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1. Consider a pair of oriented surfaces S and § immersed smoothly in E3.

Suppose that some geometrically significant conformal structure is introduced

on each of these surfaces, so that Riemann surfaces R and fc are defined on S

and § respectively. (By a geometrically significant conformal structure we mean

one which requires for its definition some knowledge of at least one of the two

fundamental forms which describe a surface's immersion in £3.)It is then natural

to seek geometric characterizations of cases in which standard differential geo-

metric correspondences between S and § yield Teichmüller mappings between

R and Ä.

In recent papers [4; 6], we have offered such characterizations using two dif-

ferent methods for the determination of conformal structure^). The first method

is the familiar one. It uses the ordinary metric tensor i" to impose the customary

conformal structure on a surface. The second method applies only to surfaces on

which mean and Gaussian curvatures 3tf and Jf are positive. It uses the positive

definite second fundamental form 27 to determine a nonstandard conformal

structure on such surfaces.

In this paper we continue these investigations. Together with the procedures

already described for obtaining R or R, we consider a third method which applies

only to surfaces on which Jf< 0. (See [7].) The process uses the positive definite

form 77' defined by

(1) JT'ir =JfI-Jfll

where

jg"=- ^{ßtf2 - Jf)

to yield a nonstandard conformal structure on such surfaces.

Presented to the Society, September 28,1962 under the title More on the geometry of Teich-

müller mappings; received by the editors January 30,1963.
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(2) Please note two corrections on p. 135 of [4]. On line 8, insert "corresponding" between

"of" and "nonplanar." And on line 8 from the bottom, replace "removable" by "nonplanar."

Note also that the third sentence on p. 135 forces S and S in Theorem 1 of [4] to beumbilic

free unless /is conformal. Thus the corollary to Theorem 1 in [4] can be strengthened to read as

follows. 77ie standard mapping f between compact parallel surface S and § of genus g^ 1 is never

a nonconformal Teichmüller mapping f: Ri-^-Ri.
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The results which follow parallel closely those previously obtained. Lemmas

and theorems below have been numbered so as to best indicate their relation to

items in [4; 6]. Normally, this paper would begin with a list of all facts about

Teichmüller mappings which are used in subsequent sections. However, §2 of [6]

does this job adequately. Those interested in further descriptions of Teichmüller

mappings, or of the role they play in the study of Riemann surfaces, should

consult [1] or [2].

2. This section is devoted to a discussion of two lemmas. Let S be an oriented

surface which is C3 immersed in E3. By Rt we denote the usual Riemann surface

determined on S by I. Conformal parameters z=x + iy on Rl correspond to

isothermal coordinates xjon S in terms of which / is given by

(2) X(x,y)(dx2 +dy2),

where A is an arbitrary function. In case JT,^f > 0 on S, we denote by R2 the

Riemann surface determined on S by II. Conformal parameters z = x + iy on R2

correspond to bisothermal coordinates x, y on S in terms of which i7 is given

by (2). In case Jf< 0 on S, we denote by R2 the Riemann surface determined on S

by //', the form defined above in (1). Conformal parameters z = x + iy on

R2 correspond to disothermal coordinates x,y on S in terms of which 77' is

given by (2). The existence of C3 isothermal, and C2 bisothermal or disothermal

coordinates under the conditions given is assured. (See §4 of [2], for instance.)

In this paper we study mappings f:S-+$ which yield Teichmüller mappings

from R'2 to Rt or R2 or R'2. We ignore the cases in which/ yields a Teichmüller

mapping from Rt or R2 to k'2, because all results below may be easily reworded

so as to cover these cases. This follows from the fact that the inverse of a

Teichmüller mapping is itself a Teichmüller mapping with the same maximal

dilatation as the original.

Wherever R2 (or k2) structure is referred to, it is automatically assumed that

Jf, 3V > 0 (or Jf, & > 0). Wherever R2 (or R'2) structure is referred to it is

automatically assumed that < 0 (or Jf < 0). By K we always denote the

maximal dilatation of the Teichmüller mapping then under discussion. Lemma 1

is a direct consequence of remarks made toward the end of §2 in [6].

Lemma 1. Suppose f: R'2^ Rt or f: R'2-* R2 or f: R2-* R2 is a Teichmüller

mapping. Then there are disothermal coordinates near all but (isolated)excep-

tional points on S in terms of which I or If or IV (respectively) is given by

(3) y(x,y)(K2dx2 +dy2),

where y is a positive function.

We will refer below to disothermal surfaces. Such surfaces are characterized

by the existence of disothermal lines-of-curvature coordinates in the neighborhood
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of every point. The terms umbilic, removable umbilic, irremovable umbilic,

line-of-curvature, net of lines of curvature, isothermal surface and bisothermal

surface will be used as defined within §3 of [6]. Note, however, that a net of lines

of curvature is assumed to be an orthogonal net except at irremovable umbilics,

that is, except at actual singularities in the net. (Thus any orthogonal net of

curves on a piece of sphere is a net of lines of curvature.)

Lemma 2. Let f:S-*§ preserve a net of lines of curvature. Iff: R'2^> At or

f: R'2 -> k2 or f \ R'2 -* fc'2 is a nonconformal Teichmüller mapping, then S

is disothermal while S is isothermal, bisothermal or disothermal(respectively).

Proof of Lemma 2. The directions of principal curvature on S correspond

to dy.dx values ctl and <x2 which satisfy

(4) -Mdx2 +(L- N)dxdy + Mdy2 = 0

when x,y are isothermal, or

(5) - Fdx2 +(E- G)dxdy + Fdy2 = 0

when x,y are either bisothermal or disothermal. (See [5; 7].)

Suppose/: R'2 ->is a nonconformal Teichmüller mapping. Then introducing

the coordinates given by Lemma 1 near any nonexceptional point, we have

(6) //' = X(dx2 + dy2),

/ = y(K2dx2 + dy2),

with K > 1. Lines of curvature on § correspond to dy: dx values ct1 and ct2

which satisfy

(7) - K2Mdx2 + (L-K2N)dxdy + Mdy2 = 0,

since Kx,y are isothermal on §. If either dx = 0 or dy = 0 corresponds to a

direction of principal curvature, (5) and (7) yield F — M = 0. But (1) and F = M'

= 0 mean M = 0, making x,y disothermal lines-of-curvature coordinates on S.

On the other hand f= fö=0, so that Kx,y are isothermal lines-of-curvature

coordinates on §. Finally, either dx = 0 or dy = 0 must correspond to a direction

of principal curvature. Otherwise F # 0, and the usual formulas for angle

measurement on S and § may be used to express the fact that the orthogonal

principal directions on S correspond to orthogonal principal directions on S.

This yields

0 = E + F(a, + a2) + Gata2

and

0 = K2 + ata2.

Since a, and a2 solve (5) divided by dx2,
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G — E
«1  + «2 =       p ■

Thus,

0=1+ dy<X2,

which is a contradiction, since K > 1.

Suppose now that f: R'2-+ R2 or f. R'2-+ R'2 is a nonconformal Teichmüller

mapping. Then the coordinates given by Lemma 1 near any nonexceptional

point yield

//' = X(dx2 + dy2),

Ü = y(K2dx2 + dy2),

or

II'= X(dx2+dy2),

IV = y(K2dx2 + dy2),

respectively. In either case, directions of principal curvature on S correspond

to dy.dx values ax and a2 which satisfy

(10) - K2F~dx2 +(E- K2G)dxdy + Fdy2 = 0,

since Kx,y are bisothermal or disothermal on 5*. Once again, since ocj and a2

yield orthogonal directions on both S and S, there is a contradiction unless

dx = 0 and dy = 0 correspond to directions of principal curvature. But then,

using (1), (5), (8), (9) and (10), we see that x,y are disothermal on S, while Kx,y

are either bisothermal or disothermal on S, as the case requires.

Note, finally, that in all three situations covered by Lemma 2,/ can have no

exceptional points. For Jf< 0 makes S umbilic free. Thus an exceptional point p

would be a regular point in the net of lines of curvature on S, giving p the index

j = 0 in this net. However,

J       2 ,

where m is the order of the zero or minus the order of the pole at p of Q, the

defining quadratic differential of the nonconformal Teichmüller mapping f.

This fact follows from previous arguments, which show the coincidence of the

net of trajectories and orthogonal trajectories of fi with the net of lines of curvature

on S. It is helpful in this connection to rewrite (5) as we do in the course of proving

Lemma 4 below. (See §3 of [5].)

3. Our theorems will deal with mappings between surfaces which preserve a

net of lines of curvature. To maintain the order of presentation established in
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[4; 6], we consider first the standard mapping/ between parallel surfaces S and §'

which associates with each point p on S a point on § the fixed distance t j= 0

from S along the unit normal to S at p. It is well known that/preserves lines of

curvature. Moreover, if the orientation on § is the one induced upon it from S

by/, then/preserves normals as well. Thus results in this section are corollaries of

Lemma 5 and Theorem 2 which are proved below in §4. (The same comment

applies to the corresponding results in [4; 6].) We consider first the conformal

cases.

Lemma 3. Let f: S -» S be the standard mapping between parallel surfaces.

Iff'- ^2 ~* ̂ i '5 conformal, then S and S are Weingarten surfaces satisfying

(11) Jf-2rJf + t2JOf = 0

and

(12) £ + t(2Jf 2 -X) = 0

respectively. If f: R'2-> R2 w conformal, then S and § are Weingarten surfaces

satisfying

(13) Jf = j

and

(14) * = =1

respectively. The mapping f: R'2-> fc'2 cannot be conformal.

Proof of Lemma 3. The two fundamental forms on S are given in terms of

those on S by

/= / — 2tII + t2III,

(15) //= II-till

where

(16) III = urn-jri.

(See p. 272 of [3].) It follows easily that

£i        ,, £2

(17) kl~TTfeV' kl~

while

(18) *i-tAt.   *2= kl
I-kit'    2 l-k2t'

Iff: R'2   i?x is conformal, (17), (18) and (34) of Lemma 5 yield (11) on S and (12)
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on S. If/: P2-> P2 is conformal, (17), (18) and (35) of Lemma 5 yield (13) on S

and (14) on §. If/: R'2 -* k2 were conformal, (18) and (36) of Lemma 5 would

yield fet = fc2 which contradicts < 0. We need only check the theorem which

follows in the nonconformal cases.

Theorem 1. Letf: S-> § be the standard mapping between parallel surfaces.

If f: R'2-> P^ is a Teichmüller mapping, then S and S are Weingarten surfaces

satisfying

(19) (fc2 + K2kJ - 2t(l + K2)Jf + t2X(k! + K2k2) = 0

and

(20) (k2 + JC2£,) - t(l + K2)Ct + 2t£{k2 + K2kx) = 0

respectively. Iff: R'2-+R2 is a Teichmüller mapping, then S and § are

Weingarten surfaces satisfying

(21) (l + K2) = t(k1 +K2k2)

and

(22) {\+K2)=-t(k2+K2kl)

respectively. Iff ■ R'2-> R2 is a Teichmüller mapping, then K > 1 while S and §

are Weingarten surfaces satisfying

(23) (1 - thy) = K\l - tk2)

and

(24) (1 + tk2) = K2{\ + tkt)

respectively.

Proof of Theorem 1. If/: P'2 -» Rt is a Teichmüller mapping with K > 1,

then (17), (18) and (44) of Theorem 2 yield (19) on S and (20) on S. If

/: R'2^k2 is a Teichmüller mapping with K > 1, then (17), (18) and (45) of

Theorem 2 yield (21) on S and (22) on S. If/: R'2 -* R'2 is a Teichmüller mapping

with K> 1, then (17), (18) and (46) of Theorem 2 yield (23) on S and (24) on S.

Of course, (19), (20), (21) and (22) reduce to (11), (12), (13) and (14) respectively

when K = 1.

4. In discussing mappings which preserve both normals and a net of lines of

curvature, it will be helpful to have the following definitions. Let/ be a homeo-

morphism from S onto §. Let £ c= S be the set of all preimages under / of zeros

of^f. Let ZeSbe the set of zeros of^f. Let 2' = Snf. Finally, let S' be the
complement of I' on S.
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Lemma 4. Let f: S-+S preserve normals. Iff: R'2-> &i is conformal, then

f preserves lines of curvature on S'. If f. R'2^> R2 or f: R'2 -* k'2 is conformal,

then f preserves lines of curvature on S.

The elementary notation used to prove Lemma 4 in [6] could be employed here

too. We prefer, however, the abbreviations afforded by §4 in [7]. For this purpose,

we recall the following definitions. Let R be an arbitrary Riemann surface defined

on S. Let z = x + iy be a conformal parameter on R. For an arbitrary quadratic

form Q = Adx2 + 2Bdxdy + Cdy2 on S, consider the associated quadratic

differential

on R. The quadratic differentials associated with 7, // and 7/7 are called QUQ2

and fl3 respectively. Thus Qx = 0 means R = Ru while £22 = 0 means that R = R2

or that X = X=0. By (4) and (5), lines of curvature on R. correspond to solutions

of

(25) Im 0_2 > 0,

while those on R2 or R'2 correspond to solutions of

(26) Im Qx > 0.

The following statement is a conveniently weakened version of Lemma 6 in [7].

Remark.  Wherever R = Ru

(27) Q3 = 2XQ2.

Wherever R= R2,

(28) fi3 = -JfQ,.

Wherever R = R'2,

(29) Q3 = jrn1 = jrn2.

Proof of Lemma 4. Suppose/: R'2 -* 7?t is conformal and preserves normals.

Then we use (29) and (27) to express the fact that under f,R=R'2 — A1 while

Q3 = Q3. This yields

(30) jmi=2J'£22.

Lines of curvature on S correspond to solutions of (26), those on S to solutions

of (25), suitably hatted. Since and .JT<0 are real valued,/preserves directions

of principal curvature except perhaps on S. But on Z, (30) yields Qt = 0, so that

by (29),Jf = 0. (The alternative Q2 = 0 is impossible, since X < 0 while R2 and

R'2 never coincide.) Thus S' = £ <= Z, and / preserves lines of curvature on S'.
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Similarly, if /: R'2->R2's conformal and preserves normals, then (29) and (28)

yield

(31) jTCly = -JfQx.

Lines of curvature on S correspond again to solutions of (26), those on S to

solutions of (26), suitably hatted. Here,since Jf < 0 and    >0 are real,/preserves

lines of curvature on all of S.

Suppose finally that f:R'2-*R2 is conformal and preserves normals. By (29),

(32) JfQy =.yffii

with both <0 and Jf" < 0 real. Lines of curvature on S and S are determined

as in the previous case. Thus, once again,/preserves lines of curvature everywhere.

The method just employed yields the following statement which has its proper

place among the results in [4].

Lemma 4'. Let f.S^S preserve normals. If f.Ry^Ry is conformal, f

preserves a net of lines of curvature on S'.

Proof of Lemma 4'.  In this case, (27) yields

(33) JfT22 = Jt>Q2.

Lines of curvature on S and § correspond to solutions of (25), suitably hatted for

S. Since andJf are real,/ preserves lines of curvature except, perhaps, on

ZUZ. But now consider Z1} the complement of ZinZuZ. Forp£Z1,^f = 0

at p while & # 0 at f(p). By (33), O, = 0 at/(p), so that Rt and k2 must coincide

there. Thus /(p) is an umiblic on §. It follows that the conformal mapping

f-.Ry-^Ry will carry any net of lines of curvature on ^ to a net of lines of

curvature on /(Zj). On the other hand, consider Z2, the complement of Z

in Zu Z. For p eZ2,^f # 0 at p, while J5f = 0 at /(p). Here (33) forces Rt and R2

to coincide at p, making p an umbilic on S. On Z2,/ will preserve only those

lines of curvature which are the preimages of lines of curvature on/(Z2). (Picture

here the case in which Z2 is a piece of sphere, and /(Z2) a piece of nonplanar

minimal surface.) In any case,/ will preserve on S' the preimage of any net of

any net of lines of curvature which exists on f(S'). This restriction to S' here

and in the first case covered by Lemma 4, may be explained as follows.

Remark. If we use ordinary conformal structure on the unit sphere oriented

by its inner normal, then the spherical image mapping of an umbilic free minimal

surface is conformal either from Rt or from R'2. (See Theorem 3 below.) Thus

an / obtained by composing the spherical image mapping of an umbilic free

minimal surface S with the inverse of the spherical image mapping of an umbilic

free minimal surface S will be conformal from P, or R'2 to i^j or A2, and will

preserve nornals. But only in rare instances will such an / preserve lines of

curvature.
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Lemma 5.  Let f:S->S preserve normals. Iff: R'2 -> At is conformal, then

(34) kyfc\ = - k2k\

holds at points in correspondence under f. If f:R2->R2 is conformal, then

(35) k&2 = - k2kt

holds at points in correspondence underf.Iff: R'2-+R'2 is conformal, then

(36) k1k2 = k2ki

holds at points in correspondence under f.

Proof of Lemma 5. Suppose/: R2 -* 7?j is conformal. By Lemma 1 of [7],

any choice of lines-of-curvature coordinates near a point of S yields

7 = Edx2 + Gdy2,

(37) 77 = k^Edx2 + k2Gdy2,

II' = k^Edx2 - k2Gdy2.

Here 77' a 7, so that, by Lemma 4, we have

/ = y(Mox2 - k2Gdy2),

77 = y(kAk^Edx2-k2k2Gdy2)

on S'. Using (16) to express the preservation of normals, we have

(39) 1X11 - Jf 7 = IXII -Xl.

Equating coefficients, using (37) and (39), yields

ki = ykl,

k2= - ykl

on S', or (34). But on 2', kx = - k2, while fct = - k2 on/(S'). Thus (34) holds

everywhere on S.

Suppose now that f :R'2->R2 is conformal. Near any point on S, choose

coordinates in terms of which (37) holds. Here 77' a II, so that Lemma 4yields

t=y (^Edx2 - ^Gdy2),
(40) Ul k2 1

II = y(ktEdx2 - k2Gdy2).

Using this in (39), and equating coefficients, we have



76 TILLA KLOTZ [July

(41) fcl " yku

k2 = - yk2,

or (35).

Suppose, finally, that f: R'2^> R'2 is conformal. As before, choose coordinates

near any point on S in terms of which (37) holds. Here 17' a //', so that by Lemma

1 of [7], and Lemma 4 above,

l=y{^Edx2 + ~Gdy2),
(42) ^! ^2 ^

II = yik^dx2 + k2Gdy2).

Using this in (39), and equating coefficients, we have

/<i = yki,
(43)

k2 = yk2,

or (36).

Note now that if we place the values (41) in / of (40), we have /= y2I, making

f:R1-*R1 conformal. Similarly, placing the values (43) in / of (42), we have

/= y2I, making/: Rt -> Rt conformal. The following statement is easily checked.

(See Theorem 2 of [4].)

Remark. Let /:S->^ preserve normals, and Jf < 0 on S. If ct > 0 on

S,f: Rx-> R1 is conformal iff/: R'2-» fc2 is conformal. If < 0 on §, f: R^R.

is conformal iff/: R'2 -» R'2 is conformal.

We turn now to Teichmüller mappings which preserve normals and lines of

curvature. We obtain, just as in Lemma 5, joint Weingarten conditions

W(k1,k2; fcY,k2) = 0 relating the principal curvatures at points of S and 5 in

correspondence under /. Only the nonconformal cases need to be checked in the

theorem which follows.

Theorem 2. Let f preserve normals and lines of curvature. If f :R2-*kv

is a Teichmüller mapping, then

(44) kvk\ = - K2k2k\

at points in correspondence underf. Iff .R'2-*R2 is a Teichmüller mapping,

then

(45) k,k2 = - K2k2kt

holds at points in correspondence under f. If f: R'2 -> R'2 is a Teichmüller

mapping, then

(46 k^2 = K2k2ki

holds at points in correspondence underf.
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Proof of Theorem 2. Assuming K > 1, we may choose near any point on S

the coordinates described by Lemma 1 and Lemma 2 which are relevant to the

case under consideration. In all three situations covered by Theorem 2, we have

(47) II = k (dx2 - dy2),

IV = k(dx2 + dy2),

since x,y are lines-of-curvature coordinates on S. If/: R2-^Ry is a Teichmüller

mapping with K > 1, then

/ = y(K2dx2 + dy2),

Ü = y{K2kydx2 + £2dy2).

Using these values in (39) and equating coefficients, we have

kky = yK2k2,

kk2 — — yk2,

or (44). If /: R2-* ky is a Teichmüller mapping with K > 1, then

// = y(K2dx2 + dy2).

Equating coefficients in (39) yields

Xky = yK2ku

kk2 = — yk2,

or (45). If/: R'2 -* k'2's a Teichmüller mapping with X > 1, then

'2

Here, (39) yields

or (46).

II = y(K2dx2 - dy2),

IV = y(K2dx2 + dy2).

kky = yK2ku

=: y^2?
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5. The spherical image mapping of a surface into the unit sphere and the

identity mapping of a surface onto itself are particular examples of the kind of

mapping discussed in §4. All comments below are therefore corollaries of Lemma 5

and Theorem 2.

Theorem 3. Let f be the spherical image mapping of S onto $, part of the

unit sphere. Iff:R'2^> Ri is a Teichmüller mapping, then S is both isothermal

and disothermal, while

(48) ky = - K2k2.

Proof of Theorem 3. When K = 1, use Lemma 5, kx — k2, and the fact that

a minimal surface is both isothermal and disothermal where <0. (Indeed,

Rt = R'2 wherever = 0 and Jf< 0.) When K / 1, use Lemma 2 and Theorem 2.

To show that S is isothermal, substitute (48) in (47), and use coordinates x, Ky

on S.

Theorem 4. // the identity mapping/:S->S is a Teichmüller mapping

f:R'2-> Ry, then S is both isothermal and disothermal, while

k2= -K2kt.

Proof of Theorem 4. Use Lemma 2, Lemma 5, Theorem 2, and the comment

just made about minimal surfaces.

Remark. LetJf< Oon S. Recalling Theorem 3 of [4], we see that the following

statements are equivalent.

1. The spherical image mapping of S is a Teichmüller mapping from Rt.

2. The spherical image mapping of S is a Teichmüller mapping R2.

3. The identity mapping of S is a Teichmüller mapping from Px to R2.
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