
DISTINGUISHED RINGS OF LINEAR

TRANSFORMATIONS!1)
BY

R. E. JOHNSON

A ring R of linear transformations of a vector space M over a division ring D

is called distinguished iff (1) the lattice J of all P-submodules of M is a distributive

sublattice of the lattice L of all subspaces of M, and (2) the set of all linear trans-

formations of M leaving J invariant is R. The study of such rings is motivated

by a paper of Wolfson [2] in which J is a chain and by several recent papers

of Behrens [4]. Behrens studies Artinian rings R with unity having faithful R-

modules M such that the lattice of P-submodules of M is distributive.

Our primary interest is with distinguished rings R for which J is finite as well

as distributive. Such a condition does not force the ring R to be Artinian. A basic

tool in our study is a lattice theorem (1.1) stating that every element of J is a direct

sum of elements of L associated with the irreducible elements of J. It is shown

that every finite distributive sublattice of L containing 0 and M is the lattice of

submodules of a distinguished ring R. If D has characteristic 0, then a finite

sublattice of L must be distributive in order to be the lattice of submodules of a

ring of linear transformations of M.

A subspace N of M is called ./-distributive iff N n (A u B) = (N O A) u (N n B)

for all A, BeJ. It is shown that JV is ./-distributive iff N = Me for some idem-

potent e e R. All subspaces of M are ./-distributive iff J is a chain. Wolfson proved

that R is a Baer ring (i.e., every annihilating right or left ideal of R is generated

by an idempotent) if J is a chain. We show that this is almost the only case in

which a distinguished ring is a Baer ring.

Every distinguished ring R is a direct sum of subrings of the form e¡Rej, when

1 = ev + ••• + en (direct sum), each efBe,- is a full ring of linear transformations,

e¡Rej = 0 if i<j, and Z^^Pe,- is the radical of R. Two distinguished rings

are shown to be isomorphic iff their vector spaces are related in an obvious way.

1. Introduction. A module DM over a ring D has associated with it a lattice

L(DM) of all submodules and a ring E(DM) of all endomorphisms. For each

subring R of E(DM), we shall always consider M to be a bimodule DMR. Associated

with each sublattice J of L(DM) is a subring R = R(J) = {reE(DM)\Nr cz N

for every N ej} of E(DM). Clearly J cz L(MR). Let us call a sublattice J of DM
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a distinguished lattice (d-lattice) of DM iff J = L(MR). Also, let us call a subring

R of E(DM) a distinguished ring (d-ring) iff R = R(J) where J = LiMjj).

The ring D is restricted in this paper to be a division ring and the module DM

to be a unital module over D (i.e., a vector space over D). Thus, every d-ring is a

ring of linear transformations of some vector space over a division ring. If C(D)

denotes the center of D, then we may consider C(D) <= R(J) for every J c L(DM)

if we define xa = ax for all a e C(D) and xeM. It is well known that there is

associated with each basis B of DM a division ring DB c E(DM) isomorphic to D.

Thus, for each d e D we define d' e DB by xd' = dx, x e B.

It is easily shown that R(L(DM)) = C(D). Hence, L(DM) is a d-lattice of DM iff

D is a field. If B is a basis of DM and J is the sublattice of L(DM) generated by all

atoms of the form Dx and D(x + y), x,yeB, then it can be shown that R(J) — DB.

On the other hand, if J is generated by only the atoms Dx, xe B, then

R(J) = \~[i eA D¡ where A = card £ and D¡ = DB for each i e A. At the other ex-

treme, {0,M} is a lattice of DM having £(DM) as its d-ring.

Our primary interest in this paper is with finite d-lattices of DM and their

associated d-rings. Clearly each d-lattice of DM is a complete, modular lattice

containing 0 and M, and R(J) is a ring with unity. For each N e J, we denote

the lattice dimension of N by dim N (dim N is the length of the longest chain in

the interval [0,iV] of J) and let dim J = dimM. If J = L(DM) then dim/V is the

usual vector space dimension of a subspace JV of M.

If J is any finite-dimensional modular lattice, then Ne J is called irreducible

iff A/ ̂  0 and iV is not a union of lower-dimensional elements of J. Each irreducible

PeJ covers a unique element of J which we will always designate by P°. Clearly

P° = 0 iff P is an atom of J. The set of all irreducible elements of J is designated

by I(J). Given a lattice J and N e J, we shall also let I(N) = {Ae I(J) | A ̂  JV}.

Given a finite-dimensional distributive lattice J, each nonzero NeJ may be

uniquely represented as an irreducible union of irreducible elements of J, namely

as the union of the maximal elements of I(N) [1, p. 142]. It is easily verified in

this case that I(A u B) = 1(A) u 1(B) and I(A nB) = 1(A) n 1(B) for all ,4, B e J.

Incidentally, we shall use the notation ú for direct union in a lattice.

The following theorem is of basic importance to the rest of this paper.

1.1 Theorem. Let L be a complete, complemented, modular lattice with

identities 0 and I and J be a finite-dimensional sublattice of L containing 0 and

I. For each irreducible PeJ, let us select FeL so that P = PÙ P°. Then each

nonzero KeJ may be represented in the form K = [J¡"1 P¡ for some subset

{Px,--,Pm} ofI(K). IfJ is distributive, thenK = \J¡=, P¡ where I(K) = {PX,--,P„}.

Proof. The theorem is trivially true if dimK = 1. Let us assume that the

conclusion holds for every KeJ of dimension ^ n and let KeJ, dim K = n + 1.

If K is irreducible, then K = K° (j K and K is a direct union of elements of the
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form P, P irreducible, since K ° is. If J is distributive, then I(K) = {K} u I(K°)

so that K = [J Pei(K) P by the inductive assumption.

If K is reducible, then K = A u B where .4, BeJ, 4 irreducible, and dimBz$n.

Wcknowthat A = A0 ùAand A DB^A0.Since A n(A°uB) = A°u(AnB) = A0,

clearly An(A° \j B)i%A nA° = 0. Hence, K = A (j (A° \j B) and the first con-

clusion follows from the inductive assumption once we observe that

dim04° uB) ^ n. If J is distributive, the desired conclusion follows from the

observation that I(K) = {A} u I(A° u B). This proves 1.1.

2. Distributive lattices of DM. Every finite-dimensional distributive lattice is

actually finite [1, p. 139]. A finite, distributive sublattice of L(DM) containing 0

and M will be called a FD-lattice of DM henceforth. If J is a PD-lattice of DM and

I(J) = {Py,--,P„}, then by 1.1, M = PtÙ — ù Pn where P¡ is any relative

complement (in L(DM)) of P¡° in P¡, i = 1, • • •, n.

2.1 Theorem. If J is a FD-lattice of DM and, for each PeI(J), PeL(DM) is

chosen so that P = P°v P, then R(J) = {ae E(DM) \ Pa cz P for every P e I(J)}.

Proof. If aeR(J) then clearly Pa c Pa cz P for every PeI(J). Conversely, if

a eE(DM) and Pa cz P for every P£I(J), then K = {JPeI(K)Pfor every KeJ and

Ka c lvJPg/(K)P = K. Hence, a eR(J). This proves 2.1.

It is clear from 2.1 that if J is a PD-lattice of DM, I(J) = {Py,--,P„}, and

Pt = PiClP;° for some P¡eL(DM), i = 1,• • •,n, then for any a¡eHorn(DP¡,flP¡),

i=l,---,n, there exists a unique aeR(J) such that a\Pi = ai, i = l,---,n. In

particular, we have the following result (if we select F{ to contain each x¡).

2.2 Corollary. // J is a FD-lattice of DM, I(J) = {Pu••-,?„}, and x,eP¡,

x¡ 4 P¡°, ¿ = 1, ••-,«, then for any yiePh ¿ = l,--,n, there exists some aeR(J)

such that x¡a = y¡, i = í,--,n.

2.3 Corollary. 7/ J is a FD-lattice of DM, then each KeJ is a cyclic R(J)

module.

Proof. If K = Py u ••• u Pm, each P¡ irreducible, then select x¡eP¡, xiykP°,

i = l,—,m, and let x = xx + •■• + xm. If yeK, say y = y, + — + ym, yieP¡,

then by 2.2 x¡a = y¡, i = í,---,m, for some aeR(J) and xa - y. Hence,

xR(J) = K and 2.3 is proved.

2.4 Theorem. Every FD-lattice of DM is a d-lattice of DM.

Proof. Let J be a PD-lattice of DM and R = R(J). To prove that J is a d-lattice

of DM, we need only show that L(MR) cz J. To this end, let xeM, x # 0,

K = xR, and N be the least element of J containing x. Clearly K cz N. Let

{Py,---, Pm} be the set of maximal elements of I(N), so that N = Py u ••• U Pm,

andletx = xx + ••• + xm, x^P^ If any x¡ePf, say xt eP?, then
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xeP°x u?2 u ••• uPm<JV

since Px <£ P° \j P2 \j •••u Pm. This contradicts the choice of JV. Hence

x¡<£P° i = 1, •••, m. It follows as in the proof of 2.3 that K = xR = JV. Since

each cyclic submodule of L(MR) is contained in / and J is complete, L(MR) c J.

This proves 2.4.

If J is a distributive lattice of finite dimension n > 1, then it is well known that

1(J) has n elements and that it may be imbedded in a Boolean algebra B of dimen-

sion n [1, pp. 139, 140]. Given an n-dimensional vector space DM and an atomic

basis {Ax, ■■■, An} of L(DM), the sublattice B' of L(DM) generated by this basis

is an n-dimensional Boolean algebra. Since B s B',J is isomorphic to a sublattice

J' of L(DM). Clearly 0, M e J' and J' is a FD-lattice of DM. This proves the follow-

ing result.

2.5 Theorem. Every distributive lattice J of finite dimension n > 1 is a FD-

lattice of each n-dimensional vector space DM.

Not every finite d-lattice of a vector space DM need be distributive. For example,

if D is a finite field and DM is finite-dimensional, then L(DM) is a finite lattice

that is not distributive. However, many finite d-lattices of a vector space are

distributive according to the next result.

2.6 Theorem. // the division ring D has characteristic zero, then every

finite d-lattice of DM is a FD-lattice of DM.

Proof. Let us assume that J is a finite d-lattice of DM that is not distributive.

Then J must contain a sublattice of the type shown in the figure [1, p. 134]. Let

us select B3 e L(DM) such that B3 = A O B3 and let {z¡ \ieA} be a basis of B3 in

DM. Since B3 <= Bx + B2, z¡ = x¡ + v¡ for some x¡eBx and y¡eB2, íeA. If

B'x and B2 are the subspaces of Bx and B2, respectively, generated by {x¡ | ieA}

and {y¡ | ieA}, then Bx = A ù B'x, B2 = A ú B2, {x¡ \ ieA} is a basis of B'x,

and {y¡|ieA} is a basis of B2. For if l^d^eA for some d¡ eD, then

l,dizieB2 nB3 = A, Sd^ = 0, and each d¡ = 0. Hence, A nBx = 0 and

{xj | i e A} is a basis of Bi. Similarly, A nB2=0 and {y,-1 i e A} is a basis of B2.
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Finally, each xeBx has the form x = y + z for some y e B2 and z e B3. In turn,

z = z' + JldiZi for some z'e.4 and d¡eD, so that x = y + z' + SdjXj + Zd.yj.

Hence, x — Zd^eT^ n B2 = A. Consequently, Bx= A\j B'x and, similarly,

B2 = A(j B2.

For each i e A, let us select a nonzero y¡ = (o¡, c¡) e C(D) x C(D), and let B'(y)

be the subspace of DM generated by {b¡Xi + c,y, | íeA}. If Zd/^X; + cy^eA

for some d¡eD, then 11dibixieB2 and Sd^y.-eB!. It follows that Zdfo;x;

= ZdiC;y; = 0 and d,-i>,- = d¡c¡ = 0 for each i. Since y¡ ̂  0, d¡ — 0 for each i.

We conclude that B'(y) n A = 0.

We shall next prove that for each y = {y¡ | i e A}, the subspace B(y) = A \j B'(y)

of DM is in J. First, we observe that B3a c B3 for each a e R = K(J), so that

(Xj + y¡)a = u¡ + d¡(x¡ + y¡) for some uteA and d¡eD, ie A. Since x¡a eBx and

y¡a e B2 for each a e R, we must have x¡a = ty + d¡x¡ and y ¡a = vv¡ + d,yj for

some vh Wi eA, ie A. Hence, (b¡x¡ + c^y^a — b¡v¡ + c¡w¡ + d¡(b¡x¡ + c{yt), i e A,

and B(y)a <= B(y) for each aeR. Therefore, B(y) e J.

We easily see that there are an infinite number of distinct subspaces

of DM of the form B(y). For example, let B'„ be the subspace generated

by {(n — 2)x¡ + y¡ \ i e A} and let B„ = A O B'„, n = 2, 3, •••. If n # m and

ueB„ n Bm, then u = v + T,d¡[(n — 2)x¡ + y¡] = w + T,d'¡[(m — 2)x¡ + y¡]

for some v, we A and d¡, d¡eD, ieA. Henee, Z[d¡(n — 2) — d¡(m — 2)]x¡

eBx n B2 = A   and,   similarly,   Z(d¡ — d¡)y¡eA. Consequently,

E[d¡(n - 2) - d'i(m - 2)]x, = 0

and Eid; - d'¡)y¡ = 0. Therefore, d,(H - 2) - d,'(m - 2) = 0 and d^d'-, = 0 for

each i. From these equations, we easily see that d¡ = d,'=0 for each i. Hence,

B„ n Bm = A for all m and n, m é n, and J contains the infinite set {B2, B3, ■■■}

of subspaces. This is contrary to assumption, and proves 2.6.

If J is a FD-lattice of DM, then J has a center C(J) consisting of all comple-

mented elements of J. If {Mx, •••, Mk} is the set of atoms of the Boolean

algebra C(J) and J¡ denotes the interval [0, M¡] of J, i = 1, •••, fc, then

M = Mx ù M2 ù ••• ú Mk and J^JxxJ2x--xJk. The d-rings R = R(J)

and R¡ = R(J¡), i = 1, •••, fe, are easily seen to be related by an isomorphism,

R = RX x R2 x ••• x Rt, under the correspondence a^(ax, a2, •■■,ak), aeR,

where a¡ = a\ M¡, i = 1, ••■, fe.

Let us call the d-ring R = R(J) indecomposable iff C(J) = {0, M}. It is evident

that R is indecomposable iff R is not a direct union of two nonzero ideals of R.

For if R = A ú B, A and B nonzero ideals, then M — MA 0 MB and MA,

MBeC(J). Conversely, if M = M' ù M" for some nonzero M', M" eJ then

K = ^ 0 B where ^ = {r e J? | Mr <= M'} and B = {re R\ Mr a M"} are non-

zero ideals of R. Clearly each ring R¡ above is indecomposable. We state our

remarks above in the following form.
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2.7 Theorem. Every d-ring is isomorphic to a finite direct product of inde-

composable d-rings.

3. J-distributivity. If J is a PD-lattice of DM and N eL(DM), then JV is called

J-distributive iff JV C\(A u B) = (JV n A) u (JV n B) for all A,BeJ. It is easily

checked that if JV is J-distributive and JN = {N C\ K\KeJ}, then Jjy is a PD-

lattice of DJV. Each element of J is J-distributive since J is a distributive lattice.

It is equally clear that every subspace JV of DM is J-distributive if J is a chain.

A useful characterization of the J-distributive elements of L(DM) is given below.

3.1 Theorem. If J is a FD-lattice of DM and N eL(DM), then the following

statements are equivalent:

(a) JV is J-distributive.

(b) For each PeI(J) there exists P' e L(DM) such that P' c P, P' n P° = 0,

and N = Upe/(j)P'-
(c) JV = Me for some idempotent e e R(J).

Proof. Let JV be J-distributive and for each P e I(J) let P' e L(DM) he selected

so  that  (JVn P°) ù P' = JV n P.  Clearly  P' n P° = 0,  since

P' n p° cz (N r\ p°) n P' = 0.

We shall prove that

(1) JV n K = {J pe¡(K) P' for every nonzero KeJ.

To prove (1), we note first that it holds if K is an atom of J, since then

K' = N D K. Let us assume that (1) holds for every element of J of dimension

n or smaller, and let KeJ he of dimension n + 1. Since JV is J-distributive,

N nK = {JPsIiK) JV r<P = \JPeI(K) [(JV n P°) u P']. Now dim P° z% n for

every P e I(K), and therefore N Ci P° = {Jq^^ Q'. Hence,

JVnx=  (J       U   ß'uP'l = (J   P'

since I(P°) c /(X) for every PeI(K). This proves (1).

If we let X = M in (1), we obtain (b).

If (b) holds, then for each PeI(J) we may choose P, P"eL(DM) such that

P = P° ü P and P = P' ú P". Since M = \jPeHJ) F by Theorem 1.1, there is

a well-defined idempotent e e E(DM) such that e\P' = i and e | P" = 0 for each

P e /(J), where í designates the identity mapping. Clearly e e R(J) since Pe c P

for every PeI(J). Since JV = (Jj»S7(y)P', Me = JV by the very definition of e.

Thus, (b) implies (c).

Finally, let e e R(J) be an idempotent and JV = Me. It is easily shown that

N nK = Ke for every KeJ. Hence, JV n (4 u B) = (/I + B)e = ¿e 4- Be

=(JVn,4)u(JVnB) for all /I, Be J, and JV is J-distributive. Thus, (c) implies (a).

This proves 3.1.
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3.2 Corollary, i/ J is a FD-lattice of DM and xeM, x ,¿0, then Dx is

J-distributive iffxeP, x<£P°, for some P e I(J).

This follows directly from 3.1, part(b).

For each idempotent e e R(J), 1 — e also is an idempotent in R(J) and

M = MeùM(l-e). By Theorem 3.1, Me = lJPe/(J)P' and M(i - e)

= [jpei(j)P" for some P', P"eL(DM) such that MenP = (MenP0) O P' and

M(i -e)r\P = [M(l - e) n P°] 0 P" for every P e I(J). It is easy to show that

P = P° ù (P' 0 P") for each PeJ(J) and hence that M = IJp^(J)(p' + P")-

Since e | P' = t and e | P" = 0 for every P e I(J), we have shown that every idem-

potent e e R(J) is arrived at in the way shown in the proof of 3.1.

3.3 Theorem. If J is a FD-lattice of DM and S is the set of all J-distributive

elements ofL(DM), then S = L(DM) iff J is a chain.

Proof. It is evident that if J is a chain then S = L(DM). If J is not

a chain, then there exists a chain 0 = K0 < Kx < ••• < Kr contained in J

such that (1) if KeJ and K # K¡ for ¿ = 0,l,---,r, then K > Kr, and

(2) Kr is covered by at least two distinct elements P and P' of J. Evidently P,

P' eI(J) and P° = P'° = P nP' = Kr. Let us select nonzero xeP and x'eP'

such that x, x' $ Kr, and let JV = D(x + x'). Clearly JV is not J-distributive, since

JV n (P u P') = JV whereas JVnP = JVOP' = 0. This proves 3.3.

4. Projectors. Let J be a PD-lattice of DM and R = P(J). For all K,NeJ,

define the projector of K into N, K_1N, to be the largest subset of R such that

K(K~1N)czN. Clearly K-1JV is an ideal of R. Since KRczK, evidently

X_1JV = K~*(K C\N). Thus, we might as well assume that K => JV in discussing

the projector of K into JV. If A is an ideal of R and N ej, then the projector of A

into N, NA'1, is the largest subset of M such that (NA~*)A cz JV. It is clear that

JV.4 _1eJ and JV^4~l => JV. Finally, if /I and B are ideals of R, we can define

the right and left projectors of B into A, B~1A and AB'1, as the largest subsets

of R such that B(B_1A) cz A and (AB_1)B c 4, respectively. Evidently B-1^ and

AB-1 are ideals of R containing A. Since AB-1 = (A n B)B ~x and

B~lA = B~\A r\B), we might as well assume that Bzz>A in discussing the

projectors B~lA and AB~X. The properties of projectors we shall need are

contained in the following theorem.

4.1 Theorem. If J is a FD-lattice ofDM and R = R(J), then:

(1) X(K"1JV) = JVandJV(K~1JV)"1 = K if Kzd JV, K, JV ej.

(2) Nx1N2 = (N;1N3)(N2iN3r1 and N21N3 = (Ny1N2y1(Ny-lN3) if

Ny^N2zDN3,N¡eJ.

Proof. (1) There exists an idempotent eeR such that Me = JV. Hence,

KriMe = Xe = JV, eeK-1JV, and K(K~ JJV) = N. To prove the second part,

we first observe that N(K ~ XJV) "x => K. Let us assume that N(K ~ JJV) ~x = X' =¡¿ K.
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Then K'eJ and there exists some PeI(K') such that PdrX. Hence, we can

select P' eL(DM) so that P'\jP° = P. Therefore P' nK = 0 and we can select

e e R so that e | K = 0 and e \ P' = i. Clearly e e K_1JV and K'(K ~1N) 4: JV since

K'e^P'. However, [JViK"^)-1]^"^) c JV according to the definition of

JV(K_1JV)_1. This contradiction proves that JV(K_1JV)_1 = K.

(2) Clearly

(N~xlN2) (NX->N3) <= N^N3,

so that JV7XJV2 c (JVr^XJV^JV^-1 and JVa""1^ <= (JV^JV^-1 (JVf^).

On the other hand, [(JVf'JVa) (JV2_1JV3)-1] (JV2_1JV3) cr JV^JV,, so that

tfiCW'tfa) WNs)"1] (¿VJ1^) cz JV3. Hence, ̂ [(iVf1^) (JV^)"1]
c NjfJVi1^)""1 = JV2 and (N^NJ (JV^JV^-1 c JVr'JVz. Therefore,

(JVt-%) (JV^JV,)"1 = JVj^JV,. Similarly, (JV^JV,) [(JVr^r'i.JV^JV,)]

c JVf^a, JV^JV^JV,) [(JVr1 JV^OVr'JVa)] <= JV3, JV.KJVI'JV,)-1^-^,)]
c JV3, and (JV7 %)" \N7 ^3) c JV¡ XN3 therefore,(NX xJV2) ~ \NX * N3)=JVJ XJV3,

and 4.1 is proved.

If J is a FD-lattice of DM and R = R(J), then an ideal of R of the form A_10,

resp. 0v4_1, for some ideal A of Ris called a rig/if, resp. /e/(, annihilating ideal

of i?. Let us designate by Lr(R), resp. L¡(R), the set of all right, resp. left, anni-

hilating ideals of J?.

4.2 Theorem. // J is a FD-lattice of DM and R = R(J), then

L\(R) = {K~10\KeJ} and L,(R) = {M_1 K\KeJ}. Thus, the mapping

J^+ Lr(R) defined by a/C = X_10, KeJ, is a dual isomorphism and the

mapping J'^» L¡(R) defined by ßK = M_1K, KeJ is an isomorphism.

Proof. By 4.1, (2), X~10 = (M"1liO"1(Af"10) = (Af~1Ä)"10 and therefore

K~l0e Lr(R) for each KeJ. Similarly, M_1K = (M~ ^(K' 10)~l = 0(K_10)_ 1

and M^KeLJR) for each KeJ. If AeLr(R) and B = 04_1, then BeL¡(R)

and 4 = B-10. If we let K = MB, then KeJ and X_10 = B_10 = A. Thus, A

has the desired form. Also, M(M~1 K)A=0, (M"lK)A = 0, and BcM'1 Kcz0A~i

= B. Hence, B = M_1X and B has the desired form. If K_10 = JV_10 for some

K,NeJ, then K = O^^O)-1 = 0(JV_10)_1 = JV by 4.1, (1). If M_1K = M-1JV

for some K, NeJ, then K = M(M~iK) = M(M~lN) = JV by 4.1, (1). Thus,

a and /? are bijections. This proves 4.2.

If J is a FD-lattice of DM and R = R(J), and if K, NeJ with X => JV, then

X_1JV = (K~% (JV_10)_1 = (Af"1^)"1^"1^) by 4.1, (2). That is,

JÇ"1JV = (aX)(a7V)"1 =(ßK)~1(ßN) if we use the mappings a and /? of 4.2.

This shows that the ideals of the form K~LN, where K, NeJ, may be defined

intrinsically in the ring R itself. We shall use this fact later on in the paper.

If J is a FD-lattice of DM and K, NeJ with K r> N, then evidently

j' = {JV'-JV|N'e[JV,K]} is a FD-lattice of D(K-N). There is a natural

mapping R **■ R' of R = R(J) onto R' = R(J') defined by: (x + N)(c<j>) = xc + JV
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for all ceR and x + N e K — JV. It is easily seen that (j) is an epimorphism and

kerc/> = K~1N. We state this result as follows.

4.3 Theorem. // J is a FD-lattice of DM and K, NeJ with K => JV, and if

J' = {JV'-JV|JV'e[JV,K]}, then J' is a FD-lattice of D(K - JV) and
R(J')^R(J)l(K-lN).

5. Baer rings. While we defined the projector K~lN above only for K,Nej,

it is clear that K~XN may be defined in the same way for any subsets K and JV of

M or P. In particular, if J is a PD-lattice of DM and R = R(J), then we can easily

describe K_1N for any J-distributive subspaces K and JV of M. Thus, K= Me

and JV = Mf for some idempotents e,feR, and K~yN zo (1 — e)R + Rf On the

other hand, if aeP then a eK~1N iff Mea cz JV, or iff eaf=ea. That is,

a eK_1JV iff a - a/e(l - e)P, or iff ae(l - e)P + Rf. Hence,

K_1JV = (l-e)P+P/.ItfollowsthatM"1K=PeandX"10 = (l-e)PifK=Me.

Evidently M~lK = 0(X_10)_1 and K-10 = (M_1K)_10; that is, M_1K is an

annihilating left ideal and K_10 is an annihilating right ideal of R. These are

the only annihilating right or left ideals of R generated by idempotents according

to the next result.

5.1 Theorem. Let J be a FD-lattice of DM and R = R(J). If A is a right ideal

and B is a left ideal of R such that A = B_10 and B = 0A"1, then A and B are

generated by idempotents iff either 0A'1 or MB is a J-distributive subspace

ofM.

Proof. If A = eR for some idempotent eeR, then B = P(l — e) and

0A~* = MB = M(l-e). Hence, 0^_1( = MB) is J-distributive by 3.1. Con-

versely, if either 0,4 ~1 or MB is J-distributive, then either 0A ~1 = Mf or MB = Me

for some idempotents e, feR. If 0,4 -1 = Mf, then A cz (1 -f)R and B cz Rf

since MB c Mf. Hence, A = B_10 => (P/)_10 = (1 -/)B => A and ^ = (1 -f)R,
B = P/. If MB = Me, then (MB) _10 = B_I0 = (1 - e)R = AandB = 0A~l = Re.

This proves 5.1.

A ring R is called a Baer ring iff every annihilating right or left ideal of R is

generated by an idempotent. In a recent paper [2], Wolfson proved the following

result.

5.2 Theorem. If J is a finite chain in L(DM) containing 0 and M, then R(J)

is a Baer ring.

We point out that this theorem follows directly from 3.3 and 5.1. Thus, for

every right ideal A and left ideal B of R(J) such that A = B_10 and B = 0A~\

MB is J-distributive by 3.3 and therefore A and B are generated by idempotents

according to 5.1.
It is evident that if the PD-lattice J of DM is isomorphic to a direct product of

chains, then R(J) is isomorphic to a direct product of Baer rings and hence is a
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Baer ring. However, these are not the only distinguished rings that are Baer rings.

We shall not give the details, but it may be shown that the ring R of all 3 x 3

matrices over a division ring D of the form dxxexx + d22e22 + d3Xe3X + d32e32

+ d33e33, where e¡j are the usual matrix units, is a Baer ring. In this case, we may

also represent R as R(J), where J = {0, Dxx, Dx2, Dxx + Dx2, M} and

M = Dx + Dx2 + Dx3, a 3-dimensional vector space over D. If the lattice J is

slightly more complicated, then R(J) is not a Baer ring as the following theorem

shows.

5.3 Theorem. 7/ the FD-lattice J of DM contains three irreducible elements

Px, P2, P3 such that Px\j P2<= P3 and Px nP2 is different from 0, Px, and P2,

then R = R(J) is not a Baer ring.

Proof. Let {Px, ■■■, P,,} = I(J) and let PíeLÍJv/) be selected so that

p° 0 p/= ph i = l,--,n. Select x¡ ë P¡, x¡ i P° i = 1,2,3, and let JV = D(xx + x2).

Since JV n(P1uP2) = JV whereas (JV n Px) u (JV n P2) = 0, JV is not /-dis-

tributive . If we imagine that x3 e B3, a basis of P3, then there exists b e R such that

x3b = xx + x2, xb = 0 for xeB3, x # x3, P[b = 0 if i ^ 3. Clearly Mfc = JV,

and therefore JV_10 = b~10 = A is an annihilating right ideal of R. If ,4 were

generated by an idempotent, then K = 0A~1 would be a /-distributive subspace

of M, K => N. Now for any nonzero yePx nP2, there exists some a e R such that

xxa = y,x2a = — y, and a|P¡= t for i = 3,---,n. Since (Xi + x2)a = 0, evidently

ae/1. However, P,a#0 for i = 1,•••,«, and therefore P^K, i = l,••-,«. It

follows that X = 0, contrary to the fact that X => JV. Consequently, .4 is not

generated by an idempotent. This proves 5.3.

For example, if M = Dxx + Dx2 + Dx3 + Dx4 is a 4-dimensional vector

space over D and J = {0, Dx1; Dxx + Dx2, Dxx + Dx3, Dxx + Dx2 + Dx3, M},

then P = R(J) is the ring of all 4 x 4 matrices over D of the form

axx 0 0 0

a2X a22 0 0

a3x 0 a33 0

.a41 a42 a43 a44 .

In the notations of 5.3, Px — Dxx + Dx2, P2 = Dxx + Dx3, and P3 = M. Letting

N=D(x2 +x3) as we did in the proof of 5.3, N~10=A=e11R +(e2i -e3x)R + e44R

and B = 0A~1 = R(e42 + eA3). Since B2 = 0, evidently B, and therefore also A,

is not generated by an idempotent.

6. Subrings of distinguished rings. Let / be a FD-lattice of DM and R = R(J).

An idempotent e e R is called simple iff e # 0 and there exists an irreducible PeJ

such that Me c P and Me nP° = 0. A sum e = ex + ••• + em of idempotents
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e¡eR is called direct iff eieJ = öiJej, i, j = l,---,m. Evidently a direct sum of

nonzero idempotents of R is a nonzero idempotent of P.

We have seen that if {Py, ■•-,?„} = I(J), then associated with each nonzero

idempotent  eeP  is  a  splitting P¡ = P? ÇjP{ÙP'¡,   i = í,---,n,  such  that

Me = U?= i piand M(! - e) = U^ i pi-If we define eie R as follows : e¡ | Pi = t,

e(|i*} = e,|P£ = 0, ¿^/, i, j, fe = l, •••, n, then clearly e¡ey = ¿¡j-ej, ¿,; = 1, ••-,«,

and e = et + • • • + en. Since each nonzero e¡ is simple, we have proved the following

result.

6.1 Theorem. // J is a FD-lattice of DM, then each nonzero idempotent in

R(J) is a direct sum of simple idempotents.

If e = ek + ••• + em is a direct sum of simple idempotents of R = R(J), then the

subring eRe of R is a direct sum of the subrings e¡Pej-. Let us now describe the

structure of each subring eiReJ.

6.2 Theorem. If J is a FD-lattice of DM and e, f are nonzero idempotents

of R = R(J), then eRf*S = {ae Hom(D(Me), D(Mf)) | (Ke)a cz Kf for every

KeJ}.

Proof. We can consider S c= £(DM) by letting a | M(l - e) = 0 for each

aeS. Since (Ke)eRf cz Kf for each KeJ, evidently eRf cz S. Now

KS = [Ke + K(l - e)] S = (Ke) S cz Kf cz K for each KeJ, and therefore ScR.

Since xa = xeaf for all x e M and aeS, S = eS/ cz eP/. Thus, S = eRf and 6.2 is

proved.

6.3 Corollary. If J is a FD-lattice of DM, e is a nonzero idempotent of

R =R(J), and JV = Me, then eRl^R(JN).

We recall from §3 that JN = {JV C\K \ K e J}. It follows from 6.3 that every

subring of a d-ringP of the form eRe, e an idempotent, is also a d-ring.

6.4 Theorem. Let J be a FD-lattice of BM and e,f be simple idempotents of

R = R(J) such that MeczP, MenP° = 0, and MfczQ,MfnQ° = 0,for

given irreducible P,QeJ. Then eP/#0 iff QczP. If eP/^0, then eRf^

Hom(D(Me),D(M/)).

Proof. If ß cz P then MeRf = Pf ± 0 and eRf ¥= 0. If ß et P then
Pf cz Mf nß C\P cz MfnQ° = 0, MeP/= 0, and eP/= 0. In case ß cz P and

KeJ, we have Ke c K n P # 0 iff K => P. Hence, (Ke)a <= Kf for

all aeHom(D(Me), D(M/)) and XeJ, and eP/s Hom(D(Me), B(M/)) in view

of 6.2. This proves 6.4.

Let us call ring R a full ring iff R = E(DN) for some vector space DJV. If J is a

PD-lattice of ßM and P = R(J), then P is a full ring iff J = {0,M}. Hence, the

result below follows directly from 6.3.
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6.5 Theorem. If J is a FD-lattice of DM and e is a nonzero idempotent of

R = R(J), then eRe is a full ring iff e is simple.

6.6 Corollary. The ring eRe of 6.5 is a division ring iff dim (Me) = 1 in

L(DM). If eRe is a division ring, then eRe S D.

That eRe = D is seen as follows. Since dim(Me)=l, Me = Dx for some

xeMe. Now x(eRe) e L(DM) and therefore x(eRe) = Dx. Hence, the mapping

eRe *+ D defined by: xere = (erefx, r e R, is an isomorphism.

If J is a FD-lattice of DM and {Px, ■ • •, P„} = I(J), then we can order this set so

that Pj d: P¡ if j > i, i, j = 1, •••, n (for example, order I(J) so that

dim(Pj) S dim(P¡+1) in J). Let 1 = ex + ■•• + e„ be a direct sum of simple idem-

potents of R - R(J), with Me¡ 0 P° = P¡, i = 1, •••, n. Then elRej = 0 if j > i and

P = S/si-iijÄey. Thinking in terms of a matrix representation of P, this says

that the representation can be broken up into n2 blocks with the blocks down

the main diagonal full matrix rings and the blocks above the main diagonal

all zero. The subring

n

A =    Z   e,Rej
;<¡ = i

clearly is an ideal of R. Since A" = 0 and R¡A s exRex + ••• + e„Re„, a direct

sum of primitive rings, evidently A is the Jacobson radical of P. We have proved

part of the following theorem.

6.7 Theorem. Let J be a FD-lattice of DM of dimension n and R = R(J). Then

1 can be expressed as a direct sum ofn simple idempotents ofR, 1 = ex + ••• + en,

in such a way that R is a direct sum of subrings

n

R=   Z   eiRej.

The subring
n

A=   Z   e¡Rej
j<¡ = i

is the Jacobson radical of R, and

RIA^exRei + ••• + e„Re„,

a direct sum of full rings. The ideal A is nilpotent with index of nilpotency one

less than the length of the longest chain in I(J).

Proof. We need only find the index of nilpotency of A to complete the

proof. Let I(J) = {Pu-,Pn}, with dim Pf ̂  dim P¡+1, i = l,--,n - 1. By 6.4,

eiRej^O iff Pi^Pj-, and if Pi^P^ then e¡Rej s Horn(D(Me¡), D(Mefj). If

e¡Rej ■£ 0 and e¡Rek =¿ 0, then for every nonzero a e eiRej there exists some

bee¡Rek such that ab^O. It follows that A"1'1 ¿ 0 iff there exists a chain
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Pti •=> P¡2 => ••• => P>m in I(J). Hence, the index of nilpotency of A is the length of

the longest chain in I(J).

1. Isomorphic theorems. Distinguished rings are isomorphic iff the obvious

isomorphisms hold between their underlying vector spaces, as we shall show

below. Our results are extensions and generalizations of those of Wolfson [2,

Theorem 7].

7.1 Theorem. Let J and J' be FD-lattices of DM and DM', respectively,

and let R = R(J) and R' = R(J'). Then R^R' iff there exist isomorphisms

D^ D'andJZ* J' such that dimD(P - P°) = dim D.(aP - aP°) for every

PeI(J).

Proof. LetP^-> R' be an isomorphism. Then the mapping J ^ J' defined

by : aK = M'[(M~ 1K)4>'], KeJ,is an isomorphism by 4.2. If P e I(J) and P' = <xP,

then E(D(P - P0)) s RKP'^0) and E(D.(P' - P'0)) s P'/(P' _1P'°) by 4.3. Since
(P_1P°)c6 = [(M"1P)"1(M"1P0)]^ = (M'-lP')-\M'-lP'°) = (P'_1P'°), we

conclude that E(D(P - P0)) £ E(D.(P' - P'0)) for every PeI(J). By a classical

result of ring theory [3, p. 79], we have that D^D' and dimD(P-P°)

= dimD.(P' - P'°) for every P e I(J).

Conversely, let us assume that D^ D' and J ^* J' are isomorphisms such

that dim D(P¡-P°) = dim ̂ (ocPí-oíPí), i = l, — ,n, where I(J) = {Py,--,P„}.

We may select F¡eL(DM) and P¡'eL(D,M') such that P^F^pP and

aP; = P'¡ = F¡(jP'í°, i = í,---,n. By assumption, there exist bases {x0|jeA¡}

of P¡ and {x^lj'eA,} of P{, i — i,--,n. Each element of M is uniquely

represented as a finite sum of the form Ztj«fyXy, d^eD, by 1.1. Thus,

there is a unique mapping M -^ M' defined by: ( Zdl7xo-)0 = 'Ldfjxl'J. It is clear

that 6 is a 1-1 semilinear mapping of M onto M' that maps J onto J'. Hence

the mapping E(DM)-> E(DM') defined by: a\¡i = 6~1a0, aeE(pM), is an iso-

morphism [3, p. 45]. If reR, so that P¡r cz P¡, i = 1, •••, n, then

p'.(rx¡,) = p;(0- Vö) = Pi(r6) cz Pß cz P¿ i = 1, ...,n, and r\¡ieR'. Conversely, if

nj/eR' then P\(r^) = P¡(rO) cz P[, Ptr cz P[8_1 = P,., i = 1, -,n, and re«. Thus,

if we let <b = i¡/1P, the mapping P ^> P' is an isomorphism. This proves 7.1.

Bibliography

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Vol. 25, rev. ed., Amer.

Math. Soc, Providence, R.I., 1948.

2. K. G. Wolfson, Baer subrings of the ring of linear transformations, Math. Z. 75 (1961),

328-332.

3. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math.

Soc, Providence, R. I., 1956.

4. E. A. Behrens, Distributiv darstellbare Ringe, Math. Z. 73 (1960), 409-432; II, Math. Z.

76 (1961), 367-384.

University of Rochester,

Rochester, New York


