DISTINGUISHED RINGS OF LINEAR
TRANSFORMATIONS(")

BY
R. E. JOHNSON

A ring R of linear transformations of a vector space M over a division ring D
is called distinguished iff (1) the lattice J of all R-submodules of M is a distributive
sublattice of the lattice L of all subspaces of M, and (2) the set of all linear trans-
formations of M leaving J invariant is R. The study of such rings is motivated
by a paper of Wolfson [2] in which J is a chain and by several recent papers
of Behrens [4]. Behrens studies Artinian rings R with unity having faithful R-
modules M such that the lattice of R-submodules of M is distributive.

Our primary interest is with distinguished rings R for which J is finite as well
as distributive. Such a condition does not force the ring R to be Artinian. A basic
tool in our study is a lattice theorem (1.1) stating that every element of J is a direct
sum of elements of L associated with the irreducible elements of J. It is shown
that every finite distributive sublattice of L containing 0 and M is the lattice of
submodules of a distinguished ring R. If D has characteristic 0, then a finite
sublattice of L must be distributive in order to be the lattice of submodules of a
ring of linear transformations of M.

A subspace N of M is called J-distributive iff N N (4 U B) = (N N A) U (N NB)
for all A, BeJ. It is shown that N is J-distributive iff N = Me for some idem-
potent e € R. All subspaces of M are J-distributive iff J is a chain. Wolfson proved
that R is a Baer ring (i.e., every annihilating right or left ideal of R is generated
by an idempotent) if J is a chain. We show that this is almost the only case in
which a distinguished ring is a Baer ring.

Every distinguished ring R is a direct sum of subrings of the form ¢;Re;, when
1=e; + - + e, (direct sum), each ¢;Re; is a full ring of linear transformations,
e;Re;=0if i <j, and Z;.;e;Re; is the radical of R. Two distinguished rings
are shown to be isomorphic iff their vector spaces are related in an obvious way.

1. Introduction. A module ,M over a ring D has associated with it a lattice
L(pM) of all submodules and a ring E(,M) of all endomorphisms. For each
subring R of E(,M), we shall always consider M to be a bimodule ,M ;. Associated
with each sublattice J of L(,M) is a subring R = R(J) = {reE(DM)]Nr cN
for every N €J} of E(,M). Clearly J = L(Mp). Let us call a sublattice J of ;M
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a distinguished lattice (d-lattice) of pM iff J = L(Mpg). Also, let us call a subring
R of E(p,M) a distinguished ring (d-ring) iff R = R(J) where J = L(My).

The ring D is restricted in this paper to be a division ring and the module ,M
to be a unital module over D (i.e., a vector space over D). Thus, every d-ring is a
ring of linear transformations of some vector space over a division ring. If C(D)
denotes the center of D, then we may consider C(D) = R(J) for every J = L(p,M)
if we define xa = ax for all ae C(D) and x € M. It is well known that there is
associated with each basis B of ,M a division ring Dy = E(,M) isomorphic to D.
Thus, for each d € D we define d’ € Dy by xd’' = dx, x € B.

It is easily shown that R(L(,M)) = C(D). Hence, L(,M) is a d-lattice of ,M iff
D is a field. If B is a basis of ,M and J is the sublattice of L(,M) generated by all
atoms of the form Dx and D(x + y), x, y € B, then it can be shown that R(J) =Dy.
On the other hand, if J is generated by only the atoms Dx, x € B, then
R(J)2 i ca Di where A =card B and D; = Dy for each i€ A. At the other ex-
treme, {0, M} is a lattice of ,M having E(,M) as its d-ring.

Our primary interest in this paper is with finite d-lattices of ,M and their
associated d-rings. Clearly each d-lattice of ;M is a complete, modular lattice
containing 0 and M, and R(J) is a ring with unity. For each N €J, we denote
the lattice dimension of N by dim N (dim N is the length of the longest chain in
the interval [0, N] of J) and let dimJ = dim M. If J = L(,M) then dim N is the
usual vector space dimension of a subspace N of M.

If J is any finite-dimensional modular lattice, then N €J is called irreducible
iff N # 0 and N is not a union of lower-dimensional elements of J. Each irreducible
P € J covers a unique element of J which we will always designate by P°. Clearly
P° =0 iff P is an atom of J. The set of all irreducible elements of J is designated
by I(J). Given a lattice J and N €J, we shall also let I(N) = {4€I(J)|A £ N}.

Given a finite-dimensional distributive lattice J, each nonzero N €J may be
uniquely represented as an irreducible union of irreducible elements of J, namely
as the union of the maximal elements of I(N) [1, p. 142]. It is easily verified in
this case that I(4 U B) = I(4) U I(B) and I(A N B) = I(4) NI(B) for all 4, BeJ.
Incidentally, we shall use the notation U for direct union in a lattice.

The following theorem is of basic importance to the rest of this paper.

1.1 THEOREM. Let L be a complete, complemented, modular lattice with
identities 0 and I and J be a finite-dimensional sublattice of L containing 0 and
I. For each irreducible P e J, let us select Pe L so that P = P\ P°. Then each
nonzero KeJ may be represented in the form K =Ui"'=1 P, for some subset
{P,,--,P,} of I(K). If J is distributive, then K = UL 1 P;where (K)={P,,---,P,}.

Proof. The theorem is trivially true if dimK = 1. Let us assume that the
conclusion holds for every K € J of dimension < nandlet KeJ,dimK =n + 1.
If K is irreducible, then K = K° U K and K is a direct union of elements of the
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form P, P irreducible, since K °is. If J is distributive, then I(K) = {K} U I(K°)
so that K = |} pe 1) P by the inductive assumption.

If K is reducible, then K=A4 U B where A, BeJ, A irreducible, and dim B<n.
We know that A=4° (U 4and A N BZ A°. Since A N(A°UB)=A4°U(ANB)=4°,
clearly AN (A°UB) £ AN A°=0. Hence, K = 4 U (4% U B) and the first con-
clusion follows from the inductive assumption once we observe that
dim(4° U B) £ n. If J is distributive, the desired conclusion follows from the
observation that I(K) = {4} U I(A° U B). This proves 1.1.

2. Distributive lattices of ;M. Every finite-dimensional distributive lattice is
actually finite [1, p. 139]. A finite, distributive sublattice of L(,M) containing 0
and M will be called a FD-lattice of M henceforth. If J is a FD-lattice of \M and
I(J) = {P;,-,P,}, then by 1.1, M = P, U--- U P, where P, is any relative
complement (in L(,M)) of P%in P, i =1,---,n.

2.1 THEOREM. If J is a FD-lattice of pM and, for each P €I(J), Pe L(,M) is
chosen so that P = P°( P, then R(J) = {a € E(M)| Pa = P for every PcI(J)}.

Proof. If a € R(J) then clearly Pa = Pa < P for every P € I(J). Conversely, if
a€E(p,M) and Pa c P for every P e I(J), then K = UPG,(K)P for every K € J and
Ka < |Jperx)P = K. Hence, a € R(J). This proves 2.1.

It is clear from 2.1 that if J is a FD-lattice of yM, I(J) = {Py,---,P,}, and
P,= P, P for some P,e L(,M), i =1,---,n, then for any a;€ Hom(,P5,, ,P)),
i=1,---,n, there exists a unique a € R(J) such that a|F,-=a,-, i=1,-,n. In
particular, we have the following result (if we select P; to contain each x;).

2.2 COROLLARY. If J is a FD-lattice of pM, I(J) = {Py,---,P,}, and x;€ P,
x;¢ P{, i=1,-,n, then for any y,€P;, i=1,--,n, there exists some a € R(J)
such that x;,a=y;,i=1,-,n.

2.3 COoROLLARY. If J is a FD-lattice of oM, then each K €J is a cyclic R(J)
module.

Proof. If K = P, U --- U P, each P, irreducible, then select x;€P;, x; ¢ P?,
i=1,--,mandletx=x; + - +x, If yeK,say y =y, + =+ + y,, ;€ P;,
then by 2.2 xa=y;, i=1,--,m, for some aeR(J) and xa = y. Hence,
xR(J) = K and 2.3 is proved.

2.4 THEOREM. Every FD-lattice of ;M is a d-lattice of M.

Proof. Let J be a FD-lattice of ;M and R = R(J). To prove that J is a d-lattice
of ,M, we need only show that L(Mg) = J. To this end, let xeM, x #£0,
K = xR, and N be the least element of J containing x. Clearly K <= N. Let
{Py, -+-, P,,} be the set of maximal elements of I(N), so that N =P, U -« U P,
andlet x = x; + -+ + X,,, X; € P;. If any x; € P, say x, € P, then
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xePPUP,U--UP, <N

since P, ¢ PYUP,uU--UP,. This contradicts the choice of N. Hence
x;¢ P i =1,--,m. It follows as in the proof of 2.3 that K = xR = N. Since
each cyclic submodule of L(Mp) is contained in J and J is complete, L(Mp) = J.
This proves 2.4.

If J is a distributive lattice of finite dimension n > 1, then it is well known that
1(J) has n elements and that it may be imbedded in a Boolean algebra B of dimen-
sion n [1, pp. 139, 140]. Given an n-dimensional vector space ,M and an atomic
basis {4, -+, 4,} of L(p;M), the sublattice B’ of L(,M) generated by this basis
is an n-dimensional Boolean algebra. Since B = B’, J is isomorphic to a sublattice
J' of L(p,M). Clearly 0, M € J' and J' is a FD-lattice of ,M. This proves the follow-
ing result.

2.5 THEOREM. Every distributive lattice J of finite dimension n > 1 is a FD-
lattice of each n-dimensional vector space pM.

Not every finite d-lattice of a vector space ,M need be distributive. For example,
if D is a finite field and pM is finite-dimensional, then L(,M) is a finite lattice
that is not distributive. However, many finite d-lattices of a vector space are
distributive according to the next result.

2.6 THEOREM. If the division ring D has characteristic zero, then every
finite d-lattice of pM is a FD-lattice of pM.

Proof. Let us assume that J is a finite d-lattice of ,M that is not distributive.
Then J must contain a sublattice of the type shown in the figure [1, p. 134]. Let

us select B3 € L(pM) such that By = A U Bj and let {z;| i A} bea basis of Bjin
pM. Since By < By + B,, z; = x; + y; for some x;€B; and y;eB,, icA. If
B{ and B, are the subspaces of B and B,, respectively, generated by {x; [ icA}
and {y;|i€A}, then B, = AU Bj, B, = A U B}, {x;|i€A} is a basis of B,
and {y;|i€A} is a basis of Bj. For if Xdx;eA for some d, e D, then
Xdiz;eB, "By = A, Xdz;=0, and each d;, =0. Hence, A NB; =0 and
{x;| i€ A} is a basis of B}. Similarly, A N B;=0 and {y:|i€A} is a basis of Bj.
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Finally, each x € B, has the form x = y + z for some y € B, and z € B;. In turn,
z=2z + Xdz;forsomez' e Adand d;eD,sothat x = y + z’ + Xd;x; + Xd,y;.
Hence, x - Xd;x;e B; N B, = A. Consequently, B, = A U B; and, similarly,
B, = A U B;.

For each i € A, let us select a nonzero y; = (b;, ¢;) € C(D)x C(D), and let B'(y)
be the subspace of ,M generated by {bx; + c;y;| i€ A}. If Xd(bx; + cy)e A
for some d;eD, then Xd;bx;€ B, and Xdc;y;€B,. It follows that Xdb,x;
= Ydc;y; = 0 and d;b; = dic; = 0 for each i. Since y; # 0, d; = 0 for each i.
We conclude that B'(y) N4 = 0.

We shall next prove that for each y = {y; [ i € A}, the subspace B(y) = A U B'(y)
of p,M is in J. First, we observe that Bya = B; for each ae R = R(J), so that
(x; + yDa = u; + di(x; + y;) for some u,€ 4 and d;e D, i € A. Since x;a € B; and
y:a € B, for each ae R, we must have x;a = v; + d;x; and y,a = w; + d,y; for
some v;, w;€ A, i € A. Hence, (bix; + ¢;y;)a = by; + ¢w; + di(bix; + ¢;y)), i €A,
and B(y)a = B(y) for each a € R. Therefore, B(y) € J.

We easily see that there are an infinite number of distinct subspaces
of M of the form B(y). For example, let B, be the subspace generated
by {(n—2)x; + y;|ieA} and let B,=AUB,, n=2,3,. If n#m and
ueB, NB,, then u=v+ Xd[(n—2)x; +y]=w+ Xdj[(m = 2)x; + y;]
for some v, weA and d,, dieD, ieA. Hence, X[di(n —2) — di(m — 2)]x;
€B, N B, = A and, similarly, X(d; — d)y;€ A. Consequently,

X[dn —2)—dj(m—2)]x;=0

and 2 (d; — d})y; = 0. Therefore, d(n —2) — dj{(m — 2) =0 and d;—d; = 0 for
each i. From these equations, we easily see that d;=d;=0 for each i. Hence,
B, N B,, = A for all m and n, m # n,and J contains the infinite set {B,, B, ---}
of subspaces. This is contrary to assumption, and proves 2.6.

If J is a FD-lattice of ,M, then J has a center C(J) consisting of all comple-
mented elements of J. If {M,,---,M,} is the set of atoms of the Boolean
algebra C(J) and J; denotes the interval [0, M;] of J,i=1,..-, k, then
M=M,OM, U - UM, and J = J; x J, x --- x J. The d-rings R = R(J)
and R; = R(J)), i =1,---, k, are easily seen to be related by an isomorphism,
R=R; x R, x -+« X Ry, under the correspondence a <« (ay, a,, -+, a,), a€R,
where a; = a | M,i=1,--k.

Let us call the d-ring R = R(J) indecomposable iff C(J) = {0, M}. It is evident
that R is indecomposable iff R is not a direct union of two nonzero ideals of R.
For if R=A4 U B, A and B nonzero ideals, then M = MA U MB and MA,
MB e C(J). Conversely, if M = M’ U M” for some nonzero M’, M"e€J then
R=AUB where A = {reR|Mrc M'} and B = {reR|Mr = M"} are non-
zero ideals of R. Clearly each ring R; above is indecomposable. We state our
remarks above in the following form.
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2.7 THEOREM. Every d-ring is isomorphic to a finite direct product of inde-
composable d-rings.

3. J-distributivity. If J is a FD-lattice of ;M and N € L(,M), then N is called
J-distributive iff N N (A U B) = (N N A) U (N N B) for all 4, BeJ. It is easily
checked that if N is J-distributive and Jy = {N N K |K €J}, then Jy is a FD-
lattice of pN. Each element of J is J-distributive since J is a distributive lattice.
It is equally clear that every subspace N of ,M is J-distributive if J is a chain.
A useful characterization of the J-distributive elements of L(,M) is given below.

3.1 THeoREM. If J is a FD-lattice of ;M and N € L(,M), then the following
statements are equivalent:

(a) N is J-distributive.

(b) For each P I(J) there exists P’ € L(,M) such that P’ = P, P’ N P° =0,
and N = Upe,(,)P'.

(¢) N = Me for some idempotent e € R(J).

Proof. Let N be J-distributive and for each P € I(J) let P’ € L(,M) be selected
so that (NN P% U P =N NP. Clearly P’ nP° =0, since

PNPPc(NNP)NP =0.

We shall prove that

() NNK = U perx) P’ for every nonzero K € J.

To prove (1), we note first that it holds if K is an atom of J, since then
K’ = N N K. Let us assume that (1) holds for every element of J of dimension
n or smaller, and let KeJ be of dimension n + 1. Since N is J-distributive,
NNK =UreraxyN NP =Upcray [N NP UP]. Now dimP°<n for
every P e I(K), and therefore N N P° = UQE 1poy @'. Hence,

NNK= Q'UP’]=U P’

PeI(K) [ Qe I(P9) PeI(K)

since I(P°) = I(K) for every PeI(K). This proves (1).

If we let K = M in (1), we obtain (b).

If (b) holds, then for each PeI(J) we may choose P, P"eL (,M) such that
P=P°y Pand P =P U P"Since M = | Jpcss) P by Theorem 1.1, there is
a well-defined idempotent e € £(,M) such that e | P'=tand e | P" = 0 for each
PeI(J), where ¢ designates the identity mapping. Clearly e € R(J) since Pe = P
for every PeI(J). Since N = UPE,(,)P’, Me = N by the very definition of e.
Thus, (b) implies (c).

Finally, let e € R(J) be an idempotent and N = Me. It is easily shown that
N NK =Ke for every KeJ. Hence, N N(4A U B)= (A4 + B)e = Ae + Be
=(NNA)U(NNB) for all 4, Be J, and N is J-distributive. Thus, (c) implies (a).
This proves 3.1.
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3.2 CorOLLARY. If J is a FD-lattice of ;M and x€ M, x #0, then Dx is
J-distributive iff x € P, x¢ P°, for some P € I(J).

This follows directly from 3.1, part(b).

For each idempotent e€ R(J), 1 —e also is an idempotent in R(J) and
M =MeUM(1 — ¢). By Theorem 3.1, Me =|Jpcr)P’ and M(1—e)
=Jpe1(s P’ for some P’, P" € L(,M) such that Me NP = (Me NP°) U P’ and
M(1—e) NP =[M(1—e)NP°]U P for every Pel(J). It is easy to show that
P=P°(P'UP") for each Pel(J) and hence that M = ) peys)(P’ + P").
Since e|P’ = 1 and e| P" = 0 for every P € I(J), we have shown that every idem-
potent e € R(J) is arrived at in the way shown in the proof of 3.1.

3.3 TueoreM. If J is a FD-lattice of ;M and S is the set of all J-distributive
elements of L(pM), then S = L(,M) iff J is a chain.

Proof. It is evident that if J is a chain then S=L(p,M). If J is not
a chain, then there exists a chain 0 =K, <K, <-.- <K, contained in J
such that (1) if KeJ and K#K,; for i=0,1,---,r, then K> K,, and
(2) K, is covered by at least two distinct elements P and P’ of J. Evidently P,
P'eI(J) and P°=P'®=P NP’ =K,. Let us select nonzero xeP and x'e P’
such that x, x’ ¢ K,, and let N = D(x + x’). Clearly N is not J-distributive, since
NN(PuUP)=N whereas NNP =N NP’'=0. This proves 3.3.

4. Projectors. Let J be a FD-lattice of ;M and R = R(J). For all K, NeJ,
define the projector of K into N, K™'N, to be the largest subset of R such that
K(K"!N)c N. Clearly K™'N is an ideal of R. Since KR c K, evidently
K N =K YK N N). Thus, we might as well assume that K o N in discussing
the projector of K into N. If 4 is an ideal of R and N € J, then the projector of A
into N, NA ™%, is the largest subset of M such that (NA~')4 = N. It is clear that
NA~'eJ and NA™! o N. Finally, if A and B are ideals of R, we can define
the right and left projectors of B into A, B"'A and AB™!, as the largest subsets
of R such that B(B™'4) c A and (A4B™!) B < 4, respectively. Evidently B~*4 and
AB~! are ideals of R containing A. Since AB™! = (4 N B)B ! and
B 'A=B"'(4NB), we might as well assume that B> 4 in discussing the
projectors B"'4 and AB™'. The properties of projectors we shall need are
contained in the following theorem.

4.1 TueoreM. If J is a FD-lattice of pM and R = R(J), then:

(1) K(K™*N)=Nand N(K"'N)"'=KifK>N,K,NelJ.

() N{'N, =(N7'N)(N;'NyY™' and N;'Ny=(Ni{'Np) '(N{'Ny) if
N13N23N3,NIGJ.

Proof. (1) There exists an idempotent ecR such that Me= N. Hence,
KNMe=Ke=N,ecK 'N,and K(K"'N)=N. To prove the second part,
we first observe that N(K ~!N) ~! > K. Let us assume that N(K "'N) "'= K’ # K.
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Then K’'eJ and there exists some PeI(K’) such that P ¢ K. Hence, we can
select P’ € L(,M) so that P’ U P® = P. Therefore P’ N K =0 and we can select
e€Rsothate|K=0and e|P’ = . Clearly ee K™'N and K'(K " 'N) ¢ N since
K’e > P'. However, [N(K~*N) " '](K~!N) < N according to the definition of
N(K~*N)~'. This contradiction proves that N(K"'N)™! = K.

(2) Clearly

(Nl_lNz) (N1_1N3) < N1—1N3>

so that N7'N, c (NJ!N,)(N3!N5)™! and N;!N; < (NT*N)™ (N[ IN,).
On the other hand, [(N7'N,;) (N;'N3;)™'] (N;'N;) = N;'N; so that
N,[(N7'N3) (N;'N3)™'] (N7'N;) = Nj. Hence, N,[(N; 'N3) (N5 'N3)™]
c Ny(N;'N3;)™* = N, and (N7'N3;) (N;'N;)"'< N{'N,. Therefore,
(Ny'N3) (N7 'N3)™! = N{'N,. Similarly, (N7 'N,) [(N7'Ny)™'(N7'N3)]
< N{'N3, Ny(N{ N [(NT! Np)TH(NT'Ny)] © N, No[(NT'N2)TH(NTIN3)]
cN,,and (N7 N,) '(N;*N;)= N3 !N, Therefore,(N; *N,) Y(N;{*N3)=N; 'N,,
and 4.1is proved.

If J is a FD-lattice of ;M and R = R(J), then an ideal of R of the form 410,
resp. 04 ™%, for someideal A of Ris called a right, resp. left, annihilating ideal
of R. Let us designate by L(R), resp. L,(R), the set of allright, resp. left, anni-
hilating ideals of R.

l4.2 TueoreM. If J is a FD-lattice of pM and R =R(J), then

L(R)={K"'0|KeJ} and L(R)={M"'K|KeJ}. Thus, the mapping
J% L(R) defined by aK =K~ '0, KeJ, is a dual isomorphism and the
mapping J & L(R) defined by BK = M~ 'K, Ke J is an isomorphism.

Proof. By 4.1, (2), K™'0=M"'K)"*(M~'0) =(M~*K)"'0 and therefore
K~'0eL/(R)for each K e J. Similarly, M~ 'K = (M~ *0)(K~'0)"* = 0(K~10)"!
and M~ 'K e L,(R) for each KeJ. If Ae L (R) and B=0A4"!, then Be L,(R)
and A= B~'0. If we let K = MB, then KeJ and K"'0=B~'0= 4. Thus, 4
has the desired form. Also, M(M~1K)4=0,(M~*K)4=0,and Bc M~ * K<04™}
= B. Hence, B= M~ 'K and B has the desired form. If K~'0 = N ~!0 for some
K,NeJ,then K=0K™'0)"'=0(N"'0)"! =Nby4.1,1).fM ' K=M"'N
for some K, NeJ, then K =M(M™'K)=M(M 'N)=N by 4.1, (1). Thus,
o and B are bijections. This proves 4.2.

If J is a FD-lattice of M and R = R(J), and if K, NeJ with K o N, then
KN =K1 W0 *'=WM"'K)y"'(M'N) by 41, (2). That is,
K™ IN = (aK)(@N)~! = (BK)" ' (BN) if we use the mappings « and B of 4.2.
This shows that the ideals of the form K~ !N, where K, NeJ, may be defined
intrinsically in the ring R itself. We shall use this fact later on in the paper.

If J is a FD-lattice of pM and K, NeJ with K o N, then evidently
J'={N'—N|N'e[N,K]} is a FD-lattice of ,(K — N). There is a natural
mapping R % R’ of R = R(J) onto R’ = R(J’) defined by: (x + N)(c¢) = xc + N
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for all ceR and x + Ne K — N. It is easily seen that ¢ is an epimorphism and
ker ¢ = K~!N. We state this result as follows.

4.3 THEOREM. If J is a FD-lattice of pM and K, N eJ with K o N, and if
J'={N'— N|N'e[N,K]}, then J' is a FD-lattice of (K — N) and
R(J') = RW)/(K~'N).

5. Baer rings. While we defined the projector K~ N above only for K, Ne J,
it is clear that K~'N may be defined in the same way for any subsets K and N of
M or R. In particular, if J is a FD-lattice of ,M and R = R(J), then we can easily
describe K™ N for any J-distributive subspaces K and N of M. Thus, K= Me
and N = Mf for some idempotents e, fe R, and K "N o (1 — ¢)R + Rf. On the
other hand, ifaeRthen ac K™'N iff Meac N, or iff eaf=ea. That is,
aeK'N if a —afe(l — eR, or iff ae(l — e)R + Rf. Hence,
K~ 'N =(1—¢e)R + Rf.Itfollows that M 'K =Reand K™ '0=(1—¢)R if K=Me.
Evidently M 'K =0(K~'0)"! and K™'0=(M~'K)~'0; that is, M~ 'K is an
annihilating left ideal and K~'0 is an annihilating right ideal of R. These are
the only annihilating right or left ideals of R generated by idempotents according
to the next result.

5.1 THEOREM. Let J be a FD-lattice of pM and R = R(J). If A is a right ideal
and B is a left ideal of R such that A= B~'0 and B = 0A~!, then A and B are
generated by idempotents iff either 04~! or MB is a J-distributive subspace
of M.

Proof. If A =eR for some idempotent ecR, then B=R(l1—e) and
0A~!=MB=M(1 —¢e). Hence, 04~ (= MB) is J-distributive by 3.1. Con-
versely, if either 04 ~*or MB is J-distributive, then either 04 ~ '= Mfor MB=Me
for some idempotents e, fe R. If 04 ™' = Mf, then A= (1 —f)R and B< Rf
since MB = Mf. Hence, A=B"'0 > (Rf) '0=(1—f)R>Aand A=(1 —f)R,
B = Rf.If MB = Me,then(MB) '0=B"'0=(1—¢)R=Aand B=04"'=Re.
This proves 5.1.

A ring R is called a Baer ring iff every annihilating right or left ideal of R is
generated by an idempotent. In a recent paper [2], Wolfson proved the following
result.

5.2 THEOREM. If J is a finite chain in L(,M) containing 0 and M, then R(J)
is a Baer ring.

We point out that this theorem follows directly from 3.3 and 5.1. Thus, for
every right ideal 4 and left ideal B of R(J) such that 4=B"'0 and B=04"",
MB is J-distributive by 3.3 and therefore A and B are generated by idempotents

according to 5.1.
1t is evident that if the FD-lattice J of ,M is isomorphic to a direct product of
chains, then R(J) is isomorphic to a direct product of Baer rings and hence is a
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Baer ring. However, these are not the only distinguished rings that are Baer rings.
We shall not give the details, but it may be shown that the ring R of all 3 x 3
matrices over a division ring D of the form dy e, + d,,e,;, + d3 €3, +d3se;5,
+d;;e;33, where ¢;; are the usual matrix units, is a Baer ring. In this case, we may
also represent R as R(J), where J = {0, Dx,, Dx,, Dx; + Dx,, M} and
M =Dx + Dx, + Dx,, a 3-dimensional vector space over D. If the lattice J is
slightly more complicated, then R(J) is not a Baer ring as the following theorem
shows.

5.3 THEOREM. If the FD-lattice J of ,M contains three irreducible elements
Py, P,, P such that P, U P, c P and P, N\ P, is different from 0, P, and P,,
then R = R(J) is not a Baer ring.

Proof. Let {P,, ---, P,} = I(J) and let P;e L(,M) be selected so that
PPUP/=P,i=1,-,n. Selectx;e P/, x; ¢ P\ i=1,2,3,andlet N = D(x, + x,).
Since NN (P, uUP,)=N whereas (NNP,)U(NNP,)=0, N is not J-dis-
tributive. If we imagine that x, € B;, a basis of P3, then there exists b € R such that
X3b=x; +x,, xb=0 for xeB;, x #x;, Pib=0 if i # 3. Clearly Mb=N,
and therefore N"'0 = b"'0 = 4 is an annihilating right ideal of R. If 4 were
generated by an idempotent, then K = 04" would be a J-distributive subspace
of M, K o N. Now for any nonzero y € P, N P,, there exists some a € R such that
x1a=y,%x,a=—y,anda|P;= ¢ fori=3,---,n. Since (x, + x,)a = 0, evidently
acA. However, P;,a#0 for i=1,---,n, and therefore P,¢ K, i=1,---,n. It
follows that K =0, contrary to the fact that K > N. Consequently, 4 is not
generated by an idempotent. This proves 5.3.

For example, if M = Dx; + Dx, + Dx; + Dx, is a 4-dimensional vector
space over D and J = {0, Dx,, Dx; + Dx,, Dx; + Dx;, Dx, + Dx, + Dx;, M},
then R = R(J) is the ring of all 4 x 4 matrices over D of the form

a;; 0 0 0
a,, a,, 0 0
a;; 0 ass; 0
41 Q42 Q43 Q44

In the notations of 5.3, P; = Dx; + Dx,, P, = Dx, + Dx5, and P; = M. Letting
N=D(x, +x;) as we did in the proof of 5.3, N"'0=A=e¢,,R +(e;; —€3,)R +e44R
and B=0A4""!=R(e,, + e43). Since B> =0, evidently B, and therefore also 4,
is not generated by an idempotent.

6. Subrings of distinguished rings. Let J be a FD-lattice of ,M and R = R(J).
An idempotent e € R is called simple iff e # 0 and there exists an irreducible P € J
such that Mec P and MeNP°=0. A sum e=e¢, + - +e¢, of idempotents
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e, €R is called direct iff e;e; = de;, i, j=1,---,m. Evidently a direct sum of
nonzero idempotents of R is a nonzero idempotent of R.

We have seen that if {P,,---,P,} = I(J), then associated with each nonzero
idempotent ee R is a splitting P, = P UP/UP/, i = 1,---,n, such that
Me =|Ji-, P{ and M(1 — e) = | Ji-, P/. If we define ¢, € R as follows: ¢;| P; = ¢,
e)|Pj=¢|Py=0,i#j,i,j, k=1, -, n, then clearly eje; = 55e;, i, j=1,--,n,
ande=e¢, + - + e,. Since each nonzero ¢, is simple, we have proved the following
result.

6.1 THEOREM. If J is a FD-lattice of ,M, then each nonzero idempotent in
R(J) is a direct sum of simple idempotents.

Ife=e; + - + e, is a direct sum of simple idempotents of R = R(J), then the
subring eRe of R is a direct sum of the subrings e;Re;. Let us now describe the
structure of each subring e;Re;.

6.2 THEOREM. If J is a FD-lattice of pM and e, f are nonzero idempotents
of R=R(J), then eRf=S={ac Hom(D(Me),D(Mf))I(Ke)a < Kf for every
KeJ}.

Proof. We can consider S = E(,M) by letting a|M(1 — e) = 0 for each
acS. Since (Ke)eRf ¢ Kf for each KeJ, evidently eRf = S. Now
KS=[Ke + K(1 — €)] S =(Ke)S < Kf c K for each K € J, and therefore S = R.
Since xa = xeaf for all xe M and a € S, S = eSf < eRf. Thus, S = eRf and 6.2 is
proved.

6.3 CorOLLARY. If J is a FD-lattice of ,M, e is a nonzero idempotent of
R =R(J), and N = Me, then eRl = R(Jy).

We recall from §3 that Jy = {N NK|K eJ}. It follows from 6.3 that every
subring of a d-ring R of the form eRe, e an idempotent, is also a d-ring.

6.4 THEOREM. Let J be a FD-lattice of pM and e, f be simple idempotents of
R=R(J) such that Mec P, MeNP°=0, and Mf<Q, MfNnQ°=0, for
given irreducible P,QeJ. Then eRf#0 iff Q < P. If eRf#0, then eRf=
Hom(p(Me),p(Mf)).

Proof. If Q = P then MeRf = Pf # 0 and eRf # 0. If Q ¢ P then
Pfc Mf NQNPcMfNQ®°=0, MeRf=0, and eRf=0. In case Q = P and
KeJ, we have Kec KNP # 0 iff K > P. Hence, (Ke)a < Kf for
all ae Hom(p(Me), p(Mf)) and K €J, and eRf = Hom(p(Me), pn(Mf)) in view
of 6.2. This proves 6.4.

Let us call ring R a full ring iff R = E(,N) for some vector space pN. If Jis a
FD-lattice of ,M and R = R(J), then R is a full ring iff J = {0,M}. Hence, the
result below follows directly from 6.3.
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6.5 THEOREM. If J is a FD-lattice of pM and e is a nonzero idempotent of
R = R(J), then eRe is a full ring iff e is simple.

6.6 COROLLARY. The ring eRe of 6.5 is a division ring iff dim(Me) =1 in
L(pM). If eRe is a division ring, then eRe = D.

That eRe=~ D is seen as follows. Since dim(Me)=1, Me = Dx for some
x € Me. Now x(eRe) e L(p,M) and therefore x(eRe) = Dx. Hence, the mapping
eRe% D defined by: xere = (ere)’x, r € R, is an isomorphism.

If J is a FD-lattice of ,M and {P,,---,P,} = I(J), then we can order this set so
that P; ¢ P, if j > i, i, j=1,--, n (for example, order I(J) so that
dim(P,) £dim(P;,,)in J). Let 1 = ¢, + :-- + ¢, be a direct sum of simple idem-
potents of R = R(J), with Me; U P? = P,,i=1, -, n. Then e;Re; = 0if j > i and
R = X}.;-eRe;. Thinking in terms of a matrix representation of R, this says
that the representation can be broken up into n? blocks with the blocks down
the main diagonal full matrix rings and the blocks above the main diagonal
all zero. The subring

A = Z eiRej
j<i=1

clearly is an ideal of R. Since A"=0 and R/4 = e;Re; + -+ + ¢,Re,, a direct
sum of primitive rings, evidently 4 is the Jacobson radical of R. We have proved
part of the following theorem.

6.7 THEOREM. Let J be a FD-lattice of ;M of dimension n and R = R(J). Then
1 can be expressed as a direct sum of n simple idempotents of R,1 =e; + -+ + e,
in such a way that R is a direct sum of subrings

R = E egRej.
jsi=1
The subring
A= X e;Re;
j<i=1

is the Jacobson radical of R, and
R/A=eRe; + -+ +¢,Re,,

a direct sum of full rings. The ideal A is nilpotent with index of nilpotency one
less than the length of the longest chain in I(J).

Proof. We need only find the index of nilpotency of A to complete the
proof. Let I(J) = {Py,---,P,}, with dim P, < dim P;,,i=1,---,n — 1. By 6.4,
eRe; #0 iff P> P;; and if P;>P; then eRe; =~ Hom(p(Me), p(Me)). If
e;Re; #0 and e;Re, #0, then for every nonzero ac€eRe; there exists some
bee;Re;, such that ab # 0. It follows that A™ ' # 0 iff there exists a chain
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P, > P;,>--- o> P; in I(J). Hence, the index of nilpotency of 4 is the length of
the longest chain in I(J).

7. Isomorphic theorems. Distinguished rings are isomorphic iff the obvious
isomorphisms hold between their underlying vector spaces, as we shall show
below. Our results are extensions and generalizations of those of Wolfson [2,
Theorem 7].

7.1 THEOREM. Let J and J' be FD-lattices of \M and p.M’, respectively,
and let R=R(J) and R'=R(J’). Then R =R’ iff there exist isomorphisms
D% D'andJ% J' such that dimp(P — P°) = dim p.(aP — aP°) for every
Pel(J).

Proof. Let R% R’ be an isomorphism. Then the mapping J % J’ defined
by: aK = M'[(M~'K)¢], K € J, is an isomorphism by 4.2. If P € I(J) and P’ = aP,
then E(5(P — P°) = R/(P~'P°) and £(,(P’' — P'%) = R'/(P’ ~*P'°) by 4.3. Since
(PP =[(M"'P)"'(M™'P%)]¢p =(M' 1P (M' TP = (P'TIP0), we
conclude that E(,(P — P°)) = E(,(P’ — P'®)) for every PelI(J). By a classical
result of ring theory [3, p. 79], we have that D=~ D’ and dim (P — P°)
= dim p.(P’ — P'°) for every P e I(J).

Conversely, let us assume that DS D’ and J% J’ are isomorphisms such
that dim ,(P; — PY) = dim p.(aP; — aP}), i=1,---,n, where I(J)={P,,--,P,}.
We may select P,e L(,M) and P/eL(,-M’) such that P;= P, P? and
«P;=P;=P/UP/° i=1,-,n. By assumption, there exist bases {x;|jeA;}
of P, and {xj;|jeA} of P/, i =1,--,n. Each element of M is uniquely
represented as a finite sum of the form X, ;d;;x;;, d;;eD, by 1.1. Thus,
there is a unique mapping M % M’ defined by: ( Xd,;x;;)0 = Xdx,;. It is clear
that 0 is a 1-1 semilinear mapping of M onto M’ that maps J onto J'. Hence
the mapping E(zM)Y% E(,M’) defined by: ay =0 'ab, a € E(pM), is an iso-
morphism [3, p. 45]. If reR, so that Pr =« P, i=1,-,n, then
Pi(ry) = P60~ 'r0) = P(rO) c PO P}, i=1, ---,n, and ry eR’. Conversely, if
ry € R’ then P{(ry) = P(r@) c P}, Pr< P} ‘=P, i=1,---,n, and reR. Thus,
ifweletgd =y | R, the mapping R % R’isan isomorphism. This proves 7.1.
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