure on T.

(4) The symbol # i/tG(r, t) denotes the conjugate differential oidxG(t, x).
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(8.3) Theorem. If FeHp(R), l=p=oo, then F(t)=-(í/2ni) ¡rF*(x)dzW(t,x).

Proof. We can assume that R0 as defined in  §1 was chosen such that

O,(R0) O Ot(R0) is empty for ; ^ k. For r1 < p < 1, let

"p= \J{Hpeie)\0^0è2n}

and let Dp be the region interior to Dp. Then, by the residue theorem, for t e Dp

F(t)=  -(1/2*0  Í  F(x)dxW(t,x)
Ja.

=  -(1/2*0 I    f        F(Hz))dW«f¿Z»dz.
y=i J|z| = i "z

Now F ■ <S>j e Hp(R0) c H^Ro). Thus

lim f     | F ■ ®j(peie) - F* ■ Oj ■ (eie) \d0=0.
p-»i Jo

(See [6, p. 20].) Also dW(t,$>j(z))/dz is continuous on {z|pg|z|^l} for

í € Dp. Thus

F(t)=  -(1/2*0 f   Hm    f       F(0/z)) dW^))dz

=  -(1/2*0 1    f       F*(*Áz))dW«f^ dz

=  -(l/2jii) J F*(x)dtW(t,x)

which is what we wanted to prove.

Since C(T) is dense in L^T, v) it follows from (8.2) that for/e L^T, v)

(8.4) F(t) =  - (1/2*0 J f(t)dtW(t,x)

is harmonic on R.

(8.5) Theorem. IfFeHp(R), 1 ̂  p < oo, rJien

Hf(0 =  - (1/2*0 J"  | F*(t) |p W, t)

is the least harmonic majorant of \F\P on R.

Proof. For rt < p < 1 let Slp and Dp be as in the proof of (8.3). Let Gp be the

Green's function of Dp and

Hp(t) =  - (1/2*) f   |F(x)\p *dTGp(t,x).
Jap
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If U is a harmonic majorant of |F(r)|p on Dp, then Hp ^ TJ on £2p and thus

Hp S| U on Z)p since f7p is harmonic on Dp. In particular Hp g f/p. on Z)p for

p £ p'. Since FeHp(R), there is a harmonic majorant U0 of |F|P on R. Thus

//p ^ l/0 on Dp for r1^p^i. By Harnack's principle there is a harmonic

function Ht such that on compact subsets of R, Hp converges uniformly to Ht

as p -> 1. Clearly HL is the least harmonic majorant of | F|p on R.

Now in terms of the boundary uniformizer O,-

. „ ,   .       dGÁt,<bAp¿*))Jn
*dtGp(t,x) = p —    g ~dg

along {3>/pe'fl) 10 ̂  0 ¿ 2n}, where d/dn denotes the outward normal derivative.

Since G(f,r) -Gp(r,T)-»0as p-> 1 uniformly for xeR

dGp(t,<J>j(peie))   _^   dG(t,<t>j(é6))

dn dn

uniformly for 0 ^ 0 g 2% as p -> 1. Now

| F(<D,(pei9))|p -» | F*(<5t(eie)|p as p -> 1 for a. a.-d0 0e [0,2w].

Thus it follows by Fatou's theorem that

HF(t) =   - (l/2n)j    | F*(x) |p * dxG{t,t)

^   lim - (1/27T) f   |F(t)|p*dtGp(i,T)

=  Hmtfp(i)

= Hi(0-

Using Theorem (8.3) and Holder's inequality we also have

|F(()|P=  |-(1/2*) j F**dtG(.t,r)\'

i£  -(l/2n)f  |F*|p*dtG(i,x)

= HF(t).

That is, HF is a harmonic majorant of | F |p. Hence Hí ¿ HF on R. Thus f/x = //f,

which is what we wanted to show.

Observe that by (8.5) (HF(t0))llp defines a norm on HP(R) for t0 fixed on R.

Moreover,we have an inner product on H2(R):

n) j F»,(F„F2)= -(1/2«)      F»iFS *dtG(i0,r).
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For convenience we will let í0 = T(0) although our results do not depend on this

choice.

(8.6) Definition. For 1 ^ p g oo we set Ip = {feHp(K)\f is invariant}.

(8.7) Lemma. Ip is a closed subspace of Hp(K).

Proof. It is clear that Ip is a subspace of HP(K). Suppose /„ -»/ in HP(K).

Then /„(z) ->/(z) for all z e K and thus/„(z) = /„(s(z)) -► f(s(z)) for all s e S and

zeK. Hence/(z) =f(s(z)) and/eIp. Hence Ip is closed.

(8.8) Lemma. The map F -+ F • T is an isometric isomorphism from HP(R)

onto Ip.

Proof. Clearly the map F -* F • T is an isomorphism from Hp(R) onto Ip.

(See Lemma (3.8).) For p = oo it is clear that this map is isometric. Therefore we

consider 1 ̂  p < oo. Suppose FeHp(R). Let/= F • T. Then

***> = (1/27C l^l'l - 2,00*3(0-*) + r*dfl

is the least harmonic majorant of |/|p on K, and (/j/(0))1/p= ||/||p as defined in §2.

Now hf • s is the least harmonic majorant of |/ • s|p = |/|p; thus hf • s = hf.

Thus hf ■ T ~' is a well-defined harmonic function on R and | F |p ^ /tr • T ~* on R.

Hence HF^hf • T~1onR and thus i7F • T _ Jiy on X. But ¿ZF • T is a harmonic

majorant of |/|p; so HF ■ T = A,. Therefore ||F • r||„ = ||/ ||, = (hf(0))1/p

= (r7F(r0))1/p = f F \\p. Hence the map F -» F ■ T is an isometry.

By the preceding two lemmas we have that HP(R) is complete. That is,

(8.9) Theorem. Hp(R) is a Banach space.

(8.10) Corollary. H2(R) is a Hubert space.

(8.11) Theorem. IfQ> is an inner function on Rthen C(O) is a closed invariant

subspace of H2(R).

Proof Suppose FuF2e C(<S>). Let Hj be a harmonic majorant of | Fj \2/\ G> |2 on

R,;' = l,2. Since |FX + F2|2/|<1>|2 = 4(\Ft |2/|4>|2+ |F2|2/|0|2) it follows that

4(7?! + H2) is a harmonic majorant of | Fj + F212/1 <S> |2. Thus C(<S>) is a subspace

of H2(R). It is clear that C(O) is invariant. It remains to show C(<D) is closed.

Let </> be an m.i. inner function on K such that <¡> = <j> • T ~x (see Lemmas

(3.6) and (4.4)). Let F e C(O) and H be a harmonic majorant of | F |2/10> |2. Then

H ■ T is a harmonic majorant of |F- T|2/|0|2 and thus F- T/<peH2(K).

Conversely given fel2 such that f/<t>eH2(K), F =/ • T ~ xe C($). We let

C((/>) = {/eH2(R)|//</>e/i2(R)}. It is known that C((¡>) is a closed subspace of

H2(K). (See [1].) Then C(<f>) n 72 is a closed subspace of H2(K). It follows by our

previous comments and (8.8) that C(O) is isomorphically isometric to C(<p) C\I2.

Thus C(<D) is a closed subspace of H2(R).
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9. Proof of Theorem 2. Assume C is a closed invariant subspace of H2(R). We

consider two cases.

Case I. Not all functions in C vanish at t0.

We let C = {/|/= F • T,FeC}. Then C <=: H2(K). We let & be the class

of inner factors of functions in C and let <p be a g.c.d. of #". Then <£ is an m.i. inner

function on K. (See Lemmas (4.6) and (4.7).) We let <S> = <p ■ T~l. Suppose FeC.

Letf0,f1 be the inner and outer factors of/= F • T respectively. Then <j>\f0 and

thus fjtpe H X(K). Now/iefl2(R) and thus fofjcpe H 2(K). That is, \f\2/\<¡>\2
has a harmonic majorant. Note thatf/(p is m.i. This implies that the least harmonic

majorant h of \f/<p |2 is invariant with respect to S. Thus h • T ~ Ms a well-defined

harmonic function and is a majorant of |F|2/|0|2. That is, FeC(<!>). Thus we

have C(O) => C.

We prove next that C(O) c C and thus C(O) = C. It is sufficient to show that if

B e H2(R) and (F, B) = 0 for all FeC, then (M, £) = 0 for all M e C(<£).

Assume BeH2(R) and (F,£) = 0 for all FeC. If FeC then PFeC for all

P e ^4(R), since C is invariant. Thus

(9.1) 0 = (PF, B)=- (\/2ni) (  PF*B*dtW(t0, x)

for all PeA(R).

Hence by (5.3) there exists ^4FeH1(R) such that

(9.2) F*B*(dtW(t0, x))* = Apo* on T.

Now dTW(tQ,x) is a meromorphic differential on R with a simple pole at f0 and

with no other poles on R. Hence dtW(t0, x) = Dca on R where D is an analytic

function on  R — t0 with a simple pole at t0. By (9.2) we have

F*B*Dco* = F*B*(dxW(t0,x))* = ^*co*

on T. Thus

(9.3) F*B*D = A*P      a.e.-v on T.

Let V be an analytic function on R with a simple zero at f0 and with no other

zeros on R. Then £ = DV is analytic on R and WF = AFVeHr(R). Multiplying

(9.3) by V we get

(9.4) F*B*E = F*B*DV = ¿*-F = W?      a.e.-v on T.

We let/= F • T, b = B ■ T, e = £ • T and wf= !*> • T. Then / and b are in

#2(19, e e Hœ(K) and wf e H^K). By (9.4) we have

(9.5) f*b*e* • w>;      a.e.-d0 on A.

Let/o and wf0 be the inner factors of/and wf respectively, and/j and wfl the

outer factors of/and wF respectively. Then(9.5) yields | wFÍ¡j\ \ = | w*/f*\= \e*b*\

a.e.-de on A. Thus | wF1/ff\ = \ e*b* \ eL2(A,dO). Thus by (2.2) vF = wF1/ft is an
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outer function in H2(K). Note v* = w*Jf* a.e.-dÖ on A. Multiplying (9.5) by

1//* we get

(9.6) f*b*e* = (f*b*e*)/f* = w*//« = w*0vF*      a.e.-dÖ on A.

We now ftxQeC with ô(r0) * 0. With g = Q ■ T we get from (9.6)

(9.7) q*0b*e* = w£0v¿      a.e.-dö on A.

Multiplying (9.6) by q*0 and (9.7) by/0*we get

(9.8) q*0wF'0v*F = q0*f0*b*e*=f*ow*0v0*      a.e.-dÖ on A.

This implies q0wFOvF =foWQOvQ on K. Since % and t;Q are outer functions and

q0wF0 and/0wö0 are inner functions, it follows that q0wFO =/0wß0 on K. Hence

1 o |/owoo f°r a"/o e "^- % (2-4) q01</>Wqo- Thus a = (¡>wQ0/q0 is an inner function.

Multiplying (9.7) by 4>*/q0* we get

(9.9) 0*6*e* = (<?*wlJq*0)vl = a*t>¿      a.e.-dÖ on A.

We now observe that a(0) = 0 by the following argument. First,

WQ(t0)=AQ(t0)V(t0) = 0 since V(to) = 0. Thus wQO(0)wQ1(0) = wQ(0) = IFQ(io) = 0.

Hence wQ0(0) = 0 since wQ1(0) ̂  0. On the other hand q0(0) ^ 0 since

q(0) = Q(t0) ¿ 0. Hence a(0) = <j)(0)wQO(0)/qo(0) = 0. We should also note that

avQeH2(K).

We now consider MeC(<b). Recall that we want to show (M,B) = 0. Let

m = M • T. Then h = m/<f> e H2(K), </>h = m on K and (¡)*h* = m* a.e.-dd on A.

Multiplying (9.9) by h* we get

(9.10) m*b*e* = h*(j>*b*e* = a*h*v£      a.e.-dö on A.

Now since avQ and h are in H2(K) it follows u = aAuQ e H^K). Note that

u(0) = 0 since a(0) = 0. Now since m, b, and e are invariant on K it follows that

m*b*e* is invariant on A. Then u is invariant on K since by (9.10) m*b*e* is its

boundary function.

Set U = u ■ T~l. Then UeH^R). Since u* = m*b*e* a.e.-dö on A we have

U* = M*B*E = M*B*DV a.e.-v on T. Now l/(f0) = w(0) = 0; hence U/V e Ht(R)

since V is analytic on R with a simple zero at r0 and no other zeros on R. We have

then M*B*D= U*/V = (U/V)* a.e.-v on T. Using Theorem (5.2) we conclude

(M,B)=  -(1/2*0 i M*B*dxW(t0,x)

=  - (1/2*0 i M*B*D(o*

=  -(1/2*0 f (U/V)*co*
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Since M was chosen arbitrarily from C(<5) Case I is proved.

Case II. All functions in C vanish at t0.

Let n be the minimum of the orders of the zero at i0 of the functions in C. Let V

be an analytic function on R with a zero of order n at t0 and vanishing nowhere

else on R. Let Ct = {F/V | F e C}. Clearly Ci is an invariant subspace of H2(R).

Also Cj is closed. For suppose \\(Fk/V) — (Fj/V)\\2-*0 as fcj'->oo. Let a be

a positive constant such that | V |2 < a on T. Then

|| Fk - Fj \\22 = - (1/2*0 J  | f*- F*\ %W(t0,x)

^  -«(1/2*1) f|(J^I0-(J!7/F)|a^(lo,t)

= aiK^/n-tF/F)!!2

-► 0 as/fc-» co.

Hence there exists FeH2(R) such that Ft-»F. Since FkeC, FeC. Thus

F/F e Cj and FJV -» F/K Thus Cj is closed. Now by our choice of n and F not

all functions in Ct vanish at t0. Thus by Case I, C1 = C(<1>1) for some inner

function <&!.

Now O2(0 =exp( — nlf(í0,í)) is an inner function on R which has a zero at t0

of order n. Note that <I>2(0 is analytic on R and vanishes nowhere on R — i0.

It follows that both | <D212/1 V |2 and | V |2/1 <D212 are bounded on R. Let <¡> t and
(p2 be m.i. inner functions on K such that <$>j = <pj- T-1, j = 1,2; and let

0 = 4>\.<t>i- Then </> is an m.i. inner function on K. For3> = (¡> ■ T-1, |<E>| = |$i| |02|

on R. We will show C = C(<b). Suppose FeC. Then F/FeCt = C(^t) and

thus [JF'|2/JT^|2|<i>1|2 has a harmonic majorant on R. Since | Fl2/]«!^!2 is

bounded it follows that

|F|2/|0.|2=|F|2/|d)1|2|cD2|2 = (|F|2/|O2|2)(|F|2/|F|2|a)1|2)

has a harmonic majorant on R. Thus F e C(4>) and C c C(<D). On the other hand

suppose F e C(i>). Then | F |2/1 ̂ j |213>212 = | F |2/1 <512 has a harmonic majorant

on R. Since | i>212/1 V |2 is bounded it follows that

|F|2/|F|2|0)1|2 = (|O2|2/|F|2)(|F|2/|O|2)

has a harmonic majorant on R. Thus F/VeC(<S>{) and FeC. Hence C(3»)c=C.

Thus C(<J>) = C which proves Case II.
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